diff --git a/vllm/v1/worker/gpu_model_runner.py b/vllm/v1/worker/gpu_model_runner.py index 8d9976ded7c5e..e75be21ef2d91 100644 --- a/vllm/v1/worker/gpu_model_runner.py +++ b/vllm/v1/worker/gpu_model_runner.py @@ -61,6 +61,7 @@ def __init__( self.kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[ cache_config.cache_dtype] + self.is_multimodal_model = model_config.is_multimodal_model self.sliding_window = model_config.get_sliding_window() self.block_size = cache_config.block_size self.max_model_len = model_config.max_model_len @@ -103,6 +104,11 @@ def __init__( # The batch sizes in the config are in descending order. self.cudagraph_batch_sizes = list( reversed(self.vllm_config.compilation_config.capture_sizes)) + + # Persistent buffers for CUDA graphs. + self.input_ids = torch.zeros(self.max_num_tokens, + dtype=torch.int32, + device=self.device) self.positions = torch.zeros(self.max_num_tokens, dtype=torch.int64, device=self.device) @@ -310,7 +316,8 @@ def _prepare_inputs(self, scheduler_output: "SchedulerOutput"): seq_start_loc_np[0] = 0 np.cumsum(seq_lens, out=seq_start_loc_np[1:]) - input_ids = input_ids.to(self.device, non_blocking=True) + self.input_ids[:total_num_scheduled_tokens].copy_(input_ids, + non_blocking=True) self.positions[:total_num_scheduled_tokens].copy_(positions, non_blocking=True) query_start_loc = query_start_loc.to(self.device, non_blocking=True) @@ -331,7 +338,7 @@ def _prepare_inputs(self, scheduler_output: "SchedulerOutput"): # token from the partial request. # TODO: Support prompt logprobs. logits_indices = query_start_loc[1:] - 1 - return input_ids, attn_metadata, logits_indices + return attn_metadata, logits_indices def _prepare_sampling( self, @@ -427,13 +434,15 @@ def execute_model( ) -> ModelRunnerOutput: self._update_states(scheduler_output) - # Run the encoder. - self._execute_encoder(scheduler_output) - encoder_outputs = self._gather_encoder_outputs(scheduler_output) + if self.is_multimodal_model: + # Run the multimodal encoder if any. + self._execute_encoder(scheduler_output) + encoder_outputs = self._gather_encoder_outputs(scheduler_output) + else: + encoder_outputs = [] # Prepare the decoder inputs. - input_ids, attn_metadata, logits_indices = self._prepare_inputs( - scheduler_output) + attn_metadata, logits_indices = self._prepare_inputs(scheduler_output) num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens if (self.use_cuda_graph and num_scheduled_tokens <= self.cudagraph_batch_sizes[-1]): @@ -444,29 +453,39 @@ def execute_model( else: # Eager mode. num_input_tokens = num_scheduled_tokens - attn_metadata.num_input_tokens = num_input_tokens - # Get the inputs embeds. - if encoder_outputs: - inputs_embeds = self.model.get_input_embeddings( - input_ids, encoder_outputs) + if self.is_multimodal_model: + # NOTE(woosuk): To unify token ids and soft tokens (vision + # embeddings), we always use embeddings (rather than token ids) + # as input to the multimodal model, even when the input is text. + input_ids = self.input_ids[:num_scheduled_tokens] + if encoder_outputs: + inputs_embeds = self.model.get_input_embeddings( + input_ids, encoder_outputs) + else: + inputs_embeds = self.model.get_input_embeddings(input_ids) + # TODO(woosuk): Avoid the copy. Optimize. + self.inputs_embeds[:num_scheduled_tokens].copy_(inputs_embeds) + inputs_embeds = self.inputs_embeds[:num_input_tokens] + input_ids = None else: - inputs_embeds = self.model.get_input_embeddings(input_ids) - # NOTE(woosuk): To unify token ids and soft tokens (vision embeddings), - # always use embeddings (rather than token ids) as input to the model. - # TODO(woosuk): Avoid the copy. Optimize. - self.inputs_embeds[:num_scheduled_tokens].copy_(inputs_embeds) + # For text-only models, we use token ids as input. + # While it is possible to use embeddings as input just like the + # multimodal models, it is not desirable for performance since + # then the embedding layer is not included in the CUDA graph. + input_ids = self.input_ids[:num_input_tokens] + inputs_embeds = None # Run the decoder. # Use persistent buffers for CUDA graphs. with set_forward_context(attn_metadata, self.vllm_config): hidden_states = self.model( - input_ids=None, + input_ids=input_ids, positions=self.positions[:num_input_tokens], kv_caches=self.kv_caches, attn_metadata=None, - inputs_embeds=self.inputs_embeds[:num_input_tokens], + inputs_embeds=inputs_embeds, ) hidden_states = hidden_states[:num_scheduled_tokens] hidden_states = hidden_states[logits_indices] @@ -534,13 +553,20 @@ def _dummy_run( num_tokens: int, kv_caches: List[torch.Tensor], ) -> torch.Tensor: + if self.is_multimodal_model: + input_ids = None + inputs_embeds = self.inputs_embeds[:num_tokens] + else: + input_ids = self.input_ids[:num_tokens] + inputs_embeds = None with set_forward_context(None, self.vllm_config): hidden_states = model( - input_ids=None, + input_ids=input_ids, positions=self.positions[:num_tokens], kv_caches=kv_caches, attn_metadata=None, - inputs_embeds=self.inputs_embeds[:num_tokens]) + inputs_embeds=inputs_embeds, + ) return hidden_states def profile_run(self) -> None: