diff --git a/.github/workflows/testing.yml b/.github/workflows/testing.yml index e6ab48423..5f047366d 100644 --- a/.github/workflows/testing.yml +++ b/.github/workflows/testing.yml @@ -73,7 +73,9 @@ jobs: env: DEPS_VERSION: ${{ matrix.dependencies-version }} - shell: bash {0} - run: $GITHUB_WORKSPACE/build_tools/github/test.sh + run: | + cp $GITHUB_WORKSPACE/pyproject.toml . + $GITHUB_WORKSPACE/build_tools/github/test.sh working-directory: ${{ runner.temp }} name: 'Run tests' - uses: codecov/codecov-action@v3 diff --git a/pyproject.toml b/pyproject.toml index 3afcafd38..3a182a710 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -39,3 +39,4 @@ filterwarnings = [ 'ignore:elementwise\ comparison\ failed:FutureWarning', ] addopts = "--doctest-modules" +doctest_optionflags = "NORMALIZE_WHITESPACE ELLIPSIS" diff --git a/skrub/_agg_joiner.py b/skrub/_agg_joiner.py index 16b55fcc5..ed369964b 100644 --- a/skrub/_agg_joiner.py +++ b/skrub/_agg_joiner.py @@ -428,7 +428,6 @@ class AggTarget(BaseEstimator, TransformerMixin): 3 4 2 ... 1 0.66... 4 5 2 ... 1 0.66... 5 6 2 ... 1 1.00... - [6 rows x 6 columns] """ diff --git a/skrub/_table_vectorizer.py b/skrub/_table_vectorizer.py index f7478d03c..535819a18 100644 --- a/skrub/_table_vectorizer.py +++ b/skrub/_table_vectorizer.py @@ -344,7 +344,6 @@ class TableVectorizer(TransformerMixin, _BaseComposition): 0 F POL ... 09/22/1986 1986 1 M POL ... 09/12/1988 1988 2 F HHS ... 11/19/1989 1989 - [3 rows x 8 columns] >>> tv = TableVectorizer() diff --git a/skrub/datasets/_ken_embeddings.py b/skrub/datasets/_ken_embeddings.py index c43f3272e..658d0678e 100644 --- a/skrub/datasets/_ken_embeddings.py +++ b/skrub/datasets/_ken_embeddings.py @@ -224,7 +224,6 @@ def fetch_ken_embeddings( 2 Frankenstein ... -0.11... 3 Albert_Wesker ... -0.16... 4 Harukanaru_Toki_no_Naka_de_3 ... 0.14... - [5 rows x 202 columns] Extracts all embeddings with the "games" type. @@ -241,7 +240,6 @@ def fetch_ken_embeddings( 2 Li_Xiayan ... 0.00... 3 Vampire_Night ... -0.14... 4 Shatterhand ... 0.19... - [5 rows x 202 columns] It takes less time to load the wanted output, and is more precise as the