diff --git a/docs/source/api_reference/survival.rst b/docs/source/api_reference/survival.rst index a03ee9c40..f0adb4f24 100644 --- a/docs/source/api_reference/survival.rst +++ b/docs/source/api_reference/survival.rst @@ -99,6 +99,7 @@ Accelerated failure time models :toctree: auto_generated/ :template: class.rst + AFTLogNormal AFTWeibull Generalized additive survival models diff --git a/skpro/survival/aft/__init__.py b/skpro/survival/aft/__init__.py index 3b591ab91..f0e68820a 100644 --- a/skpro/survival/aft/__init__.py +++ b/skpro/survival/aft/__init__.py @@ -1,6 +1,7 @@ """Module containing accelerated failure time models.""" # copyright: skpro developers, BSD-3-Clause License (see LICENSE file) -__all__ = ["AFTWeibull"] +__all__ = ["AFTLogNormal", "AFTWeibull"] +from skpro.survival.aft._aft_lifelines_lognormal import AFTLogNormal from skpro.survival.aft._aft_lifelines_weibull import AFTWeibull diff --git a/skpro/survival/aft/_aft_lifelines_lognormal.py b/skpro/survival/aft/_aft_lifelines_lognormal.py new file mode 100644 index 000000000..045936634 --- /dev/null +++ b/skpro/survival/aft/_aft_lifelines_lognormal.py @@ -0,0 +1,209 @@ +"""Interface adapter to lifelines Log-Normal AFT model.""" +# copyright: skpro developers, BSD-3-Clause License (see LICENSE file) + +__author__ = ["fkiraly"] + +import numpy as np + +from skpro.distributions.lognormal import LogNormal +from skpro.survival.adapters.lifelines import _LifelinesAdapter +from skpro.survival.base import BaseSurvReg + + +class AFTLogNormal(_LifelinesAdapter, BaseSurvReg): + r"""Log-Normal AFT model, from lifelines. + + Direct interface to ``lifelines.fitters.LogNormalAFTFitter``, + by ``CamDavidsonPilon``. + + This class implements a Log-Normal AFT model. The model has parametric form, with + :math:`\mu(x) = \exp\left(\beta_0 + \beta_1x_1 + ... + \beta_n x_n \right)`, + and optionally, + :math:`\sigma(y) = \exp\left(\alpha_0 + \alpha_1 y_1 + ... + \alpha_m y_m \right)`, + + with predictive distribution being Log-Normal, with + mean :math:`\mu(x)` and standard deviation :math:`\sigma(y)`. + + Parameters + ---------- + mu_cols: pd.Index or coercible, optional, default=None + Columns of the input data frame to be used as covariates for + the mean parameter :math:`\mu`. + If None, all columns are used. + + sd_cols: string "all", pd.Index or coercible, optional, default=None + Columns of the input data frame to be used as covariates for + the standard deviation parameter :math:`\sigma`. + If None, no covariates are used, the standard deviation parameter + is estimated as a constant. If "all", all columns are used. + + fit_intercept: boolean, optional (default=True) + Whether to fit an intercept term in the model. + + alpha: float, optional (default=0.05) + the level in the confidence intervals around the estimated survival function, + for computation of ``confidence_intervals_`` fitted parameter. + + penalizer: float or array, optional (default=0.0) + the penalizer coefficient to the size of the coefficients. + See ``l1_ratio``. Must be equal to or greater than 0. + Alternatively, penalizer is an array equal in size to the number of parameters, + with penalty coefficients for specific variables. For + example, ``penalizer=0.01 * np.ones(p)`` is the same as ``penalizer=0.01`` + + l1_ratio: float, optional (default=0.0) + how much of the penalizer should be attributed to an l1 penalty + (otherwise an l2 penalty). The penalty function looks like + ``penalizer * l1_ratio * ||w||_1 + 0.5 * penalizer * (1 - l1_ratio) * ||w||^2_2`` # noqa E501 + + Attributes + ---------- + params_ : DataFrame + The estimated coefficients + confidence_intervals_ : DataFrame + The lower and upper confidence intervals for the coefficients + durations: Series + The event_observed variable provided + event_observed: Series + The event_observed variable provided + weights: Series + The event_observed variable provided + variance_matrix_ : DataFrame + The variance matrix of the coefficients + standard_errors_: Series + the standard errors of the estimates + score_: float + the concordance index of the model. + """ + + _tags = {"authors": ["CamDavidsonPilon", "fkiraly"]} + # CamDavidsonPilon, credit for interfaced estimator + + def __init__( + self, + mu_cols=None, + sd_cols=None, + fit_intercept: bool = True, + alpha: float = 0.05, + penalizer: float = 0.0, + l1_ratio: float = 0.0, + ): + self.mu_cols = mu_cols + self.sd_cols = sd_cols + self.alpha = alpha + self.penalizer = penalizer + self.l1_ratio = l1_ratio + self.fit_intercept = fit_intercept + + super().__init__() + + if mu_cols is not None: + self.X_col_subset = mu_cols + + def _get_lifelines_class(self): + """Getter of the lifelines class to be used for the adapter.""" + from lifelines.fitters.weibull_aft_fitter import WeibullAFTFitter + + return WeibullAFTFitter + + def _get_lifelines_object(self): + """Abstract method to initialize lifelines object. + + The default initializes result of _get_lifelines_class + with self.get_params. + """ + cls = self._get_lifelines_class() + params = self.get_params() + params.pop("mu_cols", None) + params.pop("sd_cols", None) + return cls(**params) + + def _add_extra_fit_args(self, X, y, C=None): + """Get extra arguments for the fit method. + + Parameters + ---------- + X : pd.DataFrame + Training features + y: pd.DataFrame + Training labels + C: pd.DataFrame, optional (default=None) + Censoring information for survival analysis. + fit_args: dict, optional (default=None) + Existing arguments for the fit method, from the adapter. + + Returns + ------- + dict + Extra arguments for the fit method. + """ + if self.mu_cols is not None: + if self.mu_cols == "all": + return {"ancillary": True} + else: + return {"ancillary": X[self.mu_cols]} + else: + return {} + + def _predict_proba(self, X): + """Predict_proba method adapter. + + Parameters + ---------- + X : pd.DataFrame + Features to predict on. + + Returns + ------- + skpro Empirical distribution + """ + if self.sd_cols == "all": + ancillary = X + elif self.sd_cols is not None: + ancillary = X[self.sd_cols] + else: + ancillary = None + + if self.mu_cols is not None: + df = X[self.mu_cols] + else: + df = X + + lifelines_est = getattr(self, self._estimator_attr) + ll_pred_proba = lifelines_est._prep_inputs_for_prediction_and_return_scores + + mu, sigma = ll_pred_proba(df, ancillary) + mu = np.expand_dims(mu, axis=1) + sigma = np.expand_dims(sigma, axis=1) + + dist = LogNormal(mu=mu, sigma=sigma, index=X.index, columns=self._y_cols) + return dist + + @classmethod + def get_test_params(cls, parameter_set="default"): + """Return testing parameter settings for the estimator. + + Parameters + ---------- + parameter_set : str, default="default" + Name of the set of test parameters to return, for use in tests. If no + special parameters are defined for a value, will return `"default"` set. + + Returns + ------- + params : dict or list of dict, default = {} + Parameters to create testing instances of the class + Each dict are parameters to construct an "interesting" test instance, i.e., + `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance. + `create_test_instance` uses the first (or only) dictionary in `params` + """ + params1 = {} + + params2 = { + "sd_cols": "all", + "fit_intercept": False, + "alpha": 0.1, + "penalizer": 0.1, + "l1_ratio": 0.1, + } + return [params1, params2]