-
Notifications
You must be signed in to change notification settings - Fork 5
/
get_task.py
502 lines (464 loc) · 26.1 KB
/
get_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import os
import json
import random
from tqdm import tqdm
from datasets import load_dataset
def format_dataset(sample):
question = sample['question']['text']
context = sample['document']['tokens']['token']
is_html = sample['document']['tokens']['is_html']
long_answers = sample['annotations']['long_answer']
short_answers = sample['annotations']['short_answers']
context_string = " ".join([context[i] for i in range(len(context)) if not is_html[i]])
for answer in sample['annotations']['yes_no_answer']:
if answer == 0 or answer == 1:
return {"question": question, "short": ["no" if answer == 0 else "yes"], "long": [], "category": "no" if answer == 0 else "yes"}
short_targets = []
for s in short_answers:
short_targets.extend(s['text'])
short_targets = list(set(short_targets))
long_targets = []
for s in long_answers:
if s['start_token'] == -1:
continue
answer = context[s['start_token']: s['end_token']]
html = is_html[s['start_token']: s['end_token']]
new_answer = " ".join([answer[i] for i in range(len(answer)) if not html[i]])
if new_answer not in long_targets:
long_targets.append(new_answer)
category = "other" if len(short_targets) > 0 else "null"
return {"question": question, "short": short_targets, "long": long_targets, "category": category}
def process_mnli_examples(examples):
processed_examples = []
idx = 0
for raw_data in tqdm(examples,desc='process mnli examples'):
processed_examples.append({
'id': idx,
'label': raw_data['label'],
'premise': raw_data['premise'],
'hypothesis': raw_data['hypothesis'],
})
idx += 1
return processed_examples
def process_rte_examples(examples):
processed_examples = []
idx = 0
for raw_data in tqdm(examples,desc='process rte examples'):
processed_examples.append({
'id': idx,
'label': raw_data['label'],
'sentence1': raw_data['sentence1'],
'sentence2': raw_data['sentence2'],
})
idx += 1
return processed_examples
def process_test_examples(examples,label_map_temp):
processed_examples = []
idx = 0
for raw_data in tqdm(examples, desc='process test examples'):
processed_examples.append({
'id': idx,
'label': label_map_temp[raw_data['output']],
'input': raw_data['input'],
})
idx += 1
return processed_examples
def process_sst5_examples(examples):
processed_examples = []
idx = 0
for raw_data in tqdm(examples,desc='process sst5 examples'):
processed_examples.append({
'id': idx,
'label': raw_data['label'],
'text': raw_data['text'],
})
idx += 1
return processed_examples
def process_mrpc_examples(examples):
processed_examples = []
idx = 0
for raw_data in tqdm(examples,desc='process mrpc examples'):
processed_examples.append({
'id': idx,
'label': raw_data['label'],
'sentence1': raw_data['sentence1'],
'sentence2': raw_data['sentence2'],
})
idx += 1
return processed_examples
def process_dbpedia_examples(examples):
processed_examples = []
idx = 0
for raw_data in tqdm(examples,desc='process dbpedia_14 examples'):
processed_examples.append({
'id': idx,
'label': raw_data['label'],
'title': raw_data['title'],
'content': raw_data['content'],
})
idx += 1
return processed_examples
def process_hellaswag_examples(examples):
processed_examples = []
idx = 0
for raw_data in tqdm(examples,desc='process hellaswag examples'):
processed_examples.append({
'id': idx,
'ctx_a': raw_data['ctx_a'],
'ctx_b': raw_data['ctx_b'],
'ctx':raw_data['ctx'],
'endings':raw_data['endings'],
'label':int(raw_data['label']),
'activity_label':raw_data['activity_label']
})
idx += 1
return processed_examples
def process_xsum_examples(examples):
processed_examples = []
for i,e in enumerate(examples):
processed_examples.append({
'id':i,
'document':e["document"],
'summary':e["summary"],
'label':e["summary"],
})
return processed_examples
def process_nq_examples(examples):
processed_examples = []
for idx,e in enumerate(examples):
processed_examples.append({
'id':idx,
'question':e['question'],
'short_targets':e['short'],
'category':e['category'],
'long': e['long'],
'label':e['short'],
})
return processed_examples
def get_task(args):
task_name = args.task_name
data_cache_dir = args.data_cache_dir
if task_name=='mnli':
if os.path.isfile(os.path.join(args.output_dir,f'train_examples_seed_{args.seed}.json')) and \
os.path.isfile(os.path.join(args.output_dir,f'eval_examples_seed_{args.seed}.json')):
print('use cached examples')
with open(os.path.join(args.output_dir,f'train_examples_seed_{args.seed}.json')) as f:
total_train_examples = json.load(f)
with open(os.path.join(args.output_dir,f'eval_examples_seed_{args.seed}.json')) as f:
total_eval_examples = json.load(f)
else:
mnli_datasets = load_dataset('glue', 'mnli', cache_dir=data_cache_dir)
total_train_examples = [e for e in mnli_datasets['train']]
total_train_examples = random.sample(total_train_examples, 3000)
total_train_examples = process_mnli_examples(total_train_examples)
total_eval_examples = [e for e in mnli_datasets['validation_matched']]
total_eval_examples = random.sample(total_eval_examples, 256)
total_eval_examples = process_mnli_examples(total_eval_examples)
with open(os.path.join(args.output_dir,f'train_examples_seed_{args.seed}.json'),'w') as f:
json.dump(total_train_examples,f,indent=4)
with open(os.path.join(args.output_dir,f'eval_examples_seed_{args.seed}.json'),'w') as f:
json.dump(total_eval_examples,f,indent=4)
if args.debug:
args.annotation_size = 10
args.batch_size = 1
total_train_examples = total_train_examples[:50]
total_eval_examples = total_eval_examples[:5]
def format_example(example,label_map,**kwargs):
return f"{example['premise']}. Based on that information, is the claim {example['hypothesis']} \"True\", " \
f"\"False\", or \"Inconclusive\"?\nanswer:", f"{label_map[example['label']]}"
all_train_text_to_encode = ["{}. Based on that information, is the claim {} \"True\", \"False\", or \"Inconclusive\"?"
.format(raw_item["premise"], raw_item["hypothesis"]) for raw_item in total_train_examples]
all_eval_text_to_encode = ["{}. Based on that information, is the claim {} \"True\", \"False\", or \"Inconclusive\"?"
.format(raw_item["premise"], raw_item["hypothesis"]) for raw_item in total_eval_examples]
label_map = {0:"True",1:"Inconclusive",2:"False"}
elif task_name=='rte':
if os.path.isfile(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json')) and \
os.path.isfile(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json')):
print('use cached examples')
with open(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json')) as f:
total_train_examples = json.load(f)
with open(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json')) as f:
total_eval_examples = json.load(f)
else:
rte_datasets = load_dataset('glue', 'rte', cache_dir=data_cache_dir)
total_train_examples = [e for e in rte_datasets['train']]
total_train_examples = process_rte_examples(total_train_examples)
total_eval_examples = [e for e in rte_datasets['validation']]
total_eval_examples = random.sample(total_eval_examples, 256)
total_eval_examples = process_rte_examples(total_eval_examples)
with open(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json'), 'w') as f:
json.dump(total_train_examples, f, indent=4)
with open(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json'), 'w') as f:
json.dump(total_eval_examples, f, indent=4)
if args.debug:
args.annotation_size = 10
args.batch_size = 1
total_train_examples = total_train_examples[:50]
total_eval_examples = total_eval_examples[:5]
def format_example(example,label_map,**kwargs):
return f"{example['sentence1']}.\nquestion: {example['sentence2']}. True or False?\nanswer:",\
f"{label_map[example['label']]}"
all_train_text_to_encode = ["{}.\nquestion: {}".format(raw_item["sentence1"], raw_item["sentence2"])
for raw_item in total_train_examples]
all_eval_text_to_encode = ["{}.\nquestion: {}".format(raw_item["sentence1"], raw_item["sentence2"])
for raw_item in total_eval_examples]
label_map = {0:"True",1:"False"}
elif task_name=='sst5':
if os.path.isfile(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json')) and \
os.path.isfile(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json')):
print('use cached examples')
with open(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json')) as f:
total_train_examples = json.load(f)
with open(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json')) as f:
total_eval_examples = json.load(f)
else:
sst5_datasets = load_dataset('SetFit/sst5',cache_dir=data_cache_dir)
total_train_examples = [e for e in sst5_datasets['train']]
total_train_examples = random.sample(total_train_examples, 3000)
total_train_examples = process_sst5_examples(total_train_examples)
total_eval_examples = [e for e in sst5_datasets['test']]
total_eval_examples = random.sample(total_eval_examples, 256)
total_eval_examples = process_sst5_examples(total_eval_examples)
with open(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json'), 'w') as f:
json.dump(total_train_examples, f, indent=4)
with open(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json'), 'w') as f:
json.dump(total_eval_examples, f, indent=4)
if args.debug:
args.annotation_size = 10
args.batch_size = 1
total_train_examples = total_train_examples[:50]
total_eval_examples = total_eval_examples[:5]
def format_example(example,label_map,**kwargs):
return f"How do you feel about the following sentence?\n{example['text']}\nanswer:",\
f"{label_map[example['label']]}"
all_train_text_to_encode = [raw_item["text"] for raw_item in total_train_examples]
all_eval_text_to_encode = [raw_item["text"] for raw_item in total_eval_examples]
label_map = {0:"very negative",1:"negative",2:"neutral",3:"positive",4:"very positive"}
elif task_name=='mrpc':
if os.path.isfile(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json')) and \
os.path.isfile(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json')):
print('use cached examples')
with open(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json')) as f:
total_train_examples = json.load(f)
with open(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json')) as f:
total_eval_examples = json.load(f)
else:
mrpc_datasets = load_dataset('glue','mrpc',cache_dir=data_cache_dir)
total_train_examples = [e for e in mrpc_datasets['train']]
total_train_examples = random.sample(total_train_examples, 3000)
total_train_examples = process_mrpc_examples(total_train_examples)
total_eval_examples = [e for e in mrpc_datasets['validation']]
total_eval_examples = random.sample(total_eval_examples, 256)
total_eval_examples = process_mrpc_examples(total_eval_examples)
with open(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json'), 'w') as f:
json.dump(total_train_examples, f, indent=4)
with open(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json'), 'w') as f:
json.dump(total_eval_examples, f, indent=4)
if args.debug:
args.annotation_size = 10
args.batch_size = 1
total_train_examples = total_train_examples[:50]
total_eval_examples = total_eval_examples[:5]
def format_example(example,label_map,**kwargs):
return f"Are the following two sentences 'equivalent' or 'not equivalent'?\n" \
f"{example['sentence1']}.\n{example['sentence2']}.\nanswer:",\
f"{label_map[example['label']]}"
all_train_text_to_encode = ["{}.\n{}".format(raw_item["sentence1"], raw_item["sentence2"])
for raw_item in total_train_examples]
all_eval_text_to_encode = ["{}.\n{}".format(raw_item["sentence1"], raw_item["sentence2"])
for raw_item in total_eval_examples]
label_map = {0:"not equivalent",1:"equivalent"}
elif task_name=='dbpedia_14':
if os.path.isfile(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json')) and \
os.path.isfile(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json')):
print('use cached examples')
with open(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json')) as f:
total_train_examples = json.load(f)
with open(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json')) as f:
total_eval_examples = json.load(f)
else:
dbpedia_datasets = load_dataset('dbpedia_14',revision="master",cache_dir=data_cache_dir)
total_train_examples = [e for e in dbpedia_datasets['train']]
total_train_examples = random.sample(total_train_examples, 3000)
total_train_examples = process_dbpedia_examples(total_train_examples)
total_eval_examples = [e for e in dbpedia_datasets['test']]
total_eval_examples = random.sample(total_eval_examples, 256)
total_eval_examples = process_dbpedia_examples(total_eval_examples)
with open(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json'), 'w') as f:
json.dump(total_train_examples, f, indent=4)
with open(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json'), 'w') as f:
json.dump(total_eval_examples, f, indent=4)
if args.debug:
args.annotation_size = 10
args.batch_size = 1
total_train_examples = total_train_examples[:50]
total_eval_examples = total_eval_examples[:5]
def format_example(example,label_map,**kwargs):
return f"title: {example['title']}; content: {example['content']}",\
f"{label_map[example['label']]}"
all_train_text_to_encode = ["title: {} ; content: {}".format(raw_item["title"], raw_item["content"])
for raw_item in total_train_examples]
all_eval_text_to_encode = ["title: {} ; content: {}".format(raw_item["title"], raw_item["content"])
for raw_item in total_eval_examples]
label_map = {0: "company",1: "educational institution",2: "artist",3: "athlete",4: "office holder",
5: "mean of transportation",6: "building",7: "natural place",8: "village",9: "animal",10: "plant",
11: "album",12: "film",13: "written work"}
elif task_name=='hellaswag':
if os.path.isfile(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json')) and \
os.path.isfile(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json')):
print('use cached examples')
with open(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json')) as f:
total_train_examples = json.load(f)
with open(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json')) as f:
total_eval_examples = json.load(f)
else:
hellaswag_datasets = load_dataset('hellaswag',cache_dir=data_cache_dir)
total_train_examples = [e for e in hellaswag_datasets['train']]
total_train_examples = random.sample(total_train_examples, 3000)
total_train_examples = process_hellaswag_examples(total_train_examples)
total_eval_examples = [e for e in hellaswag_datasets['validation']]
total_eval_examples = random.sample(total_eval_examples, 256)
total_eval_examples = process_hellaswag_examples(total_eval_examples)
with open(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json'), 'w') as f:
json.dump(total_train_examples, f, indent=4)
with open(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json'), 'w') as f:
json.dump(total_eval_examples, f, indent=4)
if args.debug:
args.annotation_size = 10
args.batch_size = 1
total_train_examples = total_train_examples[:50]
total_eval_examples = total_eval_examples[:5]
def format_example(example,label_map,**kwargs):
return f"The topic is {example['activity_label']}. {example['ctx_a']} " \
f"{example['ctx_b']} ",f"{example['endings'][example['label']]}"
all_train_text_to_encode = [f"The topic is {raw_item['activity_label']}. {raw_item['ctx_a']} {raw_item['ctx_b']} | " \
f"{raw_item['endings'][0]} | " \
f"{raw_item['endings'][1]} | " \
f"{raw_item['endings'][2]} | " \
f"{raw_item['endings'][3]}" for raw_item in total_train_examples]
all_eval_text_to_encode = [f"The topic is {raw_item['activity_label']}. {raw_item['ctx_a']} {raw_item['ctx_b']} | " \
f"{raw_item['endings'][0]} | " \
f"{raw_item['endings'][1]} | " \
f"{raw_item['endings'][2]} | " \
f"{raw_item['endings'][3]}" for raw_item in total_eval_examples]
label_map = None
elif task_name == 'xsum':
if os.path.isfile(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json')) and \
os.path.isfile(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json')):
print('use cached examples')
with open(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json')) as f:
total_train_examples = json.load(f)
with open(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json')) as f:
total_eval_examples = json.load(f)
else:
xsum_dataset = load_dataset('xsum',cache_dir=data_cache_dir)
total_train_examples = [e for e in xsum_dataset['train']]
total_train_examples = random.sample(total_train_examples, 3000)
total_train_examples = process_xsum_examples(total_train_examples)
total_eval_examples = [e for e in xsum_dataset['test']]
total_eval_examples = random.sample(total_eval_examples, 256)
total_eval_examples = process_xsum_examples(total_eval_examples)
with open(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json'), 'w') as f:
json.dump(total_train_examples, f, indent=4)
with open(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json'), 'w') as f:
json.dump(total_eval_examples, f, indent=4)
if args.debug:
args.annotation_size = 10
args.batch_size = 1
total_train_examples = total_train_examples[:50]
total_eval_examples = total_eval_examples[:5]
def format_example(example,label_map,**kwargs):
return f"write a short summary:\n{example['document']}\nTL;DR:",f"{example['summary']}"
all_train_text_to_encode = [raw_item['document']
for raw_item in total_train_examples]
all_eval_text_to_encode = [raw_item['document']
for raw_item in total_eval_examples]
label_map = None
elif task_name == 'nq':
if os.path.isfile(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json')) and \
os.path.isfile(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json')):
print('use cached examples')
with open(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json')) as f:
total_train_examples = json.load(f)
with open(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json')) as f:
total_eval_examples = json.load(f)
else:
nq_dataset = load_dataset('natural_questions', cache_dir=data_cache_dir)
first_sub_sample_indices = random.sample(range(len(nq_dataset['train'])), 12000)
train_data = nq_dataset['train'].select(first_sub_sample_indices).map(format_dataset)
total_train_examples = train_data.remove_columns(["annotations", "document", "id"]).filter(
lambda x: x['category'] != "null")
total_train_examples = [e for e in total_train_examples]
total_train_examples = random.sample(total_train_examples, 3000)
total_train_examples = process_nq_examples(total_train_examples)
total_eval_examples = nq_dataset['validation'].map(format_dataset).remove_columns(
["annotations", "document", "id"]).filter(lambda x: x['category'] != "null")
total_eval_examples = [e for e in total_eval_examples]
total_eval_examples = random.sample(total_eval_examples, 256)
total_eval_examples = process_nq_examples(total_eval_examples)
with open(os.path.join(args.output_dir, f'train_examples_seed_{args.seed}.json'), 'w') as f:
json.dump(total_train_examples, f, indent=4)
with open(os.path.join(args.output_dir, f'eval_examples_seed_{args.seed}.json'), 'w') as f:
json.dump(total_eval_examples, f, indent=4)
if args.debug:
args.annotation_size = 10
args.batch_size = 1
total_train_examples = total_train_examples[:50]
total_eval_examples = total_eval_examples[:5]
def format_example(example, label_map, **kwargs):
if example['category'] in ['yes', 'no']:
return f"Write an answer: {example['question']}\nclass", f"{example['category']}"
assert example['category'] == 'other', example['category']
assert len(example['short_targets']) > 0, f"{example['short_targets']}"
return f"Write an answer: {example['question']}\n{example['category']} ", f"{example['short_targets'][0]}"
all_train_text_to_encode = [raw_item['question']
for raw_item in total_train_examples]
all_eval_text_to_encode = [raw_item['question']
for raw_item in total_eval_examples]
label_map = None
else:
raise ValueError(f"{args.task_name} is not supported")
return total_train_examples,total_eval_examples,all_train_text_to_encode,\
all_eval_text_to_encode,format_example,label_map
def get_test(args, n= 500, seed = 0, template_dir=""):
if args.test_data in ["imdb"]:
label_map = {0: "negative", 1: "positive"}
label_map_temp = {"negative": 0, "positive": 1}
elif args.test_data in ['contrast_boolq']:
label_map = {0: "no", 1: "yes"}
label_map_temp = {"no": 0 , "yes": 1}
dataset = args.test_data
data_path = os.path.join("data", template_dir,
"{}_{}_{}_{}.jsonl".format(args.test_data, n, seed, "test"))
data = []
with open(data_path, "r") as f:
for line in f:
dp = json.loads(line)
data.append(dp)
processed_eval_examples = process_test_examples(data,label_map_temp)
all_eval_text_to_encode = []
for item in data:
all_eval_text_to_encode.append(item["input"])
return processed_eval_examples, all_eval_text_to_encode, label_map
def get_train(args, n= 500, seed = 0, template_dir=""):
if args.task_name in ['sst2']:
label_map = {0: "negative", 1: "positive"}
label_map_temp = {"negative": 0, "positive": 1}
elif args.task_name in ['boolq']:
label_map = {0: "no", 1: "yes"}
label_map_temp = {"no": 0 , "yes": 1}
dataset = args.task_name
data_path = os.path.join("data", template_dir,
"{}_{}_{}_{}.jsonl".format(args.task_name, n, seed, "train"))
data = []
with open(data_path, "r") as f:
for line in f:
dp = json.loads(line)
data.append(dp)
processed_train_examples = process_test_examples(data,label_map_temp)
all_train_text_to_encode = []
for item in data:
all_train_text_to_encode.append(item["input"])
def format_example(example,label_map,**kwargs):
return example['input'], f"{label_map[example['label']]}"
return processed_train_examples, all_train_text_to_encode, format_example, label_map