diff --git a/docs/source/api_reference/distributions.rst b/docs/source/api_reference/distributions.rst index 842a2f399..e25e5726c 100644 --- a/docs/source/api_reference/distributions.rst +++ b/docs/source/api_reference/distributions.rst @@ -42,6 +42,7 @@ Continuous support Fisk Gamma HalfCauchy + HalfLogistic HalfNormal Laplace Logistic diff --git a/skpro/distributions/__init__.py b/skpro/distributions/__init__.py index e61498c80..e5f53ef13 100644 --- a/skpro/distributions/__init__.py +++ b/skpro/distributions/__init__.py @@ -13,6 +13,7 @@ "Fisk", "Gamma", "HalfCauchy", + "HalfLogistic", "HalfNormal", "IID", "Laplace", @@ -42,6 +43,7 @@ from skpro.distributions.fisk import Fisk from skpro.distributions.gamma import Gamma from skpro.distributions.halfcauchy import HalfCauchy +from skpro.distributions.halflogistic import HalfLogistic from skpro.distributions.halfnormal import HalfNormal from skpro.distributions.laplace import Laplace from skpro.distributions.logistic import Logistic diff --git a/skpro/distributions/halflogistic.py b/skpro/distributions/halflogistic.py new file mode 100644 index 000000000..21ea5f6e2 --- /dev/null +++ b/skpro/distributions/halflogistic.py @@ -0,0 +1,80 @@ +# copyright: skpro developers, BSD-3-Clause License (see LICENSE file) +"""Half-Logistic probability distribution.""" + +__author__ = ["SaiRevanth25"] + +import pandas as pd +from scipy.stats import halflogistic, rv_continuous + +from skpro.distributions.adapters.scipy import _ScipyAdapter + + +class HalfLogistic(_ScipyAdapter): + r"""Half-Logistic distribution. + + This distribution is univariate, without correlation between dimensions + for the array-valued case. + + The half-logistic distribution is a continuous probability distribution derived + from the logistic distribution by taking only the positive half. It is particularly + useful in reliability analysis, lifetime modeling, and other applications where + non-negative values are required. + + The half-logistic distribution is parametrized by the scale parameter + :math:`\beta`, such that the pdf is + + .. math:: + + f(x) = \frac{2 \exp\left(-\frac{x}{\beta}\right)} + {\beta \left(1 + \exp\left(-\frac{x}{\beta}\right)\right)^2}, + x>0 otherwise 0 + + The scale parameter :math:`\beta` is represented by the parameter ``beta``. + + Parameters + ---------- + beta : float or array of float (1D or 2D), must be positive + scale parameter of the half-logistic distribution + index : pd.Index, optional, default = RangeIndex + columns : pd.Index, optional, default = RangeIndex + + Example + ------- + >>> from skpro.distributions.halflogistic import HalfLogistic + + >>> hl = HalfLogistic(beta=1) + """ + + _tags = { + "capabilities:approx": ["pdfnorm"], + "capabilities:exact": ["mean", "var", "pdf", "log_pdf", "cdf", "ppf"], + "distr:measuretype": "continuous", + "distr:paramtype": "parametric", + "broadcast_init": "on", + } + + def __init__(self, beta, index=None, columns=None): + self.beta = beta + + super().__init__(index=index, columns=columns) + + def _get_scipy_object(self) -> rv_continuous: + return halflogistic + + def _get_scipy_param(self): + beta = self._bc_params["beta"] + return [beta], {} + + @classmethod + def get_test_params(cls, parameter_set="default"): + """Return testing parameter settings for the estimator.""" + # array case examples + params1 = {"beta": [[1, 2], [3, 4]]} + params2 = { + "beta": 1, + "index": pd.Index([1, 2, 5]), + "columns": pd.Index(["a", "b"]), + } + # scalar case examples + params3 = {"beta": 2} + return [params1, params2, params3]