-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_nonstationary.py
322 lines (271 loc) · 11.2 KB
/
main_nonstationary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os
import pickle
import wandb
import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, ConcatDataset
from torch.utils.data.sampler import SubsetRandomSampler
import torch.nn as nn
import torch.optim as optim
from input_args import nonstat_args
from logger import Logger
from data import load_data_corrupted_nonstat, get_indices
from models.preact_resnet import load_pretrained_feature_extractor
from api import lava_experiment, hierarchical_ot_experiment
from models.resnet import ResNet18
from models.utils import train, evaluate
from otdd.pytorch.datasets import SubsetSampler
from knn_shapley import knn_shap_experiment
print(torchvision.__version__)
print(torch.__version__)
if __name__ == "__main__":
args = nonstat_args()
os.environ["CUDA_VISIBLE_DEVICES"]=str(args.cuda_num)
print("GPU", os.environ["CUDA_VISIBLE_DEVICES"])
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
if args.hierarchical:
wandb_tag = 'hot_nonstat'
elif args.knn_sv:
wandb_tag = 'knn_sv_nonstat'
else:
wandb_tag = 'lava_nonstat'
# wandb logger
logger = Logger(
group=wandb_tag,
name=f"{wandb_tag}_tr_sz_{args.tag}",
project="ot-data-selection",
method=wandb_tag,
dataset="CIFAR10",
)
# data selection hyperparameters
test_size = 400 if args.smoketest else 10000
valid_size = 0 if args.smoketest else args.val_dataset_size # can be used for hyperparam tuning of ResNet18
training_size = 500 if args.smoketest else 50000 - valid_size
resize = 32
portion = args.corrupt_por
batch_size = args.hot_batch_size
shuffle = False
# training hyperparameters
pruning_percentage = args.prune_perc
lr = 0.1
start_epoch = 0
end_epoch = 3 if args.smoketest else 200
train_batch_size = 128
num_tasks = 5
feature_extractor = load_pretrained_feature_extractor(
"cifar10_embedder_preact_resnet18.pth",
device,
)
# data transformations for torch.Dataset
if args.corruption_type == "feature":
# no normalization for noisy features data
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
#transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_transform_selection = transforms.Compose([
transforms.ToTensor(),
#transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
test_transform = transforms.Compose([
transforms.ToTensor(),
#transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
else:
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_transform_selection = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
# get DataLoaders for data selection and training (with data augmentation)
loaders, datasets, shuffle_ind = load_data_corrupted_nonstat(
feature_extractor,
device,
shuffle=shuffle,
corrupt_type=args.corruption_type, # {'shuffle', 'feature'}
dataname="CIFAR10",
transform=(train_transform_selection, train_transform, test_transform),
random_seed=args.random_seed,
resize=resize,
splits=num_tasks,
training_size=training_size,
test_size=test_size,
valid_size=valid_size,
corrupt_por=portion,
batch_size=batch_size,
cache_dir=os.path.join(os.getcwd(), "data"),
)
# data selection and training loop
for i in range(num_tasks):
print(f"Task {i}")
indices_path = os.path.join(os.getcwd(), args.resume_inds_path)
indices_file = os.path.join(os.getcwd(), args.resume_inds_path, str(i) + ".pickle")
if args.resume and os.path.isfile(indices_file):
print("Loading cached indices")
with open(indices_file, 'rb') as handle:
tmp = pickle.load(handle)
subset_indices = tmp["indices"]
sorted_gradient_ind_pruned = tmp["sorted_gradient_ind_pruned"]
else:
if args.hierarchical:
sorted_gradient_ind, trained_with_flag = hierarchical_ot_experiment(
feature_extractor=feature_extractor,
train_loader=loaders[f"train_sel_{i}"],
val_loader=loaders["test"],
training_size=int(((i + 1) * training_size) / num_tasks),
batch_size=batch_size,
shuffle_ind=shuffle_ind,
resize=resize,
portion=portion,
device=device,
cache_label_distances=args.cache_l2l,
tag=str(i),
)
elif args.knn_sv:
sorted_gradient_ind, trained_with_flag = knn_shap_experiment(
feature_extractor=feature_extractor,
train_loader=loaders[f"train_sel_{i}"],
val_loader=loaders["test"],
training_size=int(((i + 1) * training_size) / num_tasks),
k=args.k,
output_repr=args.output_repr,
device=device,
shuffle_ind=shuffle_ind,
portion=portion,
tag=str(i),
)
else:
sorted_gradient_ind, trained_with_flag = lava_experiment(
feature_extractor=feature_extractor,
train_loader=loaders[f"train_sel_{i}"],
val_loader=loaders["test"],
training_size=int(((i + 1) * training_size) / num_tasks),
shuffle_ind=shuffle_ind,
resize=resize,
portion=portion,
feat_repr=False,
device=device,
tag=str(i),
)
prune_ind = int(pruning_percentage * len(sorted_gradient_ind))
sorted_gradient_ind_pruned = sorted_gradient_ind[prune_ind:]
subset_indices = get_indices(loaders[f"train_sel_{i}"])
# cache
if not os.path.exists(indices_path):
os.makedirs(indices_path)
with open(indices_file, 'wb') as handle:
pickle.dump(
{
'sorted_gradient_ind_pruned': sorted_gradient_ind_pruned,
'subset_indices': subset_indices
},
handle,
protocol=pickle.HIGHEST_PROTOCOL,
)
if args.corruption_type == "feature":
sampler_class = SubsetRandomSampler if shuffle else SubsetSampler
idxs = subset_indices[np.array([x[0] for x in sorted_gradient_ind_pruned]).reshape(-1)]
sampler = sampler_class(idxs)
new_train_transform = transforms.Compose([
transforms.ToTensor(),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
#transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
loaders[f"train_{i}"].dataset.transform = new_train_transform
trainloader = torch.utils.data.DataLoader(
loaders[f"train_{i}"].dataset, # CustomDataset2 class
sampler=sampler,
batch_size=train_batch_size,
num_workers=0,
)
elif args.corruption_type == "shuffle":
# use the pruning indices to subset the subset sampler indices
trainset = torch.utils.data.Subset(
loaders[f"train_{i}"].dataset, # dataset with data augmentation
subset_indices[np.array([x[0] for x in sorted_gradient_ind_pruned]).reshape(-1)],
)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=train_batch_size, shuffle=True, num_workers=0,
)
else:
raise ValueError
net = ResNet18().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(
net.parameters(),
lr=lr,
momentum=0.9,
weight_decay=5e-4,
)
if args.smoketest:
schedule = [
(0, 1, .1),
(1, 2, .01),
(2, 3, .001),
]
else:
schedule = [
(0, 100, .1),
(100, 150, .01),
(150, 200, .001),
]
checkpoint_dir = os.path.join(os.getcwd(), args.resume_checkpoint_path, str(i))
checkpoint_file = os.path.join(os.getcwd(), args.resume_checkpoint_path, str(i), str(args.resume_epoch) + ".pth")
epoch = 0
if args.resume and os.path.isfile(checkpoint_file):
checkpoint = torch.load(checkpoint_file)
# Update the model state
net.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint["epoch"]
for start, end, lr in schedule:
for param_group in optimizer.param_groups:
param_group['lr'] = lr
while start <= epoch < end:
train(
epoch * len(trainloader.dataset),
trainloader,
single=False,
net=net,
optimizer=optimizer,
criterion=criterion,
device=device,
)
epoch += 1
evaluate(
epoch * len(trainloader.dataset),
trainloader,
loaders["test"],
single=False,
net=net,
optimizer=optimizer,
criterion=criterion,
device=device,
tag=f"val-{i}",
)
# cache
# if (epoch + 1) % 50 == 0:
# if not os.path.exists(checkpoint_dir):
# os.makedirs(checkpoint_dir)
# torch.save(
# {
# 'model_state_dict': net.state_dict(),
# 'optimizer_state_dict': optimizer.state_dict(),
# 'epoch': epoch,
# },
# os.path.join(os.getcwd(), args.resume_checkpoint_path, str(epoch) + ".pth"),
# )