-
Notifications
You must be signed in to change notification settings - Fork 1
/
AG[2OPT].py
324 lines (277 loc) · 12.6 KB
/
AG[2OPT].py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Hybrid scheme Implementation provided by IFERROUDJENE Mouloud, refactored into a command line program by Smail KOURTA
import numpy as np
import pandas as pd
import Parser
import time
import argparse
def PPV(graphe,v_depart=None):
# Faire une copie du graphe vu qu'il va subir a des modification
_graphe = graphe.copy()
# La liste chemin gardera trace de notre parcour
chemin = []
# Selection d'un point de depart
if v_depart is None : depart = v_depart = np.random.randint(0,len(graphe))
depart = v_depart
chemin.append(v_depart)
# Creation de l'ensemble des noeuds non visités
noeudsNonVisite = set(np.delete(np.arange(0,len(graphe)),v_depart).flatten())
cout = 0
while ( len(noeudsNonVisite)!=0 ):
# Retourner le plus proche voisin
v_suivante = np.argmin( _graphe[v_depart,:] )
# Màj du chemin
chemin.append(v_suivante)
# Màj du cout
cout += _graphe[v_depart,v_suivante]
# Visiter le prochain neoud
noeudsNonVisite.remove(v_suivante)
v_depart = v_suivante
# Mettre vers les noeuds deja visité a l'infini
_graphe[v_depart, chemin] = float("inf")
_graphe[chemin, v_depart] = float("inf")
# Ajouter le cout de retour
cout += graphe[v_suivante,depart]
return np.array(chemin)
#Permuter les aretes entre 2 noeuds.
def swap_2opt(tour, i, j):
tour[i:j+1] = tour[j:i-1:-1]
return tour
#Calculer Le cout d'une tournée dans un graphe donné.
def coast_of_tour(graphe, tour):
return graphe[np.roll(tour, 1), tour].sum()
def solve_tsp_2opt(graphe, tours):
resultats = []
dimension = len(graphe)
#Si le param
for tr in tours:
tour = tr[0].copy()
final_coast = initial_coast = tr[1]
improved = True
while improved:
improved = False
for i in range(1, dimension - 2):
for j in range(i+1, dimension):
current_coast = coast_of_tour(graphe, tour)
new_coast = coast_of_tour(graphe, swap_2opt(tour.copy(), i, j))
if current_coast > new_coast:
improved = True
swap_2opt(tour, i, j)
final_coast = new_coast
resultats.append([tour,final_coast, 1/final_coast])
return np.array(resultats)
def generatePopulation(graphe, populationSize, algorithme="Random"):
population = []
grapheSize = len(graphe)
if (algorithme == "Random"):
for i in range(populationSize):
# Generation d'un individu
sol = np.random.permutation(grapheSize)
# Ajouter l'individu a la population
population.append(sol)
return np.array(population)
if (algorithme == "PPV"):
for i in range(populationSize):
# v_depart = np.random.randint(0,grapheSize)
v_depart = i % grapheSize
sol = PPV(graphe, v_depart)
population.append(sol)
return np.array(population)
def evaluateIndividu(indiv, graphe):
cout = 0
for i in range(len(graphe)):
cout += graphe[indiv[i - 1]][indiv[i]]
return cout
def evaluatePopulation(graphe, population):
evaluated_population = []
for pop in population:
cout = evaluateIndividu(pop, graphe)
fitness = 1 / cout
evaluated_population.append([pop, cout, fitness])
return np.array(evaluated_population)
def selectParents(evaluated_population, parents_Size, eliteSize=2, Algorithme="RouletteWheel"):
# Liste ordonnée d'indices
ind = np.argsort(evaluated_population[:, 1])
sorted_population = evaluated_population[ind]
if (Algorithme == "Elitiste"):
# Prendre uniquement les elites (Meilleurs individus)
parents = sorted_population[:parents_Size, :]
return parents
else:
# Choisir le elites a inclure la liste des parents
parents = sorted_population[:eliteSize, :]
if (Algorithme == "Tournoi"):
# Un certain nombre d'individus sont sélectionnés au hasard dans la population
# Et l'elite du groupe est choisi comme premier parent.
# Cette opération est répétée pour choisir le deuxième parent.
populationSize = len(evaluated_population)
for i in range(parents_Size - eliteSize):
# Selectionner un nombre aleatoire d'individus pour un tournoi
selectedSize = np.random.randint(1, populationSize)
selectedIndice = np.unique(np.random.randint(0, populationSize, selectedSize))
selected_population = evaluated_population[selectedIndice]
# Prendre le meileure individus de ce trounois
elite_indice = np.argmin(selected_population[:, 1])
selected_elite = selected_population[elite_indice][:]
# Ajouter l'elite a la liste des parents
parents = np.insert(parents, 0, selected_elite, axis=0)
return parents
if (Algorithme == "RouletteWheel"):
# Nous avons mis en place la roue de la roulette en calculant un poids de forme relatif pour chaque individu.
df = pd.DataFrame(np.array(sorted_population), columns=["Index", "cout", "Fitness"])
# Calcules des somme cumulatives de fitness
df['cum_sum'] = df.Fitness.cumsum()
# Cacule
df['cum_perc'] = 100 * df.cum_sum / df.Fitness.sum()
# Ici nous comparons un nombre tiré au hasard à ces poids pour sélectionner le parents
for i in range(0, parents_Size - eliteSize):
# Faire tourner la roulette
pick = np.random.uniform(0, 100)
for i in range(0, len(sorted_population)):
if pick <= df.iat[i, 4]:
parents = np.insert(parents, 0, sorted_population[i][:], axis=0)
break
return parents
def inter(lst1, lst2, offset=0):
# retourne les elements dupliqués de la liste lst2 dans la liste lst1 avec leurs indices
lst = [(lst1.index(value) + offset, value) for value in lst1 if value in lst2]
return lst
def croisement(parent1, parent2, nbPointsCroissement):
fils1 = parent1.tolist()
fils2 = parent2.tolist()
# Choisi aleatoirement deux points de découpe
rng = np.random.default_rng()
points = np.sort(rng.choice(len(parent1), size=nbPointsCroissement, replace=False), axis=0).tolist()
co_points = [0]
for i in range(len(points)):
if i % 2 == 0:
co_points.append(points[i])
else:
co_points.append(points[i] + 1)
co_points.append(len(parent1))
# Les sous chaines s_a1,s_a2=[],[]
s_a1, s_a2 = [], []
for i in range(len(points) // 2):
s_a1.append(fils1[points[2 * i]:points[2 * i + 1] + 1])
s_a2.append(fils2[points[2 * i]:points[2 * i + 1] + 1])
# intervertir entre les deux parcours
for i in range(len(points) // 2):
fils1[points[2 * i]: points[2 * i + 1] + 1] = s_a2[i]
fils2[points[2 * i]: points[2 * i + 1] + 1] = s_a1[i]
# recenser les villes qui n'apparaissent pas dans chacun des deux villes
index1, index2 = [], []
for i in range(len(points) // 2 + 1):
for v in s_a2:
index1 += inter(fils1[co_points[2 * i]:co_points[2 * i + 1]], v, co_points[2 * i])
for u in s_a1:
index2 += inter(fils2[co_points[2 * i]:co_points[2 * i + 1]], u, co_points[2 * i])
# Remplir les trous dans chaque parcours
for i in range(len(index1)):
fils1[index1[i][0]] = index2[i][1]
fils2[index2[i][0]] = index1[i][1]
return fils1, fils2
def croisementPopulation(parents, nbPointsCroissement=2):
fils = []
random_list = np.random.permutation(len(parents))
for i in range(0, len(parents) - 1, 2):
fils1, filsP2 = croisement(parents[random_list[i], 0], parents[random_list[i + 1], 0], nbPointsCroissement)
fils.extend((fils1, filsP2))
return np.array(fils)
def swap_mutation(individu, probaMutation):
for i in range(len(individu)):
chance = np.random.uniform()
if (chance < probaMutation):
j = int(chance * len(individu))
individu[i], individu[j] = individu[j], individu[i].copy()
return individu
def mutationPopulation(population, probaMutation=None):
mutated_population = []
# C'est une probabilité tres faible [0.01:0.001] ou P=1/len(indiv)
if probaMutation is None:
probaMutation = 1 / population.shape[1]
for individu in population:
mutated_population.append(swap_mutation(individu, probaMutation))
return np.array(mutated_population)
def remplacement(init_population, new_population, methode="Generationnel"):
if methode == "Elitiste":
size = len(new_population)
pop = np.append(init_population, new_population, axis=0)
ind = np.argsort(pop[:, 1])
sorted_pop = pop[ind]
return sorted_pop[:size, :]
if methode == "RouletteWheel":
size = len(new_population)
pop = np.append(init_population, new_population, axis=0)
return selectParents(pop, size, Algorithme="RouletteWheel")
if methode == "Tournoi":
size = len(new_population)
pop = np.append(init_population, new_population, axis=0)
return selectParents(pop, size, Algorithme="Tournoi")
if methode == "Generationnel":
return new_population
def nextGeneration(graphe, population, parents_size, eliteSize, SelectionAlgo, nbPointCroisement, probaMutation,
remplacementAlgo):
init_population = population.copy()
# Selection
# SelectionAlgo : [RouletteWheel, Tournoi, Elitiste]
parents = selectParents(population, parents_size, eliteSize, SelectionAlgo)
# Croisement
fils = croisementPopulation(parents, nbPointCroisement)
# Mutation
mutated_fils = evaluatePopulation(graphe, mutationPopulation(fils, probaMutation))
# 2OPT
intense_population = solve_tsp_2opt(graphe, mutated_fils)
new_population = np.array(np.append(parents, intense_population, axis=0))
# Remplacement
# Modes: Elitiste , Generationnel
new_population = remplacement(init_population, new_population, remplacementAlgo)
return new_population
def LRH_AG_2opt(graphe, population_size, nbgenerations, parents_size, eliteSize=2, genAlgo="Random",
SelectionAlgo="RouletteWheel", nbPointCroisement=4, probaMutation=None,
remplacementAlgo="Generationnel"):
# Generation de population initial
# genAlgo: Random,PPV
population = generatePopulation(graphe, population_size, genAlgo)
# Evaluation de population
population = evaluatePopulation(graphe, population)
for i in range(0, nbgenerations):
population = nextGeneration(graphe, population, parents_size, eliteSize, SelectionAlgo, nbPointCroisement,
probaMutation, remplacementAlgo)
sol = population[np.argsort(population[:, 1]), :2][0].tolist()
return sol[0].tolist(), sol[1]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("instance")
parser.add_argument("--population_size",
help="Size of Population", default=28)
parser.add_argument("--nbgenerations",
help="Number of Generations", default=2)
parser.add_argument("--parents_size",
help="Size of parent", default=14)
parser.add_argument("--eliteSize",
help="Size of Elite", default=2)
parser.add_argument("--genAlgo",
help="Generation Algorithm", default="PPV")
parser.add_argument("--SelectionAlgo",
help="Selection Algorithm", default="Tournoi")
parser.add_argument("--nbPointCroisement",
help="Selection Algorithm", default=2)
parser.add_argument("--probaMutation",
help="Mutation Probability", default=None)
parser.add_argument("--remplacementAlgo",
help="Replacement Algorithm", default="Tournoi")
args = parser.parse_args()
instance = Parser.TSPInstance(args.instance)
instance.readData()
probaMutation = None
if args.probaMutation != "None" and args.probaMutation is not None:
probaMutation = float(args.probaMutation)
start_time = time.time()
tour, cost = LRH_AG_2opt(np.array(instance.data), population_size=int(args.population_size),
nbgenerations=int(args.nbgenerations), parents_size=int(args.parents_size),
eliteSize=int(args.eliteSize), genAlgo=args.genAlgo, SelectionAlgo=args.SelectionAlgo,
nbPointCroisement=int(args.nbPointCroisement),
probaMutation=probaMutation, remplacementAlgo=args.remplacementAlgo)
end_time = time.time()
print(tour)
print(cost)
print(end_time - start_time)