-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathobject_detection.py
459 lines (367 loc) · 18 KB
/
object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
from argparse import ArgumentParser
import os
import gi
import cairo
import numpy as np
import time
import pandas as pd
import colorsys
import logging
import cv2
gi.require_version('Gst', '1.0')
gi.require_version('GstVideo', '1.0')
gi.require_foreign('cairo')
from gi.repository import Gst, GObject, GstVideo, GLib
from config import cfg
import gt_position_extractor
import label_mapper
import utils
import models.ssd_inception_v2.coco_labels as coco_labels
class ObjectDetector:
"""Object Detection with NNStreamer."""
def __init__(self, argv=None):
parser = ArgumentParser()
parser.add_argument('--device', type=str, default=cfg.GLOBAL.DEVICE, help='device to use for inference')
parser.add_argument('--gpu_idx', type=str, default='0', help='gpu device number to use if the gpu will be used')
parser.add_argument('--video', type=str, default=cfg.GLOBAL.VIDEO_PATH, help='input video file path')
parser.add_argument('--use_webcam', action='store_true', default=cfg.GLOBAL.USE_WEBCAM, help='whether use web cam or not')
parser.add_argument('--model', type=str, choices=cfg.GLOBAL.MODELS.keys(), help='model name to use')
parser.add_argument('--score', type=float, default=cfg.GLOBAL.SCORE_THRESHOLD, help='threshold for score')
parser.add_argument('--train_folder', type=str, default='train', help='for train set')
args = parser.parse_args()
self.model_name = args.model
self.mcfg = cfg.GLOBAL.MODELS[self.model_name]
# set device
self.device = args.device
self.gpu_idx = args.gpu_idx
if self.device == 'gpu':
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_idx
else:
os.environ["CUDA_VISIBLE_DEVICES"] = '-1'
self.framework = cfg.GLOBAL.FRAMEWORK
self.weight_path = self.mcfg.MODEL_PATH
self.label_path = self.mcfg.LABEL_PATH
self.use_webcam = args.use_webcam
self.draw_gt_box = cfg.GLOBAL.DRAW_GT
self.file_path = args.video
self.train_folder_path = args.train_folder
# get video size
vid = cv2.VideoCapture(self.file_path)
self.video_width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
self.video_height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
self.model_size = self.mcfg.INPUT_SIZE
self.box_size = 4
self.num_labels = self.mcfg.NUM_LABELS
# threshold values to drop detections
self.iou_threshold = cfg.GLOBAL.IOU_THRESHOLD
self.score_threshold = args.score
self.loop = None
self.pipeline = None
self.running = False
self.labels = {}
self.bboxes = []
self.times = []
self.frames = []
self.fps = 0
self.avgfps = 0
# test codes for new ssd support
if self.model_name == 'ssd' or self.model_name == 'frcnn':
self.labels = coco_labels.labels
else:
self.mapper = label_mapper.LabelMapper(self.label_path)
self.labels = self.mapper.labels
# load labels
with open(self.label_path, 'r') as data:
for ID, name in enumerate(data):
self.labels[ID] = name.strip('\n')
# set colors for overlay
hsv_tuples = [(1.0 * x / self.num_labels, 1., 1.) for x in range(self.num_labels)]
colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors))
Gst.init(argv)
# constructs model-specific gstreamer pipeline
def construct_pipeline(self):
self.input_dim = self.mcfg.INPUT_DIM
self.output_dim = self.mcfg.OUTPUT_DIM
input_type = self.mcfg.INPUT_TYPE
output_type = self.mcfg.OUTPUT_TYPE
video_sink = 'autovideosink' if cfg.GLOBAL.OS == 'mac' else 'ximagesink'
enable_sync = 'true' if cfg.GLOBAL.ENABLE_SYNC else 'false'
inputs = input_names = input_types = ''
outputs = output_names = output_types = ''
# input source
if self.use_webcam:
pipeline = 'v4l2src name=cam_src !'
else:
pipeline = f'filesrc location={self.file_path} ! decodebin name=decode '
# overlay
pipeline += f'! videoscale ! videoconvert ! video/x-raw,width={self.video_width},height={self.video_height} ! tee name=t \n' + \
't. ! queue ! videoconvert ! timeoverlay ! textoverlay name=text_overlay ! cairooverlay name=tensor_res ! \n' + \
f' fpsdisplaysink name=fps_sink video-sink={video_sink} text-overlay=false signal-fps-measurements=true sync={enable_sync}\n'
# tensor convert
pipeline += f't. ! queue leaky=2 max-size-buffers={len(self.output_dim.keys())} ! videoscale add-borders=1 ! '
if self.model_name.find('yolo') >= 0:
pipeline += f'video/x-raw,width={self.model_size},height={self.model_size},format=RGB,pixel-aspect-ratio=1/1 ! \n' + \
f' tensor_converter input-dim=3:{self.model_size}:{self.model_size}:1 ! '
elif self.model_name.find('ssd') >= 0 or self.model_name.find('rcnn') >= 0:
pipeline += f'tensor_converter input-dim=3:{self.video_width}:{self.video_height}:1 ! '
# tensor transform
tensor_transform = self.mcfg.TENSOR_TRANSFORM
if len(tensor_transform) > 0:
pipeline += f'tensor_transform {tensor_transform} ! \n'
# tensor filter
# input tensors
for input_tensor in self.input_dim:
dim = f'{self.input_dim[input_tensor]}'
self.input_dim[input_tensor] = dim.replace('-1:-1', f'{self.video_width}:{self.video_height}')
inputs += f'{self.input_dim[input_tensor]},'
input_names += f'{input_tensor},'
input_types += f'{input_type[input_tensor]},'
inputs = inputs[:-1]
input_names = input_names[:-1]
input_types = input_types[:-1]
# output tensors
for output_tensor in self.output_dim:
outputs += f'{self.output_dim[output_tensor]},'
output_names += f'{output_tensor},'
output_types += f'{output_type[output_tensor]},'
outputs = outputs[:-1]
output_names = output_names[:-1]
output_types = output_types[:-1]
pipeline += f'\n tensor_filter name=tensor_filter latency=1 throughput=1 framework={self.framework} model={self.weight_path} \n' + \
f' input={inputs} inputname={input_names} inputtype={input_types} \n' + \
f' output={outputs} outputname={output_names} outputtype={output_types} ! \n'
# tensor sink
pipeline += ' tensor_sink name=tensor_sink'
print('', '[Pipeline]', pipeline, '', sep='\n')
return pipeline
def run(self):
"""Init pipeline and run example.
:return: None
"""
# main loop
self.loop = GLib.MainLoop()
pipeline = self.construct_pipeline()
self.pipeline = Gst.parse_launch(pipeline)
# bus and message callback
bus = self.pipeline.get_bus()
bus.add_signal_watch()
bus.connect('message', self.on_bus_message)
# tensor sink signal : new data callback
tensor_sink = self.pipeline.get_by_name('tensor_sink')
tensor_sink.connect('new-data', self.on_new_data)
# cairo overlay : boxes for detected objects
overlay = self.pipeline.get_by_name('tensor_res')
overlay.connect('draw', self.draw_overlay_cb)
# frame count
self.frame_by_bin = self.pipeline.get_by_name('decode')
self.frame = 0
# mesuare fps
self.fps_sink = self.pipeline.get_by_name('fps_sink')
self.fps_sink.connect('fps-measurements', self.on_fps_message)
# inference performance
self.tensor_filter = self.pipeline.get_by_name('tensor_filter')
self.init_files()
# start pipeline
self.pipeline.set_state(Gst.State.PLAYING)
self.running = True
self.start_time = time.time()
# run main loop
self.loop.run()
# quit when received eos or error message
self.running = False
self.pipeline.set_state(Gst.State.NULL)
bus.remove_signal_watch()
# write output
if cfg.GLOBAL.ENABLE_PERF_LOG:
self.csv = pd.DataFrame(self.perf_data, columns=['time', '#all_objs', '#valid_objs', 'fps', 'avgfps', 'latency', 'throughput'])
self.csv.to_csv(self.fps_file_path, index=False, mode='w')
if cfg.GLOBAL.ENABLE_DETECT_LOG:
self.csv = pd.DataFrame(self.detected_objects_data)
self.csv.to_csv(self.detected_objects_csv_path, index=False, header=False, mode='w')
# calculate average
# if len(self.frames) > 1:
# average_fps = (self.frames[-1] - self.frames[0]) / (self.times[-1] - self.times[0])
# print(f"average tensor fps: {average_fps}")
def on_new_data(self, sink, buffer):
"""Callback for tensor sink signal.
:param sink: tensor sink element
:param buffer: buffer from element
:return: None
"""
if not self.running or buffer.n_memory() != len(self.output_dim):
return
success, self.frame = self.frame_by_bin.query_position(Gst.Format.DEFAULT)
# YOLO: [1][3 * n * n][85 = 4(x_min, y_min, x_max, y_max) + 1(confidence) + 80(class scores)]
inf_result = {}
i = 0
for name, dim in self.output_dim.items():
bbox_data = utils.buffer_to_arr(self.model_name, buffer, i, utils.get_tensor_size(dim))
inf_result[name] = bbox_data
i += 1
if self.model_name.find('yolo') >= 0:
bboxes = np.reshape(np.concatenate(list(inf_result.values()), axis=0), (-1, 85))
bboxes = utils.postprocess_boxes(bboxes, self.mcfg, self.video_width, self.video_height)
elif self.model_name.find('ssd') >= 0 or self.model_name.find('rcnn') >= 0:
bboxes = utils.decode_ssd(inf_result, self.video_width, self.video_height, self.frame)
else:
print(f'Error: Not supported model named {self.model_name}')
return
# bboxes, bboxes_all = self.postprocess_boxes(pred_bbox)
# bboxes_all = self.nms(bboxes_all, method='nms')
# for bbox in bboxes_all:
# self.detected_objects_data.append([str(self.frame).zfill(6), bbox[0], bbox[1], bbox[2], bbox[3], self.mapper.get_data_set_label(int(bbox[5])), bbox[4]])
self.bboxes = utils.nms(bboxes, method='nms')
def on_fps_message(self, fpsdisplaysink, fps, droprate, avgfps):
self.fps = fps
self.avgfps = avgfps
self.droprate = droprate
# textoverlay = self.pipeline.get_by_name('text_overlay')
# label = 'video-fps: %.2f overlay-fps: %.2f' % (fps, 1 / interval)
# textoverlay.set_property('text', label)
# perf_text = 'latency: %.3f ms throughput: %d' % (latency, throughput)
# textoverlay.set_property('text', perf_text)
# print(perf_text)
def draw_overlay_cb(self, overlay, context, timestamp, duration):
if not self.running:
return
draw_cnt = 0
context.select_font_face('Sans', cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL)
context.set_font_size(20)
context.set_line_width(2.0)
context.set_source_rgb(0.1, 1.0, 0.8)
# bboxes: [x_min, y_min, x_max, y_max, probability, cls_id] format coordinates.
for detected_object in self.bboxes:
score = detected_object[4]
if score < 0.3:
continue
x = int(detected_object[0])
y = int(detected_object[1])
width = int(detected_object[2]) - x
height = int(detected_object[3]) - y
label_idx = int(detected_object[5])
label = self.labels[label_idx]
# box_color = self.colors[label_idx]
# context.set_source_rgb(*box_color)
# draw rectangle
context.rectangle(x, y, width, height)
context.stroke()
# draw title
context.move_to(x - 1, y - 8)
context.show_text('%s %.2f' % (label, score))
draw_cnt += 1
# if draw_cnt >= self.max_object_detection:
# break
# logging performance
self.times.append(time.time())
rendered_frames = self.fps_sink.get_property('frames-rendered')
self.frames.append(rendered_frames)
if len(self.frames) >= 2 :
cur_time = time.time() - self.start_time
latency = self.tensor_filter.get_property('latency') / 1000 / 10
throughput = self.tensor_filter.get_property('throughput')
estimated_fps = (self.frames[-1] - self.frames[-2]) / (self.times[-1] - self.times[-2])
self.perf_data.append([cur_time, len(self.bboxes), draw_cnt, self.fps, self.avgfps, latency, throughput])
if self.draw_gt_box:
context.set_line_width(2.0)
context.set_source_rgb(1.0, 1.0, 0.)
for gt_object in self.gt_objects[str(self.frame)]:
x = gt_object.x
y = gt_object.y
width = gt_object.width
height = gt_object.height
# label = gt_object.class_name
# draw rectangle
context.rectangle(x, y, width, height)
context.stroke()
# draw title
# context.move_to(x - 1, y - 8)
# context.show_text('%s %.2f' % (label))
# draw_cnt += 1
# if draw_cnt >= self.max_object_detection:
# break
def init_files(self):
# make out file
folder_path = './output/'
if cfg.GLOBAL.ENABLE_DETECT_LOG or cfg.GLOBAL.ENABLE_PERF_LOG:
if 'train' in self.file_path:
folder_path = folder_path + self.train_folder_path + '/' + self.file_path.split('/')[-1].split('.')[0]
else:
folder_path = folder_path + self.file_path.split('/')[-1].split('.')[0]
if not os.path.exists(folder_path):
os.makedirs(folder_path)
if self.draw_gt_box:
self.gt_objects = {}
file_path = self.file_path.split('/')[-1]
extension_idx = file_path.rfind('.')
file_path = file_path[:extension_idx]
self.gt_objects = gt_position_extractor.GtPositionExtractor(file_path).get_gtobjects_from_csv()
print(f'[Info] Read ground truth boxes in {len(self.gt_objects)} frames')
if cfg.GLOBAL.ENABLE_DETECT_LOG:
self.detected_objects_data = []
detected_folder_path = folder_path + '/detections'
if not os.path.exists(detected_folder_path):
os.makedirs(detected_folder_path)
self.detected_objects_csv_path = detected_folder_path + f'/all_detections.csv'
i = 0
while True:
if not os.path.isfile(self.detected_objects_csv_path):
break
else:
i += 1
if i == 1:
self.detected_objects_csv_path = self.detected_objects_csv_path.replace('.csv', '_1.csv')
if not os.path.isfile(self.detected_objects_csv_path):
break
else:
if f'_{i - 1}.csv' in self.detected_objects_csv_path:
self.detected_objects_csv_path = self.detected_objects_csv_path.replace(f'_{i - 1}.csv', f'_{i}.csv')
else:
self.detected_objects_csv_path = self.detected_objects_csv_path.replace('.csv', f'_{i}.csv')
if cfg.GLOBAL.ENABLE_PERF_LOG:
self.perf_data = []
fps_folder_path = folder_path + '/fps'
if not os.path.exists(fps_folder_path):
os.makedirs(fps_folder_path)
self.fps_file_path = fps_folder_path + f'/{self.model_name}_{self.score_threshold*100}.csv'
i = 0
while True:
if not os.path.isfile(self.fps_file_path):
break
else:
i += 1
if i == 1:
self.fps_file_path = self.fps_file_path.replace('.csv', '_1.csv')
if not os.path.isfile(self.fps_file_path):
break
else:
if f'_{i - 1}.csv' in self.fps_file_path:
self.fps_file_path = self.fps_file_path.replace(f'_{i - 1}.csv', f'_{i}.csv')
else:
self.fps_file_path = self.fps_file_path.replace('.csv', f'_{i}.csv')
def on_bus_message(self, bus, message):
"""Callback for message.
:param bus: pipeline bus
:param message: message from pipeline
:return: None
"""
if message.type == Gst.MessageType.EOS:
logging.info('received eos message')
self.loop.quit()
elif message.type == Gst.MessageType.ERROR:
error, debug = message.parse_error()
logging.warning('[error] %s : %s', error.message, debug)
self.loop.quit()
elif message.type == Gst.MessageType.WARNING:
error, debug = message.parse_warning()
logging.warning('[warning] %s : %s', error.message, debug)
elif message.type == Gst.MessageType.STREAM_START:
logging.info('received start message')
elif message.type == Gst.MessageType.QOS:
data_format, processed, dropped = message.parse_qos_stats()
format_str = Gst.Format.get_name(data_format)
logging.debug('[qos] format[%s] processed[%d] dropped[%d]', format_str, processed, dropped)
if __name__ == '__main__':
object_detector = ObjectDetector()
object_detector.run()