-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
152 lines (116 loc) · 5.21 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import saver as tf_saver
def weights_montage(weights, grid_Y, grid_X, pad=1):
"""Visualize conv. features as an image (mostly for the 1st layer).
Place kernel into a grid, with some paddings between adjacent filters.
Args:
weights: tensor of shape [Y, X, NumChannels, NumKernels]
(grid_Y, grid_X): shape of the grid. Require: NumKernels == grid_Y * grid_X
pad: number of black pixels around each filter (between them)
Return:
Tensor of shape [(Y+2*pad)*grid_Y, (X+2*pad)*grid_X, NumChannels, 1].
"""
x_min = tf.reduce_min(weights, axis=[0, 1, 2])
x_max = tf.reduce_max(weights, axis=[0, 1, 2])
weights1 = (weights - x_min) / (x_max - x_min)
# pad X and Y
x1 = tf.pad(weights1-1, tf.constant([[pad, pad], [pad, pad], [0, 0], [0, 0]]), mode='CONSTANT')+1
# X and Y dimensions, w.r.t. padding
Y = weights1.get_shape()[0] + 2 * pad
X = weights1.get_shape()[1] + 2 * pad
channels = weights1.get_shape()[2]
# put NumKernels to the 1st dimension
x2 = tf.transpose(x1, (3, 0, 1, 2))
# organize grid on Y axis
x3 = tf.reshape(x2, tf.stack([grid_X, Y * grid_Y, X, channels])) # 3
# switch X and Y axes
x4 = tf.transpose(x3, (0, 2, 1, 3))
# organize grid on X axis
x5 = tf.reshape(x4, tf.stack([1, X * grid_X, Y * grid_Y, channels])) # 3
# back to normal order (not combining with the next step for clarity)
x6 = tf.transpose(x5, (2, 1, 3, 0))
# to tf.image_summary order [batch_size, height, width, channels],
# where in this case batch_size == 1
x7 = tf.transpose(x6, (3, 0, 1, 2))
# scale to [0, 255] and convert to uint8
return tf.image.convert_image_dtype(x7, dtype=tf.uint8)
def montage_tf(imgs, num_h, num_w):
"""Makes a montage of imgs that can be used in image_summaries.
Args:
imgs: Tensor of images
num_h: Number of images per column
num_w: Number of images per row
Returns:
A montage of num_h*num_w images
"""
imgs = tf.unstack(imgs)
img_rows = [None] * num_h
for r in range(num_h):
img_rows[r] = tf.concat(axis=1, values=imgs[r * num_w:(r + 1) * num_w])
montage = tf.concat(axis=0, values=img_rows)
return tf.expand_dims(montage, 0)
def remove_missing(var_list, model_path):
reader = pywrap_tensorflow.NewCheckpointReader(model_path)
if isinstance(var_list, dict):
var_dict = var_list
else:
var_dict = {var.op.name: var for var in var_list}
available_vars = {}
for var in var_dict:
if reader.has_tensor(var):
available_vars[var] = var_dict[var]
else:
logging.warning(
'Variable %s missing in checkpoint %s', var, model_path)
var_list = available_vars
return var_list
def assign_from_checkpoint_fn(model_path, var_list, ignore_missing_vars=False,
reshape_variables=False):
"""Returns a function that assigns specific variables from a checkpoint.
Args:
model_path: The full path to the model checkpoint. To get latest checkpoint
use `model_path = tf.train.latest_checkpoint(checkpoint_dir)`
var_list: A list of `Variable` objects or a dictionary mapping names in the
checkpoint to the correspoing variables to initialize. If empty or None,
it would return no_op(), None.
ignore_missing_vars: Boolean, if True it would ignore variables missing in
the checkpoint with a warning instead of failing.
reshape_variables: Boolean, if True it would automatically reshape variables
which are of different shape then the ones stored in the checkpoint but
which have the same number of elements.
Returns:
A function that takes a single argument, a `tf.Session`, that applies the
assignment operation.
Raises:
ValueError: If the checkpoint specified at `model_path` is missing one of
the variables in `var_list`.
"""
if ignore_missing_vars:
var_list = remove_missing(var_list, model_path)
saver = tf_saver.Saver(var_list, reshape=reshape_variables)
def callback(session):
saver.restore(session, model_path)
return callback
def get_variables_to_train(trainable_scopes=None):
"""Returns a list of variables to train.
Returns:
A list of variables to train by the optimizer.
"""
if trainable_scopes is None:
variables_to_train = tf.trainable_variables()
else:
scopes = [scope.strip() for scope in trainable_scopes.split(',')]
variables_to_train = []
for scope in scopes:
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
variables_to_train.extend(variables)
print('Variables to train: {}'.format([v.op.name for v in variables_to_train]))
return variables_to_train
def get_checkpoint_path(checkpoint_dir):
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if not ckpt:
print("No checkpoint in {}".format(checkpoint_dir))
return None
return ckpt.model_checkpoint_path