-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
229 lines (181 loc) · 9.49 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import streamlit as st
st.set_page_config(layout="wide")
st.title('Product reviews sentiment analysis')
import pandas as pd
import plotly.express as px
@st.cache_data
def load_data(path="./categorized.csv"):
import os
if os.path.exists(path):
categorized = pd.read_csv(path, index_col=[0])
categorized['categories'] = categorized['categories'].apply(lambda x: x.split(","))
categorized = categorized.explode('categories')
return categorized
data = pd.read_csv("./preprocessed_reviews.csv", index_col=[0])
categorized = load_data(path="./preprocessed_reviews.csv")
@st.cache_data
def ratings_by_category(category):
fig = px.pie(data_frame=categorized[categorized['categories']==category],
# values='categories',
names='rating',
title=f'Ratings for {category}', width=300, height=300)
return fig
@st.cache_data
def sentiment_by_category(category):
fig = px.pie(data_frame=categorized[categorized['categories']==category],
# values='categories',
names='hypothesis_label',
title=f'Sentiment for {category}', width=300, height=300,
color_discrete_sequence=['lightgreen', 'pink']) # [positive, negative]
return fig
@st.cache_data
def low_rating_categories():
fig = px.histogram(data_frame=categorized[categorized['rating']==1],
x='categories', color='categories',
title="Frequency of low rating products by category")
return fig
@st.cache_data
def top_products_by_category(category):
df = categorized[(categorized['categories']==category) & ((categorized['rating']==4) | (categorized['rating']==5))]
df = pd.DataFrame(df.groupby('product').count()['source']).reset_index()
df = df.sort_values(by='source', ascending=False)[:5]
fig = px.bar(data_frame=df, x='product', y='source', title=f"Top rated products from {category}")
fig.update_traces(marker_color='green')
return fig
@st.cache_data
def least_rating_products_by_category(category):
df = categorized[(categorized['categories']==category) & ((categorized['rating']==1) | (categorized['rating']==2))]
df = pd.DataFrame(df.groupby('product').count()['source']).reset_index()
df = df.sort_values(by='source', ascending=True)[:5]
fig = px.bar(data_frame=df, x='product', y='source', title=f"Least rated products from {category}")
fig.update_traces(marker_color='red')
return fig
@st.cache_data
def review_length_by_category_by_label(category):
data = categorized[categorized['categories']==category]
fig = px.histogram(data_frame=data, x='review_word_count',
title=f"Review length distribution by label for {category}",
color='hypothesis_label', barmode='overlay',
color_discrete_sequence=['blue', 'red'])
fig.update_xaxes(range=[0,100])
# fig.update_yaxes(range=[0, 10])
fig.add_vline(x=data[data['hypothesis_label']=='positive']['review_word_count'].mean(),
line_color='blue', annotation_text='Mean positive',
annotation_textangle = 90)
fig.add_vline(x=data[data['hypothesis_label']=='negative']['review_word_count'].mean(),
line_color='red', annotation_text='Mean negative',
annotation_textangle = 90)
fig.add_vline(x=data[data['hypothesis_label']=='positive']['review_word_count'].median(),
line_color='purple', annotation_text='Median positive',
annotation_textangle = 90)
fig.add_vline(x=data[data['hypothesis_label']=='negative']['review_word_count'].median(),
line_color='orange', annotation_text="Median negative",
annotation_textangle = 90, annotation_position='left')
return fig
@st.cache_data
def review_length_average_over_time():
v = data.groupby(['hypothesis_label', 'year'])['review_word_count'].mean().reset_index().rename(columns={'hypothesis_label':'sentiment'})
fig = px.line(v, x='year', y='review_word_count', color='sentiment', color_discrete_sequence=['red', 'blue'])
return fig
@st.cache_data
def reviews_by_category(category, sentiment, num_reviews):
df = categorized[categorized['categories']==category]
wr = df[df['hypothesis_label']==sentiment].sort_values(by='review_word_count', ascending=False)[:num_reviews]['reviews']
return wr
@st.cache_resource
def get_summarization_pipeline():
from transformers import T5Tokenizer, T5ForConditionalGeneration, pipeline
import torch
checkpoint = "MBZUAI/LaMini-Flan-T5-248M"
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
model = T5ForConditionalGeneration.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.float32)
return pipeline(task="summarization", model=model, tokenizer=tokenizer, max_length=200, min_length=50)
@st.cache_data
def generate_summary(reviews):
pipe = get_summarization_pipeline()
summaries_result = pipe(reviews)
return [sum_res['summary_text'] for sum_res in summaries_result]
category: str = st.selectbox(label="Select category of product", options=categorized['categories'].unique())
st.write(f"Number of product in our dataset for this category - {len(categorized[categorized['categories']==category])}")
col1, col2 = st.columns(2)
# Adding a simple text splitter initially, working on a better approach
# for longer reviews
def splitter(texts):
res = []
for t in texts:
if len(t.split())<512:
res.append(t)
else:
res.append(" ".join(t.split()[:512]))
return res
height = 600
width = 600
with col1:
best_prod = top_products_by_category(category)
best_prod.update_layout(height=400, width=width, yaxis_title="Number of products")
st.plotly_chart(best_prod, use_container_width=True)
fig1 = sentiment_by_category(category)
fig1.update_layout(height=height, width=width)
st.plotly_chart(fig1, use_container_width=True)
nr1 = st.number_input(label="Enter number of negative reviews to check",
min_value=0,
max_value=len(categorized[(categorized['categories']==category) & (categorized['hypothesis_label']=='negative')]),
key=1)
negative_reviews = reviews_by_category(category, 'negative', nr1).values
st.dataframe(negative_reviews, use_container_width=True)
nbt = st.checkbox(label="Generate summary of negative reviews")
if nbt:
# Display summaries in a more organized way
if "negative_summaries" not in st.session_state:
st.session_state["negative_summaries"] = generate_summary(splitter(list(negative_reviews)))
st.session_state.negative_summaries = generate_summary(splitter(list(negative_reviews)))
st.write("## Summaries")
container1 = st.container()
c1, c2 = st.columns(2)
# Display summaries in a more organized way
with container1:
for i, summary in enumerate(st.session_state.negative_summaries, start=1):
if i%2==1:
with c1:
st.text_area(label=f"### Review {i} Summary", value=f"{summary}")
elif i%2==0:
with c2:
st.text_area(label=f"### Review {i} Summary", value=f"{summary}")
with col2:
worst_prod = least_rating_products_by_category(category)
worst_prod.update_layout(height=400, width=width, yaxis_title="Number of products")
st.plotly_chart(worst_prod, use_container_width=True)
fig2 = ratings_by_category(category)
fig2.update_layout(height=height, width=width)
st.plotly_chart(fig2, use_container_width=True)
nr2 = st.number_input(label="Enter number of positive reviews to check",
min_value=0,
max_value=len(categorized[(categorized['categories']==category) & (categorized['hypothesis_label']=='positive')]),
key=2)
positive_reviews = reviews_by_category(category, 'positive', nr2).values
st.dataframe(positive_reviews, use_container_width=True)
pbt = st.checkbox(label="Generate summary of positive reviews")
if pbt:
# Display summaries in a more organized way
if "positive_summaries" not in st.session_state:
st.session_state["positive_summaries"] = generate_summary(splitter(list(positive_reviews)))
st.session_state.positive_summaries = generate_summary(splitter(list(positive_reviews)))
st.write("## Summaries")
container2 = st.container()
c3, c4 = st.columns(2)
# Display summaries in a more organized way
with container2:
for i, summary in enumerate(st.session_state.positive_summaries, start=1):
if i%2==1:
with c3:
st.text_area(label=f"### Review {i} Summary", value=f"{summary}")
elif i%2==0:
with c4:
st.text_area(label=f"### Review {i} Summary", value=f"{summary}")
st.write("Please autoscale from top right corner of figure because figure is getting squeezed for some categories")
fig3 = review_length_by_category_by_label(category)
fig3.update_layout(height=height, width=width, xaxis_title="Number of words in review", yaxis_title="Frequency")
st.plotly_chart(fig3, use_container_width=True)
fig4 = review_length_average_over_time()
fig4.update_layout(yaxis_title="Average number of words in review")
st.plotly_chart(fig4, use_container_width=True)