-
Notifications
You must be signed in to change notification settings - Fork 0
/
PNames.v
716 lines (658 loc) · 30.2 KB
/
PNames.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
Require Import Functors.
Require Import List.
Require Import Names.
Require Import FunctionalExtensionality.
Require Import Coq.Arith.EqNat.
Require Import Coq.Bool.Bool.
Section PNames.
(* ============================================== *)
(* TYPES *)
(* ============================================== *)
(** SuperFunctor for Types. **)
Variable D : Set -> Set.
Context {Fun_D : Functor D}.
(* ============================================== *)
(* VALUES *)
(* ============================================== *)
(** SuperFunctor for Values. **)
Variable V : Set -> Set.
Context {Fun_V : Functor V}.
Context {Sub_StuckValue_V : StuckValue :<: V}.
Context {WF_SubStuckValue_V : WF_Functor _ _ Sub_StuckValue_V}.
Context {Sub_BotValue_V : BotValue :<: V}.
Context {WF_SubBotValue_V : WF_Functor _ _ Sub_BotValue_V}.
(* ============================================== *)
(* EXPRESSIONS *)
(* ============================================== *)
(** SuperFunctor for Expressions. **)
Variable E : Set -> Set -> Set.
Context {Fun_E : forall A, Functor (E A)}.
(* ============================================== *)
(* OPERATIONS *)
(* ============================================== *)
(** TYPING **)
Context {Typeof_E : forall T,
FAlgebra TypeofName T (typeofR D) (E (typeofR D))}.
Context {eval_E : forall T, FAlgebra EvalName T (evalR V) (E nat)}.
Context {beval_E : FAlgebra EvalName (Exp (E nat)) (evalR V) (E nat)}.
(* ============================================== *)
(* EXPRESSION EQUIVALENCE RELATION *)
(* ============================================== *)
Section eqv_Section.
Record eqv_i (A B : Set) : Set := mk_eqv_i
{env_A : Env A;
env_B : Env B;
eqv_a : UP'_F (E A);
eqv_b : UP'_F (E B)}.
(** SuperFunctor for Equivalence Relation. **)
Variable EQV_E : forall A B,
(@eqv_i A B -> Prop) -> eqv_i A B -> Prop.
Definition E_eqv A B := iFix (EQV_E A B).
Definition E_eqvC {A B : Set} gamma gamma' e e' :=
E_eqv _ _ (mk_eqv_i A B gamma gamma' e e').
Variable (NP : Set -> Set).
Context {Fun_NP : Functor NP}.
Context {sub_NP_F : forall A, NP :<: E A}.
Inductive NP_Functor_eqv
(A B : Set)
(C : eqv_i A B -> Prop)
: eqv_i A B -> Prop :=
| NP_eqv_0 : forall (gamma : Env A) (gamma' : Env B)
e e' (np : forall D : Set, NP D),
proj1_sig e = inject (subGF := sub_NP_F A) (np _) ->
proj1_sig e' = inject (subGF := sub_NP_F B) (np _) ->
(forall (A' B' C' : Set) (f : A' -> C') (g : B' -> C'),
fmap f (np A') = fmap g (np B')) ->
NP_Functor_eqv A B C (mk_eqv_i _ _ gamma gamma' e e')
| NP_eqv_1 : forall (gamma : Env A) (gamma' : Env B)
e e' (np : forall D : Set, D -> NP D)
a a',
proj1_sig e = inject (subGF := sub_NP_F A) (np _ a) ->
proj1_sig e' = inject (subGF := sub_NP_F B) (np _ a') ->
C (mk_eqv_i _ _ gamma gamma' a a') ->
(forall (A' B' C' : Set) (f : A' -> C') (g : B' -> C')
(a' : A') (b' : B'), f a' = g b' ->
fmap f (np A' a') = fmap g (np B' b')) ->
NP_Functor_eqv A B C (mk_eqv_i _ _ gamma gamma' e e')
| NP_eqv_2 : forall (gamma : Env A) (gamma' : Env B)
e e' (np : forall D : Set, D -> D -> NP D)
a a' b b',
proj1_sig e = inject (subGF := sub_NP_F A) (np _ a b) ->
proj1_sig e' = inject (subGF := sub_NP_F B) (np _ a' b') ->
C (mk_eqv_i _ _ gamma gamma' a a') ->
C (mk_eqv_i _ _ gamma gamma' b b') ->
(forall (A' B' C' : Set) (f : A' -> C') (g : B' -> C')
(a' a'' : A') (b' b'' : B'), f a' = g b' -> f a'' = g b'' ->
fmap f (np A' a' a'') = fmap g (np B' b' b'')) ->
NP_Functor_eqv A B C (mk_eqv_i _ _ gamma gamma' e e')
| NP_eqv_3 : forall (gamma : Env A) (gamma' : Env B)
e e' (np : forall D : Set, D -> D -> D -> NP D)
a a' b b' c c',
proj1_sig e = inject (subGF := sub_NP_F A) (np _ a b c) ->
proj1_sig e' = inject (subGF := sub_NP_F B) (np _ a' b' c') ->
C (mk_eqv_i _ _ gamma gamma' a a') ->
C (mk_eqv_i _ _ gamma gamma' b b') ->
C (mk_eqv_i _ _ gamma gamma' c c') ->
(forall (A' B' C' : Set) (f : A' -> C') (g : B' -> C')
(a' a'' a''' : A') (b' b'' b''' : B'),
f a' = g b' -> f a'' = g b'' -> f a''' = g b''' ->
fmap f (np A' a' a'' a''') = fmap g (np B' b' b'' b''')) ->
NP_Functor_eqv A B C (mk_eqv_i _ _ gamma gamma' e e').
Definition ind_alg_NP_Functor_eqv
(A B : Set)
(P : eqv_i A B -> Prop)
(H : forall gamma gamma' e e' np e_eq e'_eq wf_np,
P (mk_eqv_i _ _ gamma gamma' e e'))
(H0 : forall gamma gamma' e e' np a a' e_eq e'_eq
(IHa : P (mk_eqv_i _ _ gamma gamma' a a')) wf_np,
P (mk_eqv_i _ _ gamma gamma' e e'))
(H1 : forall gamma gamma' e e' np a a' b b' e_eq e'_eq
(IHa : P (mk_eqv_i _ _ gamma gamma' a a'))
(IHb : P (mk_eqv_i _ _ gamma gamma' b b')) wf_np,
P (mk_eqv_i _ _ gamma gamma' e e'))
(H2 : forall gamma gamma' e e' np a a' b b' c c' e_eq e'_eq
(IHa : P (mk_eqv_i _ _ gamma gamma' a a'))
(IHb : P (mk_eqv_i _ _ gamma gamma' b b'))
(IHc : P (mk_eqv_i _ _ gamma gamma' c c')) wf_np,
P (mk_eqv_i _ _ gamma gamma' e e'))
i (e : NP_Functor_eqv A B P i) : P i :=
match e in NP_Functor_eqv _ _ _ i return P i with
| NP_eqv_0 gamma gamma' e e' np e_eq e'_eq wf_np =>
H gamma gamma' e e' np e_eq e'_eq wf_np
| NP_eqv_1 gamma gamma' e e' np a a' e_eq e'_eq a_eqv wf_np =>
H0 gamma gamma' e e' np a a' e_eq e'_eq a_eqv wf_np
| NP_eqv_2 gamma gamma' e e' np a a' b b' e_eq e'_eq a_eqv b_eqv wf_np =>
H1 gamma gamma' e e' np a a' b b' e_eq e'_eq a_eqv b_eqv wf_np
| NP_eqv_3 gamma gamma' e e' np a a' b b' c c' e_eq e'_eq a_eqv b_eqv c_eqv wf_np =>
H2 gamma gamma' e e' np a a' b b' c c' e_eq e'_eq a_eqv b_eqv c_eqv wf_np
end.
Definition NP_Functor_eqv_ifmap
(A B : Set)
(A' B' : eqv_i A B -> Prop) i (f : forall i, A' i -> B' i)
(eqv_a : NP_Functor_eqv A B A' i) :
NP_Functor_eqv A B B' i :=
match eqv_a in NP_Functor_eqv _ _ _ i return NP_Functor_eqv _ _ _ i with
| NP_eqv_0 gamma gamma' e e' np e_eq e'_eq wf_np =>
NP_eqv_0 _ _ _ gamma gamma' e e' np e_eq e'_eq wf_np
| NP_eqv_1 gamma gamma' e e' np a a' e_eq e'_eq a_eqv wf_np =>
NP_eqv_1 _ _ _ gamma gamma' e e' np a a' e_eq e'_eq (f _ a_eqv) wf_np
| NP_eqv_2 gamma gamma' e e' np a a' b b' e_eq e'_eq a_eqv b_eqv wf_np =>
NP_eqv_2 _ _ _ gamma gamma' e e' np a a' b b' e_eq e'_eq (f _ a_eqv) (f _ b_eqv) wf_np
| NP_eqv_3 gamma gamma' e e' np a a' b b' c c' e_eq e'_eq a_eqv b_eqv c_eqv wf_np =>
NP_eqv_3 _ _ _ gamma gamma' e e' np a a' b b' c c' e_eq e'_eq (f _ a_eqv) (f _ b_eqv) (f _ c_eqv) wf_np
end.
Global Instance iFun_Arith_eqv A B : iFunctor (NP_Functor_eqv A B).
constructor 1 with (ifmap := NP_Functor_eqv_ifmap A B).
destruct a; simpl; intros; reflexivity.
destruct a; simpl; intros; reflexivity.
Defined.
(* Projection doesn't affect Equivalence Relation.*)
Definition EQV_proj1_P A B (i : eqv_i A B) :=
forall a' b' H H0, a' = proj1_sig (eqv_a _ _ i) ->
b' = proj1_sig (eqv_b _ _ i) ->
E_eqvC (env_A _ _ i) (env_B _ _ i) (exist _ a' H) (exist _ b' H0).
Inductive EQV_proj1_Name := eqv_proj1_name.
Context {EQV_proj1_EQV : forall A B,
iPAlgebra EQV_proj1_Name (@EQV_proj1_P A B) (EQV_E A B)}.
Context {Fun_EQV_E : forall A B, iFunctor (EQV_E A B)}.
Definition EQV_proj1 A B:=
ifold_ (EQV_E A B) _ (ip_algebra (iPAlgebra := EQV_proj1_EQV A B)).
Variable Sub_NP_Functor_eqv_EQV_E : forall A B,
Sub_iFunctor (NP_Functor_eqv A B) (EQV_E A B).
Global Instance EQV_proj1_NP_Functor_eqv :
forall A B,
iPAlgebra EQV_proj1_Name (EQV_proj1_P A B) (NP_Functor_eqv _ _).
Proof.
intros; econstructor; unfold iAlgebra; intros.
eapply ind_alg_NP_Functor_eqv; unfold EQV_proj1_P; simpl; intros.
apply inject_i; econstructor; simpl; eauto.
rewrite H2; rewrite e_eq; eauto.
rewrite H3; rewrite e'_eq; eauto.
apply inject_i; econstructor 2; simpl; eauto.
rewrite H2; rewrite e_eq; eauto.
rewrite H3; rewrite e'_eq; eauto.
destruct a; destruct a'; apply IHa; auto.
apply inject_i; econstructor 3; simpl; eauto.
rewrite H2; rewrite e_eq; eauto.
rewrite H3; rewrite e'_eq; eauto.
destruct a; destruct a'; apply IHa; auto.
destruct b; destruct b'; apply IHb; auto.
apply inject_i; econstructor 4; simpl; eauto.
rewrite H2; rewrite e_eq; eauto.
rewrite H3; rewrite e'_eq; eauto.
destruct a; destruct a'; apply IHa; auto.
destruct b; destruct b'; apply IHb; auto.
destruct c; destruct c'; apply IHc; auto.
assumption.
Defined.
End eqv_Section.
Variable EQV_E : forall A B, (@eqv_i A B -> Prop) -> eqv_i A B -> Prop.
Context {Fun_EQV_E : forall A B, iFunctor (EQV_E A B)}.
Variable WFV : (WFValue_i D V -> Prop) -> WFValue_i D V -> Prop.
Context {funWFV : iFunctor WFV}.
Definition WF_eqv_environment_P (env_A_B : Env (typeofR D) * Env nat) gamma'' :=
(forall m b : nat,
lookup (snd env_A_B) m = Some b ->
exists T, lookup (fst env_A_B) b = Some T) /\
Datatypes.length (fst env_A_B) = Datatypes.length (snd env_A_B) /\
(forall m b : nat, lookup (snd env_A_B) m = Some b -> b = m) /\
WF_Environment _ _ WFV gamma'' (fst env_A_B).
Definition eqv_eval_alg_Soundness'_P
(typeof_rec : Exp (E (typeofR D)) -> typeofR D)
(eval_rec : Exp (E nat) -> evalR V)
(typeof_F : Mixin (Exp (E (typeofR D))) (E (typeofR D)) (typeofR D))
(eval_F : Mixin (Exp (E nat)) (E nat) (evalR V))
i :=
E_eqv EQV_E _ _ i /\
eval_alg_Soundness_P D V (E nat) WFV
_ WF_eqv_environment_P
(E (typeofR D)) _ (env_A _ _ i, env_B _ _ i) typeof_rec eval_rec
typeof_F eval_F
(proj1_sig (eqv_a _ _ i), proj1_sig (eqv_b _ _ i))
(conj (proj2_sig (eqv_a _ _ i)) (proj2_sig (eqv_b _ _ i))).
Lemma WF_eqv_environment_P_insert : forall gamma gamma' gamma'' v T,
WF_eqv_environment_P (gamma, gamma') gamma'' ->
WFValueC _ _ WFV v T ->
WF_eqv_environment_P (insert _ (Some T) gamma, insert _ (Datatypes.length gamma') gamma')
(insert _ v gamma'').
Proof.
intros; destruct H as [WF_gamma [WF_gamma2 [WF_gamma' WF_gamma'']]].
unfold WF_eqv_environment_P; simpl in *|-*; repeat split.
rewrite <- WF_gamma2.
revert WF_gamma; clear; simpl; induction gamma';
destruct m; simpl; intros; try discriminate.
injection H; intros; subst.
clear; induction gamma; simpl; eauto; eexists.
injection H; intros; subst.
generalize b (WF_gamma 0 _ (eq_refl _)); clear; induction gamma; simpl; intros b H;
destruct H as [T' lookup_T']; try discriminate.
destruct b; eauto.
eapply IHgamma'.
intros n0 b0 H0; eapply (WF_gamma (S n0) _ H0).
eassumption.
assert (exists m', Datatypes.length gamma' = m') as m'_eq
by (eexists _; reflexivity); destruct m'_eq as [m' m'_eq].
rewrite m'_eq; generalize m' gamma' WF_gamma2; clear; induction gamma;
destruct gamma'; intros; simpl; try discriminate;
try injection H7; intros; eauto.
simpl in *|-*.
intro; caseEq (beq_nat m (Datatypes.length gamma')).
assert (exists m', m' = Datatypes.length gamma') as ex_m' by
(eexists _; reflexivity); destruct ex_m' as [m' m'_eq];
rewrite <- m'_eq in H at 1.
rewrite <- WF_gamma2 in H1.
rewrite (beq_nat_true _ _ H).
rewrite (beq_nat_true _ _ H), m'_eq in H1.
rewrite <- WF_gamma2 in m'_eq; rewrite m'_eq.
generalize m' b H1; clear.
induction gamma'; simpl; intros; try discriminate.
injection H1; auto.
eauto.
eapply WF_gamma'.
rewrite <- WF_gamma2 in H1.
assert (exists m', m' = Datatypes.length gamma') as ex_m' by
(eexists _; reflexivity); destruct ex_m' as [m' m'_eq].
generalize m' m (beq_nat_false _ _ H) H1; clear;
induction gamma'; simpl; destruct m; intros;
try discriminate; eauto.
elimtype False; eauto.
eapply P2_Env_insert.
eauto.
apply H0.
Qed.
Section NP_beval_Soundness.
Variable (NP : Set -> Set).
Context {Fun_NP : Functor NP}.
Context {sub_NP_F : forall A, NP :<: E A}.
Context {WF_sub_NP_F_V : forall A, WF_Functor _ _ (sub_NP_F A)}.
Variable Sub_NP_Functor_eqv_EQV_E : forall A B,
Sub_iFunctor (NP_Functor_eqv NP A B) (EQV_E A B).
Context {eval_Soundness_alg_NP : forall pb typeof_rec eval_rec,
PAlgebra eval_Soundness_alg_Name (sig (UP'_P2 (eval_alg_Soundness_P D V (E nat) WFV
_ WF_eqv_environment_P (E (typeofR D)) _ pb typeof_rec eval_rec
(f_algebra (FAlgebra := Typeof_E _)) (f_algebra (FAlgebra := beval_E))))) NP}.
(* Context {WF_Ind_eval_Soundness_alg : forall pb typeof_rec eval_rec,
@WF_Ind2 (E _) (E _) NP eval_Soundness_alg_Name (Fun_E _) (Fun_E _) Fun_NP
(UP'_P2 (eval_alg_Soundness_P D V (E nat) WFV _ _
(E (typeofR D)) _ pb typeof_rec eval_rec _ _)) _ _ (eval_Soundness_alg_NP pb _ _)}. *)
Variable WF_WFV_Bot_WFV : Sub_iFunctor (WFValue_Bot D V) WFV.
Inductive eqv_eval_SoundnessName : Set := eqv_eval_soundnessname.
Context {Typeof_NP : forall T, FAlgebra TypeofName T (typeofR D) NP}.
Context {beval_NP : FAlgebra EvalName (Exp (E nat)) (evalR V) NP}.
Context {WF_eval_F : @WF_FAlgebra EvalName _ _ NP (E _)
(sub_NP_F _) beval_NP (eval_E _)}.
Context {WF_typeof_F : @WF_FAlgebra TypeofName _ _ NP (E _)
(sub_NP_F _) (Typeof_NP _) (Typeof_E (Fix (E (typeofR D))))}.
Global Instance eqv_eval_Soundness typeof_rec eval_rec :
forall (WF_Ind_eval_Soundness_alg : forall pb,
@WF_Ind2 (E _) (E _) NP eval_Soundness_alg_Name (Fun_E _) (Fun_E _) Fun_NP
(UP'_P2 (eval_alg_Soundness_P D V (E nat) WFV _ _
(E (typeofR D)) _ pb typeof_rec eval_rec _ _)) _ _ (eval_Soundness_alg_NP pb _ _)),
iPAlgebra eqv_eval_SoundnessName
(eqv_eval_alg_Soundness'_P typeof_rec eval_rec
(f_algebra (FAlgebra := Typeof_E _))
(f_algebra (FAlgebra := beval_E))) (NP_Functor_eqv _ _ _).
Proof.
econstructor; unfold iAlgebra; intros.
eapply ind_alg_NP_Functor_eqv; try eassumption;
unfold eqv_eval_alg_Soundness'_P; simpl; intros.
split.
apply inject_i; econstructor; eauto.
(* generalize (proj1_eq (WF_Ind2 := WF_Ind_eval_Soundness_alg
(gamma, gamma') typeof_rec eval_rec) (np _)). *)
generalize (proj1_eq (WF_Ind2 := WF_Ind_eval_Soundness_alg
(gamma, gamma')) (np _)).
generalize (proj2_eq (WF_Ind2 := WF_Ind_eval_Soundness_alg
(gamma, gamma')) (np _)).
intros e1_eq e2_eq.
destruct (p_algebra (PAlgebra := eval_Soundness_alg_NP
(gamma, gamma') typeof_rec eval_rec)) as
[[e1 e2] [[UP_e1 UP_e2] sound_e1]]; auto; simpl in *|-*.
destruct e as [e e_UP]; destruct e' as [e' e'_UP]; simpl.
simpl in *|-*.
revert sound_e1.
unfold eval_alg_Soundness_P; simpl.
repeat rewrite e_eq, e'_eq, e1_eq, e2_eq; simpl.
intros sound_e1 proj1_eval gamma'' WF_gamma'' IHa T;
generalize (sound_e1 proj1_eval gamma'' WF_gamma'' IHa T); intros.
unfold inject; simpl.
rewrite wf_functor.
erewrite wf_np.
apply H0.
erewrite wf_np.
unfold inject in H1; simpl in H1; rewrite wf_functor in H1.
apply H1.
destruct IHa as [eqv_a IHa]; split; intros.
apply inject_i; econstructor 2; eauto.
assert (UP'_P2
(eval_alg_Soundness_P D V (E nat) WFV
_ WF_eqv_environment_P (E (typeofR D))
(Fun_E (typeofR D)) (gamma, gamma') typeof_rec eval_rec f_algebra f_algebra)
(proj1_sig a, proj1_sig a')).
unfold UP'_P2; intros.
econstructor.
instantiate (1 := conj (proj2_sig _) (proj2_sig _)).
unfold eval_alg_Soundness_P; intros.
apply IHa; auto.
generalize (proj1_eq (WF_Ind2 := WF_Ind_eval_Soundness_alg
(gamma, gamma'))
(np _ (exist _ (proj1_sig a, proj1_sig a') H0))).
generalize (proj2_eq (WF_Ind2 := WF_Ind_eval_Soundness_alg
(gamma, gamma'))
(np _ (exist _(proj1_sig a, proj1_sig a') H0))).
intros e1_eq e2_eq.
destruct (p_algebra (PAlgebra := eval_Soundness_alg_NP
(gamma, gamma') typeof_rec eval_rec)) as
[[e1 e2] [[UP_e1 UP_e2] sound_e1]]; auto; simpl in *|-*.
destruct e as [e e_UP]; destruct e' as [e' e'_UP]; simpl.
simpl in *|-*.
revert sound_e1.
unfold eval_alg_Soundness_P; simpl.
repeat rewrite e_eq, e'_eq, e1_eq, e2_eq; simpl.
intros sound_e1 eval_rec_proj typeof_rec_proj gamma'' WF_gamma'' IHa0 T;
generalize (sound_e1 eval_rec_proj typeof_rec_proj gamma'' WF_gamma'' IHa0 T).
intros; unfold inject; simpl.
rewrite wf_functor.
erewrite wf_np.
apply H1.
erewrite wf_np.
unfold inject in H2; simpl in H2; rewrite wf_functor in H2.
apply H2.
simpl; auto.
simpl; auto.
destruct IHa as [a_eqv IHa]; destruct IHb as [b_eqv IHb].
split; intros.
apply inject_i; econstructor 3; eauto.
assert (UP'_P2
(eval_alg_Soundness_P D V (E nat) WFV
_ WF_eqv_environment_P (E (typeofR D)) (Fun_E (typeofR D))
(gamma, gamma') typeof_rec eval_rec f_algebra f_algebra)
(proj1_sig a, proj1_sig a')).
unfold UP'_P2; intros.
econstructor.
instantiate (1 := conj (proj2_sig _) (proj2_sig _)).
apply IHa; auto.
assert (UP'_P2
(eval_alg_Soundness_P D V (E nat) WFV _ WF_eqv_environment_P
(E (typeofR D)) (Fun_E (typeofR D))
(gamma, gamma') typeof_rec eval_rec f_algebra f_algebra)
(proj1_sig b, proj1_sig b')).
unfold UP'_P2; intros.
econstructor.
instantiate (1 := conj (proj2_sig _) (proj2_sig _)).
apply IHb; auto.
generalize (proj1_eq (WF_Ind2 := WF_Ind_eval_Soundness_alg
(gamma, gamma'))
(np _ (exist _ (proj1_sig a, proj1_sig a') H0)
(exist _ (proj1_sig b, proj1_sig b') H1))).
generalize (proj2_eq (WF_Ind2 := WF_Ind_eval_Soundness_alg
(gamma, gamma'))
(np _ (exist _ (proj1_sig a, proj1_sig a') H0)
(exist _ (proj1_sig b, proj1_sig b') H1))).
simpl.
intros e1_eq e2_eq.
destruct (p_algebra (PAlgebra := eval_Soundness_alg_NP
(gamma, gamma') typeof_rec eval_rec)) as
[[e1 e2] [[UP_e1 UP_e2] sound_e1]]; auto; simpl in *|-*.
destruct e as [e e_UP]; destruct e' as [e' e'_UP]; simpl.
simpl in *|-*.
revert sound_e1.
unfold eval_alg_Soundness_P; simpl.
repeat rewrite e_eq, e'_eq, e1_eq, e2_eq; simpl.
intros sound_e1 eval_rec_proj typeof_rec_proj gamma'' WF_gamma'' IHa0 T;
generalize (sound_e1 eval_rec_proj typeof_rec_proj gamma'' WF_gamma'' IHa0 T); intros.
unfold inject; simpl.
rewrite wf_functor.
erewrite wf_np; try apply H2; simpl; auto.
erewrite wf_np; simpl; auto.
unfold inject in H3; simpl in H3; rewrite wf_functor in H3; apply H3.
destruct IHa as [a_eqv IHa]; destruct IHb as [b_eqv IHb]; destruct IHc as [c_eqv IHc].
split; intros.
apply inject_i; econstructor 4; eauto.
assert (UP'_P2
(eval_alg_Soundness_P D V (E nat) WFV _ WF_eqv_environment_P
(E (typeofR D)) (Fun_E (typeofR D))
(gamma, gamma') typeof_rec eval_rec f_algebra f_algebra)
(proj1_sig a, proj1_sig a')).
unfold UP'_P2; intros.
econstructor.
instantiate (1 := conj (proj2_sig _) (proj2_sig _)).
apply IHa; auto.
assert (UP'_P2
(eval_alg_Soundness_P D V (E nat) WFV _ WF_eqv_environment_P
(E (typeofR D)) (Fun_E (typeofR D))
(gamma, gamma') typeof_rec eval_rec f_algebra f_algebra)
(proj1_sig b, proj1_sig b')).
unfold UP'_P2; intros.
econstructor.
instantiate (1 := conj (proj2_sig _) (proj2_sig _)).
apply IHb; auto.
assert (UP'_P2
(eval_alg_Soundness_P D V (E nat) WFV _ WF_eqv_environment_P
(E (typeofR D)) (Fun_E (typeofR D))
(gamma, gamma') typeof_rec eval_rec f_algebra f_algebra)
(proj1_sig c, proj1_sig c')).
unfold UP'_P2; intros.
econstructor.
instantiate (1 := conj (proj2_sig _) (proj2_sig _)).
apply IHc; auto.
generalize (proj1_eq (WF_Ind2 := WF_Ind_eval_Soundness_alg
(gamma, gamma'))
(np _ (exist _ (proj1_sig a, proj1_sig a') H0)
(exist _ (proj1_sig b, proj1_sig b') H1)
(exist _ (proj1_sig c, proj1_sig c') H2))).
generalize (proj2_eq (WF_Ind2 := WF_Ind_eval_Soundness_alg
(gamma, gamma'))
(np _ (exist _ (proj1_sig a, proj1_sig a') H0)
(exist _ (proj1_sig b, proj1_sig b') H1)
(exist _ (proj1_sig c, proj1_sig c') H2))).
simpl.
intros e1_eq e2_eq.
destruct (p_algebra (PAlgebra := eval_Soundness_alg_NP
(gamma, gamma') typeof_rec eval_rec)) as
[[e1 e2] [[UP_e1 UP_e2] sound_e1]]; auto; simpl in *|-*.
destruct e as [e e_UP]; destruct e' as [e' e'_UP]; simpl.
simpl in *|-*.
revert sound_e1.
unfold eval_alg_Soundness_P; simpl.
repeat rewrite e_eq, e'_eq, e1_eq, e2_eq; simpl.
intros sound_e1 eval_rec_proj typeof_rec_proj gamma'' WF_gamma'' IHa0 T;
generalize (sound_e1 eval_rec_proj typeof_rec_proj gamma'' WF_gamma'' IHa0 T); intros.
unfold inject; simpl.
rewrite wf_functor.
erewrite wf_np; try apply H3; simpl; auto.
erewrite wf_np; simpl; auto.
unfold inject in H4; simpl in H4; rewrite wf_functor in H4; apply H4.
Qed.
Context {eqv_eval_soundness_alg : forall typeof_rec eval_rec,
iPAlgebra eqv_eval_SoundnessName
(eqv_eval_alg_Soundness'_P
typeof_rec eval_rec
(f_algebra (FAlgebra := Typeof_E _))
(f_algebra (FAlgebra := eval_E _))) (EQV_E _ _)}.
Definition eqv_eval_soundness_P (i : eqv_i (typeofR D) nat) :=
forall (gamma'' : Env _)
(WF_gamma : forall n b, lookup (env_B _ _ i) n = Some b ->
exists T, lookup (env_A _ _ i) b = Some T)
(WF_gamma2 : List.length (env_A _ _ i) = List.length (env_B _ _ i))
(WF_gamma' : forall n b, lookup (env_B _ _ i) n = Some b -> b = n)
(WF_gamma'' : WF_Environment _ _ WFV gamma'' (env_A _ _ i)) T,
typeof _ _ (proj1_sig (eqv_a _ _ i)) = Some T ->
WFValueC _ _ WFV (eval (eval_E := eval_E)
V _ (proj1_sig (eqv_b _ _ i)) gamma'') T.
Variable (WF_MAlg_typeof : WF_MAlgebra Typeof_E).
Variable (WF_MAlg_eval : WF_MAlgebra eval_E).
Lemma eqv_eval_soundness' : forall gamma gamma' e' e'',
E_eqvC EQV_E gamma gamma' e' e'' ->
eqv_eval_soundness_P (mk_eqv_i _ _ gamma gamma' e' e'').
Proof.
intros; generalize (ifold_ (EQV_E _ _) _
(ip_algebra (iPAlgebra := eqv_eval_soundness_alg
(fun e => typeof D (E (typeofR D)) (proj1_sig e))
(fun e => eval V (E nat) (proj1_sig e)))) (mk_eqv_i _ _ gamma gamma' e' e'') H).
unfold eqv_eval_alg_Soundness'_P, eqv_eval_soundness_P; simpl;
intros.
revert H1.
destruct e' as [e' e'_UP]; destruct e'' as [e'' e''_UP];
simpl in *|-*.
rewrite <- (@in_out_UP'_inverse _ _ e'' _).
simpl; unfold typeof, eval, fold_, mfold, in_t.
rewrite wf_malgebra; unfold mfold.
unfold eval_alg_Soundness_P in H0.
intros; eapply H0; unfold WF_eqv_environment_P.
intro; rewrite (@in_out_UP'_inverse _ _ (proj1_sig e) (proj2_sig _)); reflexivity.
intro; rewrite (@in_out_UP'_inverse _ _ (proj1_sig e) (proj2_sig _)); reflexivity.
split; eauto.
intros; simpl; unfold eval, mfold, in_t.
rewrite wf_malgebra; eapply H2; eauto.
rewrite <- (@in_out_UP'_inverse _ _ (proj1_sig (fst a)) (proj2_sig _)) in H3.
simpl in H3; unfold typeof, mfold, in_t in H3.
rewrite <- wf_malgebra; apply H3.
rewrite <- (@in_out_inverse _ _ e' _) in H1; unfold in_t in H1.
simpl; rewrite <- wf_malgebra.
simpl; unfold out_t_UP'.
rewrite Fusion with (g := (fmap in_t)).
apply H1.
auto.
intros; repeat rewrite fmap_fusion; reflexivity.
Qed.
Lemma eqv_eval_soundness : forall gamma gamma' e' e'',
E_eqvC EQV_E gamma gamma' e' e'' ->
forall (gamma'' : Env _)
(WF_gamma : forall n b, lookup (gamma') n = Some b ->
exists T, lookup (gamma) b = Some T)
(WF_gamma2 : List.length (gamma) = List.length (gamma'))
(WF_gamma' : forall n b, lookup (gamma') n = Some b -> b = n)
(WF_gamma'' : WF_Environment _ _ WFV gamma'' (gamma)) T,
typeof _ _ (proj1_sig e') = Some T ->
WFValueC _ _ WFV (eval (eval_E := eval_E)
V _ (proj1_sig (e'')) gamma'') T.
Proof.
intros; eapply eqv_eval_soundness'; eauto.
Qed.
Definition soundness_X'_P
(typeof_rec : Exp (E (typeofR D)) -> typeofR D)
(eval_rec : Exp (E nat) -> evalR V)
(typeof_F : Mixin (Exp (E (typeofR D))) (E (typeofR D)) (typeofR D))
(eval_F : Mixin (Exp (E nat)) (E nat) (evalR V))
i :=
forall (IH : forall (e : Exp _) (e' : Exp _)
pb gamma'' (WF_gamma'' : WF_eqv_environment_P pb gamma'')
T,
E_eqvC EQV_E (fst pb) (snd pb) e e' ->
typeof_rec e = Some T ->
WFValueC _ _ WFV (eval_rec (in_t_UP' _ _ (out_t_UP' _ _ (proj1_sig e'))) gamma'') T),
E_eqv EQV_E _ _ i /\
eval_alg_Soundness_P D V (E nat) WFV
_ WF_eqv_environment_P
(E (typeofR D)) _ (env_A _ _ i, env_B _ _ i) typeof_rec eval_rec
typeof_F eval_F
(proj1_sig (eqv_a _ _ i), proj1_sig (eqv_b _ _ i))
(conj (proj2_sig (eqv_a _ _ i)) (proj2_sig (eqv_b _ _ i))).
Inductive soundness_XName : Set := soundness_Xname.
Global Instance Lift_soundness_X_alg
typeof_rec eval_rec typeof_alg eval_alg
EQV_G {fun_EQV_G : iFunctor EQV_G}
{EQV_G_EQV_Alg : iPAlgebra eqv_eval_SoundnessName
(eqv_eval_alg_Soundness'_P typeof_rec eval_rec typeof_alg eval_alg) EQV_G} :
iPAlgebra soundness_XName
(soundness_X'_P
typeof_rec eval_rec typeof_alg eval_alg) EQV_G.
Proof.
intros; econstructor; generalize (ip_algebra); unfold iAlgebra; intros.
unfold soundness_X'_P; intros.
assert (EQV_G (eqv_eval_alg_Soundness'_P typeof_rec eval_rec typeof_alg eval_alg) i).
eapply ifmap; try eapply H0.
intros; apply H1; apply IH.
apply (H _ H1).
Defined.
Context {soundness_X_alg : forall eval_rec,
iPAlgebra soundness_XName
(soundness_X'_P
(fun e => typeof _ _ (proj1_sig e)) eval_rec
(f_algebra (FAlgebra := Typeof_E _))
(f_algebra (FAlgebra := beval_E))) (EQV_E _ _)}.
Variable Sub_WFV_Bot_WFV : Sub_iFunctor (WFValue_Bot _ _) WFV.
Definition soundness_X_P (i : eqv_i (typeofR D) nat) :=
forall n (gamma'' : Env _)
(WF_gamma : forall n b, lookup (env_B _ _ i) n = Some b ->
exists T, lookup (env_A _ _ i) b = Some T)
(WF_gamma2 : List.length (env_A _ _ i) = List.length (env_B _ _ i))
(WF_gamma' : forall n b, lookup (env_B _ _ i) n = Some b -> b = n)
(WF_gamma'' : WF_Environment _ _ WFV gamma'' (env_A _ _ i)) T,
typeof _ _ (proj1_sig (eqv_a _ _ i)) = Some T ->
WFValueC _ _ WFV (beval V (E _) n (beval_E := beval_E)
(eqv_b _ _ i) gamma'') T.
Lemma soundness_X' :
forall eval_rec gamma gamma' e' e'',
E_eqvC EQV_E gamma gamma' e' e'' ->
soundness_X'_P (fun e => typeof _ _ (proj1_sig e)) eval_rec
(f_algebra (FAlgebra := Typeof_E _))
(f_algebra (FAlgebra := beval_E)) (mk_eqv_i _ _ gamma gamma' e' e'').
Proof.
intros; apply (ifold_ (EQV_E _ _ )); try assumption.
apply ip_algebra.
Qed.
Variable SV : (SubValue_i V -> Prop) -> SubValue_i V -> Prop.
Variable funSV : iFunctor SV.
Variable Sub_SV_Bot_SV : Sub_iFunctor (SubValue_Bot V) SV.
Variable Sub_SV_refl_SV : Sub_iFunctor (SubValue_refl V) SV.
Context {WF_Value_continous_alg :
iPAlgebra WFV_ContinuousName (WF_Value_continuous_P D V WFV) SV}.
Context {eval_continuous_Exp_E : PAlgebra EC_ExpName
(sig (UP'_P (eval_continuous_Exp_P V (E _) SV))) (E nat)}.
Context {WF_Ind_EC_Exp : WF_Ind eval_continuous_Exp_E}.
Lemma soundness_X :
forall n gamma gamma' gamma'' e' e'',
E_eqvC EQV_E gamma gamma' e' e'' ->
forall (WF_gamma : forall n b, lookup gamma' n = Some b ->
exists T, lookup gamma b = Some T)
(WF_gamma2 : List.length gamma = List.length gamma')
(WF_gamma' : forall n b, lookup gamma' n = Some b -> b = n)
(WF_gamma'' : WF_Environment _ _ WFV gamma'' gamma) T,
typeof _ _ (proj1_sig e') = Some T ->
WFValueC _ _ WFV (beval V (E _) n (beval_E := beval_E)
e'' gamma'') T.
Proof.
induction n; simpl;
intros; unfold beval; simpl in *|-*.
apply (inject_i (subGF := Sub_WFV_Bot_WFV)); econstructor; eauto.
generalize (soundness_X' (beval V (E _) n) _ _ _ _ H).
unfold soundness_X'_P;
unfold eval_alg_Soundness_P; simpl; intros.
apply H1; auto.
unfold beval; intros; erewrite bF_UP_in_out.
instantiate (1 := proj2_sig _).
destruct e'0; simpl; auto.
destruct WF_gamma''0 as [WF_pb [WF_pb2 [WF_pb' WF_gamma''0]]].
eapply IHn; eauto.
intro; destruct e; unfold beval; erewrite bF_UP_in_out;
auto.
intro; rewrite <- (@in_out_UP'_inverse _ _ (proj1_sig e) (proj2_sig _)) at 1;
reflexivity.
repeat split; auto.
intros.
destruct a as [[a a_UP'] [a' a'_UP']].
unfold beval; erewrite (@bF_UP_in_out _ _ _ _ _ _ _ a'_UP').
apply (WF_Value_beval D V (E _) SV _ _ _ _ WFV n (S n) _ gamma''0); auto.
apply Sub_Environment_refl; auto.
unfold beval; simpl.
simpl in H2.
unfold beval in H2; apply H2.
simpl in H3.
unfold typeof in H3.
rewrite <- (@in_out_UP'_inverse _ _ a a_UP') in H3.
simpl in H3; unfold typeof, mfold, in_t in H3.
rewrite <- wf_malgebra; apply H3.
rewrite <- wf_malgebra.
rewrite <- (@in_out_UP'_inverse _ _ _ (proj2_sig e')) in H0.
simpl in H0; unfold typeof, mfold, in_t in H0.
apply H0.
Qed.
End NP_beval_Soundness.
End PNames.
(*
*** Local Variables: ***
*** coq-prog-args: ("-emacs-U" "-impredicative-set") ***
*** End: ***
*)