diff --git a/examples/nemo/nemo_gpt_singlenode.yaml b/examples/nemo/nemo_gpt_singlenode.yaml index 079214717e3..58612afd118 100644 --- a/examples/nemo/nemo_gpt_singlenode.yaml +++ b/examples/nemo/nemo_gpt_singlenode.yaml @@ -6,23 +6,22 @@ # The specific model used here should fit on GPU with 16GB memory. # # After the script completes, the model checkpoints will be saved in -# ~/sky_workdir/nemo_experiments/megatron_gpt/checkpoints on the head node. +# ~/sky_workdir/results on the head node. # # Usage: -# sky launch -s -c nemo_gpt nemo_gpt_singlenode.yaml +# sky launch -c nemo_gpt nemo_gpt_singlenode.yaml # # # Or try on spot A100 GPUs: # sky launch -c nemo_gpt nemo_gpt_singlenode.yaml --use-spot --gpus A100:1 # -# # The setup will take some time (~1 hr), feel free to ctrl-c once the setup script starts -# # You can reconnect to log stream using `sky logs nemo_gpt_train` -# # # Terminate cluster after you're done # sky down nemo_gpt resources: - cpus: 6+ - accelerators: A100:1 + cpus: 8+ + memory: 64+ + accelerators: A100-80GB:1 + image_id: docker:nvcr.io/nvidia/nemo:24.05 num_nodes: 1 @@ -30,63 +29,25 @@ envs: DATASET_ROOT: $HOME/wiki/ setup: | - # ============== Dependency Setup ============== - conda activate nemo - if [ $? -eq 0 ]; then - echo "Nemo conda env exists" - else - echo "Setup start" - - conda create -y --name nemo python==3.10.12 - conda activate nemo + conda deactivate - # Install PyTorch - pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 - - # Install nemo + # Clone NeMo repo if not already present + if [ ! -d NeMo ]; then git clone https://github.com/NVIDIA/NeMo.git - cd NeMo - git checkout b4ad7eaa7873d632391d6985aa6b359f39c20bab - pip install Cython - pip install .[all] - cd .. - - # Install megatron-core - # We install in editable mode because setup.py does not install all - # required modules if we install in non-editable mode. - git clone https://github.com/NVIDIA/Megatron-LM - cd Megatron-LM - git checkout dc21350806361564b8ce61d4a8d247cb195cc5f0 - pip install -e . - cd .. - - # Install ninja for faster compilation - pip install ninja packaging - - # Install transformer engine and flash-attn (Takes ~1hr to compile) - MAX_JOBS=4 pip install flash-attn==2.0.4 --no-build-isolation # Version upper capped by TransformerEngine - MAX_JOBS=4 pip install git+https://github.com/NVIDIA/TransformerEngine.git@stable - - pip install pytorch-extension + cd NeMo + git checkout 5df8e11255802a2ce2f33db6362e60990e215b64 + fi - # Install Apex - git clone https://github.com/NVIDIA/apex.git - cd apex - git checkout 52e18c894223800cb611682dce27d88050edf1de - pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./ - cd .. - - # Install gsutil if it doesn't exist - if ! command -v gsutil &> /dev/null - then - pip install gsutil - else - echo "gsutil exists" - fi + # Install gsutil if it doesn't exist + if ! command -v gsutil &> /dev/null + then + pip install gsutil + else + echo "gsutil exists" fi run: | - conda activate nemo + conda deactivate # ============= Data Download ============= # We download pre-processed data from a read-only bucket at gs://sky-wiki-data # For more on how to pre-process data, see nemo_gpt3_preprocessing.yaml @@ -94,11 +55,21 @@ run: | if [ -f ${DATASET_ROOT}/hfbpe_gpt_training_data_text_document.bin ]; then echo "Data already downloaded" else - echo "Head node downloading data to shared bucket." + echo "Head node downloading data to local path." mkdir -p $DATASET_ROOT gsutil -m cp gs://sky-wiki-data/{gpt2-merges.txt,gpt2-vocab.json,hfbpe_gpt_training_data_text_document.bin,hfbpe_gpt_training_data_text_document.idx} ${DATASET_ROOT} fi + # Kill any existing megatron processes + pkill -f -9 megatron + + # Store checkpoints at a local path. + # You can change this to the shared bucket for checkpointing to cloud bucket + # at every callback, but this will slow down training. + # CHECKPOINT_PATH=${DATASET_ROOT}/results + CHECKPOINT_PATH=~/sky_workdir/results + mkdir -p ${CHECKPOINT_PATH} + # ============= Training ============= python NeMo/examples/nlp/language_modeling/megatron_gpt_pretraining.py \ --config-path=conf \ @@ -113,6 +84,7 @@ run: | trainer.limit_test_batches=50 \ trainer.accumulate_grad_batches=1 \ trainer.precision=16 \ + model.mcore_gpt=True \ model.micro_batch_size=6 \ model.global_batch_size=192 \ model.tensor_model_parallel_size=1 \ @@ -143,6 +115,7 @@ run: | exp_manager.resume_if_exists=True \ exp_manager.resume_ignore_no_checkpoint=True \ exp_manager.create_checkpoint_callback=True \ + +exp_manager.checkpoint_callback_params.dirpath=${CHECKPOINT_PATH} \ exp_manager.checkpoint_callback_params.monitor=val_loss \ exp_manager.checkpoint_callback_params.save_top_k=3 \ exp_manager.checkpoint_callback_params.mode=min \ diff --git a/examples/nemo/nemo_gpt_train.yaml b/examples/nemo/nemo_gpt_train.yaml index 7130260254f..db94d4ad04a 100644 --- a/examples/nemo/nemo_gpt_train.yaml +++ b/examples/nemo/nemo_gpt_train.yaml @@ -7,28 +7,25 @@ # yourself, see nemo_gpt_preprocessing.yaml. # # After the script completes, the model checkpoints will be saved in -# ~/sky_workdir/nemo_experiments/megatron_gpt/checkpoints on the head node. +# ~/sky_workdir/results on the head node. # # Usage: -# sky launch -s -c nemo_gpt_train nemo_gpt_train.yaml -# -# # The setup will take some time (~1 hr), feel free to ctrl-c once the setup script starts -# # You can reconnect to log stream using `sky logs nemo_gpt_train` +# sky launch --env BUCKET_NAME= -c nemo_gpt_train nemo_gpt_train.yaml # # # Terminate cluster after you're done # sky down nemo_gpt_train resources: - cpus: 16+ - memory: 128+ - accelerators: A100-80GB:4 + cpus: 8+ + memory: 64+ + accelerators: A100-80GB:1 image_id: docker:nvcr.io/nvidia/nemo:24.05 num_nodes: 2 envs: DATASET_ROOT: /wiki - BUCKET_NAME: romil-sky-wiki # Enter a unique bucket name here - if it doesn't exist SkyPilot will create it + BUCKET_NAME: # Enter a unique bucket name here - if it doesn't exist SkyPilot will create it file_mounts: ${DATASET_ROOT}: @@ -37,10 +34,10 @@ file_mounts: mode: MOUNT -setup: | - # ============== Dependency Setup ============== +setup: | conda deactivate - # Clone NeMo if not already present + + # Clone NeMo repo if not already present if [ ! -d NeMo ]; then git clone https://github.com/NVIDIA/NeMo.git cd NeMo @@ -54,6 +51,7 @@ setup: | else echo "gsutil exists" fi + run: | conda deactivate @@ -64,6 +62,9 @@ run: | # This bucket acts as a network filesystem (NFS) between the head node and # worker nodes. In our training script, the head node writes a index # file to this shared filesystem that is read by workers. + # + # Note that NeMo requires this shared filesystem to be strongly consistent - + # any writes made by the head should be immediately visible to the workers. if [ ${SKYPILOT_NODE_RANK} -eq 0 ]; then if [ -f ${DATASET_ROOT}/hfbpe_gpt_training_data_text_document.bin ]; then @@ -87,9 +88,11 @@ run: | # Kill any existing megatron processes pkill -f -9 megatron - # Store checkpoints on the shared dataset bucket - # Create a directory to store checkpoints - CHECKPOINT_PATH=${DATASET_ROOT}/results + # Store checkpoints at a local path. + # You can change this to the shared bucket for checkpointing to cloud bucket + # at every callback, but this will slow down training. + # CHECKPOINT_PATH=${DATASET_ROOT}/results + CHECKPOINT_PATH=~/sky_workdir/results mkdir -p ${CHECKPOINT_PATH} python -m torch.distributed.run \ @@ -105,7 +108,7 @@ run: | trainer.num_nodes=${num_nodes} \ trainer.max_epochs=null \ trainer.max_steps=300000 \ - trainer.val_check_interval=50 \ + trainer.val_check_interval=100 \ trainer.log_every_n_steps=50 \ trainer.limit_val_batches=50 \ trainer.limit_test_batches=50 \ @@ -148,7 +151,8 @@ run: | exp_manager.checkpoint_callback_params.mode=min \ exp_manager.checkpoint_callback_params.always_save_nemo=True - # Optional - copy checkpoints to the mounted dataset bucket (~6 GB) + # Optional - if writing checkpoints to a local directory, + # copy checkpoints to the mounted dataset bucket (~6 GB) # if [ ${SKYPILOT_NODE_RANK} -eq 0 ]; then # mkdir -p ${DATASET_ROOT}/results # cp -R ~/sky_workdir/nemo_experiments