-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_data.py
103 lines (77 loc) · 3.64 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
import torch
import pickle
import pandas as pd
from config import Config
from helpers import df_for_ner
from pympler.asizeof import asizeof
from torch.utils.data import DataLoader
from transformers import BertTokenizer
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
class Dataset:
def __init__(self, texts, tags, tokenizer=None):
#Texts: [['Diana', 'is', 'a', 'girl], ['she', 'plays'. 'football']]
#tags: [[0, 1, 2, 5], [1, 3. 5]]
self.texts = texts
self.tags = tags
self.tokenizer_name = tokenizer if tokenizer else 'bert-base-uncased'
self.tokenizer = BertTokenizer.from_pretrained(self.tokenizer_name) if self.tokenizer_name else Config.TOKENIZER
def __len__(self):
return len(self.texts)
def __getitem__(self, index):
texts = self.texts[index]
tags = self.tags[index]
#Tokenise
ids = []
target_tag = []
for i, s in enumerate(texts):
inputs = self.tokenizer.encode(s, add_special_tokens=False)
input_len = len(inputs)
ids.extend(inputs)
target_tag.extend(input_len * [tags[i]])
#To Add Special Tokens, subtract 2 from MAX_LEN
ids = ids[:Config.MAX_LEN - 2]
target_tag = target_tag[:Config.MAX_LEN - 2]
mask = [1] * len(ids)
token_type_ids = [0] * len(ids)
#Add Padding if the input_len is small
padding_len = Config.MAX_LEN - len(ids)
ids = ids + ([0] * padding_len)
target_tags = target_tag + ([0] * padding_len)
mask = mask + ([0] * padding_len)
token_type_ids = token_type_ids + ([0] * padding_len)
return {
"ids" : torch.tensor(ids, dtype=torch.long),
"mask" : torch.tensor(mask, dtype=torch.long),
"token_type_ids" : torch.tensor(token_type_ids, dtype=torch.long),
"target_tags" : torch.tensor(target_tags, dtype=torch.long)
}
def get_dataloaders(file_paths, sample_size=None, tokenizer=None, batch_size=None):
with open("./le.pkl", "rb") as f:
le = pickle.load(f)
sdf = df_for_ner(file_paths=file_paths, le=le)
if sample_size:
sdf = sdf.sample(sample_size).reset_index()
print(f"Memory used by sdf: {asizeof(sdf)}")
train_sent, val_sent, train_tag, val_tag = train_test_split(sdf['words'], sdf['numeric_tags'], test_size=0.01, random_state=10)
train_sent = train_sent.reset_index().drop("index", axis=1)['words']
val_sent = val_sent.reset_index().drop("index", axis=1)['words']
train_tag = train_tag.reset_index().drop("index", axis=1)['numeric_tags']
val_tag = val_tag.reset_index().drop("index", axis=1)['numeric_tags']
train_dataset = Dataset(texts = train_sent, tags = train_tag, tokenizer=tokenizer)
val_dataset = Dataset(texts = val_sent, tags = val_tag, tokenizer=tokenizer)
train_data_loader = DataLoader(train_dataset, batch_size=batch_size if batch_size else Config.TRAIN_BATCH_SIZE)
val_data_loader = DataLoader(val_dataset, batch_size=batch_size if batch_size else Config.VAL_BATCH_SIZE)
return train_data_loader, val_data_loader
def get_test_dataloader(file_paths, batch_size=8, sample_size=None, tokenizer=None):
with open("./le.pkl", "rb") as f:
le = pickle.load(f)
sdf = df_for_ner(file_paths=file_paths, le=le)
if sample_size:
sdf = sdf.sample(sample_size).reset_index()
test_sent = sdf['words'].reset_index().drop("index", axis=1)['words']
test_tags = sdf['numeric_tags'].reset_index().drop("index", axis=1)['numeric_tags']
test_dataset = Dataset(texts= test_sent, tags= test_tags, tokenizer=tokenizer)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size)
return test_dataloader