-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·394 lines (347 loc) · 17.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TestTubeLogger
import torch.nn as nn
from sklearn.metrics import confusion_matrix
# from eval.confusion_matrix import base_confusion
from loss import loss
from network.ce_net import CEnet
from network.scaa import SCAA, SCAA3D
from opt import get_opts
from utils import load_ckpt
from dataset.dataset import train_dataloader, ChaoDataset, WholeDataset
import pytorch_lightning as pl
from torch import optim
from torch.utils.data import random_split
from torchvision import transforms
import os
class TrainSystem(pl.LightningModule):
def __init__(self, param):
super(TrainSystem, self).__init__()
self.hparams = param
self.n_train = None
self.n_val = None
self.n_classes = 1
self.n_channels = 1
###############################################################################################
# if network is unet then must use F.binary_cross_entropy_with_logits
# worry???????
###############################################################################################
# self.criterion = F.binary_cross_entropy_with_logits
# self.model = UNet(n_channels=1,
# n_classes=1,
# bilinear=False,
# )
# self.model = Unet(1, 1)
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# self.model = CEnet()
# *****************************************
self.model = SCAA(num_features=1)
self.model3d = SCAA3D(num_features=1)
# *****************************************
self.criterion = nn.CrossEntropyLoss() if self.model.n_classes > 1 else nn.BCELoss()
self.all_train = None
self.epoch_loss = 0
self.val = {}
self.iou_sum = 0
self.dice_sum = 0
self.f3d = None
self.sdu = self.scheduler()
# to unnormalize image for visualization
self.unpreprocess = transforms.Compose([
transforms.ToTensor(),
# transforms.Normalize((-1.5,), (1.0,))
transforms.Normalize((0.5,), (0.5,))
])
self.loss_seg_DICE = loss.DiceLoss4MOTS(num_classes=1).cuda()
self.loss_seg_CE = loss.CELoss4MOTS(num_classes=1, ignore_index=255).cuda()
# self.loss_seg_DICE = loss.DiceLoss4MOTS(num_classes=self.hparams.n_classes).cuda()
# self.loss_seg_CE = loss.CELoss4MOTS(num_classes=self.hparams.n_classes, ignore_index=255).cuda()
self._generator = self.__dataloader()
self._data = self.refresh_dataloader()
# self._data = None
# model
# device gpu number
if self.hparams.num_gpus == 1:
print('number of parameters : %.2f M' %
(sum(p.numel() for p in self.model.parameters() if p.requires_grad) / 1e6))
# load model checkpoint path is provided
if self.hparams.ckpt_path != '':
print('Load model from', self.hparams.ckpt_path)
load_ckpt(self.model, self.hparams.ckpt_path, self.hparams.prefixes_to_ignore)
def forward(self, x, pre_train_feature, task_id):
return self.model.forward(x, pre_train_feature, task_id)
def on_train_epoch_start(self):
self.epoch_loss = 0
super(TrainSystem, self).on_train_epoch_start()
self._data = self.refresh_dataloader()
model = self.trainer.get_model()
self.trainer.reset_train_dataloader(model)
# a = 1
# def train_all(self, x):
# x, y = x.values()
def training_step(self, batch, batch_nb):
a = self.all_train
f3d = None
for i in a:
x = i['image'].transpose(0, 1).unsqueeze(0).cuda()
y = i['mask'].transpose(0, 1).unsqueeze(0).cuda()
# f3d = self.model3d(self.all_dataloader()['train_all'])
f3d = self.model3d(x)
inputs, labels, _ = batch.values()
pred = self.forward(inputs, f3d, task_id=batch['files'][batch_nb]['task_id'])
# # *****************************************
# term_seg_Dice = self.loss_seg_DICE.forward(pred, labels)
# term_seg_BCE = self.loss_seg_CE.forward(pred, labels)
# term_all = term_seg_Dice + term_seg_BCE
#
#
# reduce_Dice = torch.mean(term_seg_Dice)
# reduce_BCE = torch.mean(term_seg_BCE)
# reduce_all = torch.mean(term_all)
# loss = term_all
# # *****************************************
# if self.hparams.FP16:
# with amp.scale_loss(term_all, optimizer) as scaled_loss:
# scaled_loss.backward()
# else:
# term_all.backward()
# term_all.backward()
loss = self.criterion(pred, labels)
# loss.backward()
# loss = calc_loss(y_hat, y)
self.log('Loss/train', loss.item(), on_step=True, on_epoch=True)
# self.logger.experiment.add_image('y_hat', y_hat, 0)
tensorboard_logs = {'train_loss': loss}
self.epoch_loss += loss.item()
return {'loss': loss, 'log': tensorboard_logs}
def on_train_epoch_end(self, outputs) -> None:
# self.reset_train_dataloader()
# for tag, value in self.model.named_parameters():
# tag = tag.replace('.', '/')
# # new
# self.logger.experiment.add_histogram('weights' + tag, value.data.cpu().numpy(), self.global_step)
# self.logger.experiment.add_histogram('grads/' + tag, value.grad.data.cpu().numpy(), self.global_step)
super(TrainSystem, self).on_train_epoch_end(outputs)
# self._data = self.refresh_dataloader()
def on_validation_epoch_start(self) -> None:
self.val = {
'DICE': 0,
'ACC': 0,
'PPV': 0,
'TPR': 0,
'TNR': 0,
'F1': 0,
'LOSS': 0,
}
super(TrainSystem, self).on_validation_epoch_start()
a = self.all_train
for i in a:
x = i['image'].transpose(0, 1).unsqueeze(0).cuda()
y = i['mask'].transpose(0, 1).unsqueeze(0).cuda()
# f3d = self.model3d(self.all_dataloader()['train_all'])
self.f3d = self.model3d(x)
def validation_step(self, batch, batch_idx):
img, label, _ = batch.values()
output = self.forward(img, self.f3d, task_id=batch['files'][batch_idx]['task_id'])
# # **********************************************************
loss = self.criterion(output, label)
# term_seg_Dice = self.loss_seg_DICE.forward(output, label)
# term_seg_BCE = self.loss_seg_CE.forward(output, label)
# term_all = term_seg_Dice + term_seg_BCE
#
# reduce_Dice = torch.mean(term_seg_Dice)
# reduce_BCE = torch.mean(term_seg_BCE)
# reduce_all = torch.mean(term_all)
# # if self.hparams.FP16:
# # with amp.scale_loss(term_all, optimizer) as scaled_loss:
# # scaled_loss.backward()
# # else:
# # term_all.backward()
#
# # term_all.backward()
# loss = term_all
# # **********************************************************
# optimizer.step()
log = {'val_loss': loss}
pred = output > 0.5
################################################################################################################
eps = 0.0001
# inter = torch.dot(label.view(-1), output.view(-1)) # 求交集,数据全部拉成一维 然后就点积
# union = torch.sum(label) + torch.sum(output) + eps # 求并集,数据全部求和后相加,eps防止分母为0
# iou = (inter.float() + eps) / (union.float() - inter.float()) # iou计算公式,交集比上并集
#
# dice = (2 * inter.float() + eps) / union.float()
# confusion_matrix
tn, fp, fn, tp = confusion_matrix(y_true=label.view(-1).cpu(),
y_pred=pred.float().view(-1).cpu()).ravel()
# # **********************************************************
# tn, fp, fn, tp = confusion_matrix(y_true=label.view(-1).cpu(),
# y_pred=pred[:, 1].float().view(-1).cpu()).ravel()
# # **********************************************************
self.val['LOSS'] += loss
# iou
# self.val['IOU'] += iou
# dice
dice = (2 * tp) / (fp + 2 * tp + fn + eps)
# diceLoss = 1 - dice
self.val['DICE'] += dice
# ACC = (TP + TN) / (TP + TN + FP + FN)
acc = (tp + tn) / (tp + tn + fp + fn + eps)
self.val['ACC'] += acc
# PPV(Precision) = TP / (TP + FP)
ppv = tp / (tp + fp + eps)
self.val['PPV'] += ppv
# TPR(Sensitivity=Recall) = TP / (TP + FN)
tpr = tp / (tp + fn + eps)
self.val['TPR'] += tpr
# TNR(Specificity) = TN / (TN + FP)
tnr = tn / (tn + fp + eps)
self.val['TNR'] += tnr
# F1 = 2PR / (P + R)
f1 = 2 * ppv * tpr / (ppv + tpr + eps)
self.val['F1'] += f1
################################################################################################################
self.logger.experiment.add_images('images', img, self.global_step)
# if self.model.n_classes == 1:
# self.logger.experiment.add_images('masks/true', label, self.global_step)
# self.logger.experiment.add_images('masks/pred', output > 0.5, self.global_step)
self.logger.experiment.add_images('masks/true', label, self.global_step)
self.logger.experiment.add_images('masks/pred', pred, self.global_step)
return {'log': log}
def on_validation_epoch_end(self):
# 应四舍五入
percent = (self.n_val + self.n_train) / self.hparams.batch * self.hparams.val_percent // self.hparams.num_gpus
val_score = self.val['ACC'] / percent
# self.log('iou', val_score, on_step=False, on_epoch=True)
self.sdu.step(val_score)
self.log('learning_rate', self.optimizers().param_groups[0]['lr'], on_step=False, on_epoch=True)
if self.model.n_classes > 1:
# lg.info('validation cross entropy: {}'.format(val_score))
self.log('Dice/test/epoch', self.val['DICE'] * percent / self.n_val, on_step=False, on_epoch=True)
self.log('IOU', val_score, on_step=False, on_epoch=True)
self.log('Dice/test', self.val['DICE'] / percent, on_step=False, on_epoch=True)
self.log('ACC/test', self.val['ACC'] / percent, on_step=False, on_epoch=True)
self.log('PPV/test', self.val['PPV'] / percent, on_step=False, on_epoch=True)
self.log('TPR/test', self.val['TPR'] / percent, on_step=False, on_epoch=True)
self.log('TNR/test', self.val['TNR'] / percent, on_step=False, on_epoch=True)
self.log('F1/test', self.val['F1'] / percent, on_step=False, on_epoch=True)
else:
# lg.info('validation Dice Coeff: {}'.format(val_score))
self.log('Dice/test/epoch', self.val['DICE'] * percent / self.n_val, on_step=False, on_epoch=True)
self.log('IOU', val_score, on_step=False, on_epoch=True)
self.log('Dice/test', self.val['DICE'] / percent, on_step=False, on_epoch=True)
self.log('ACC/test', self.val['ACC'] / percent, on_step=False, on_epoch=True)
self.log('PPV/test', self.val['PPV'] / percent, on_step=False, on_epoch=True)
self.log('TPR/test', self.val['TPR'] / percent, on_step=False, on_epoch=True)
self.log('TNR/test', self.val['TNR'] / percent, on_step=False, on_epoch=True)
self.log('F1/test', self.val['F1'] / percent, on_step=False, on_epoch=True)
def __dataloader(self, imgs_dir=None, masks_dir=None):
img_list = ChaoDataset.get_list(imgs_dir=self.hparams.imgs_dir, masks_dir=self.hparams.masks_dir)
len_dir = len(img_list)
# for i in range(len_dir):
i = 0
while i < len_dir:
transform = transforms.Compose([
transforms.ToTensor(),
# transforms.Normalize((-1.5,), (1.0,))
transforms.Normalize((0.5,), (0.5,))
# transforms.Normalize(0.5, 0.5)
])
target_transform = transforms.Compose([transforms.ToTensor()])
if imgs_dir is not None and masks_dir is not None:
# dataset = BaseDataset(imgs_dir=imgs_dir, masks_dir=masks_dir, transform=transform,
# target_transform=target_transform)
dataset = ChaoDataset(imgs_dir=self.hparams.imgs_dir, masks_dir=self.hparams.masks_dir,
transform=transform,
target_transform=target_transform, index=img_list[i])
# dataset = WholeDataset(imgs_dir=self.hparams.imgs_dir, masks_dir=self.hparams.masks_dir,
# transform=transform,
# target_transform=target_transform)
else:
# transform should be given by class hparams
# dataset = BaseDataset(imgs_dir=self.hparams.imgs_dir, masks_dir=self.hparams.masks_dir, transform=transform,
# target_transform=target_transform)
# dataset = WholeDataset(imgs_dir=self.hparams.imgs_dir, masks_dir=self.hparams.masks_dir,
# transform=transform,
# target_transform=target_transform)
dataset = ChaoDataset(imgs_dir=self.hparams.imgs_dir, masks_dir=self.hparams.masks_dir,
transform=transform,
target_transform=target_transform, index=img_list[i])
n_val = int(len(dataset) * self.hparams.val_percent)
n_train = len(dataset) - n_val
self.n_train = n_train
self.n_val = n_val
train, val = random_split(dataset, [n_train, n_val])
# dataloader
train_loader = train_dataloader(train, batch_size=self.hparams.batch)
val_loader = train_dataloader(val, batch_size=self.hparams.batch, ar=True)
train_all = train_dataloader(dataset, batch_size=len(dataset), ar=True)
self.all_train = train_all
i += 1
i %= (len_dir-1)
yield {
'train': train_loader,
'val': val_loader,
'all': train_all,
}
def refresh_dataloader(self):
# self._data = self.__dataloader().__next__()
return next(self._generator)
# @pl.data_loader
def train_dataloader(self):
return self._data['train']
# @pl.data_loader
def val_dataloader(self):
return self._data['val']
def all_dataloader(self):
return self._data['all']
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=self.hparams.lr)
def scheduler(self):
return optim.lr_scheduler.ReduceLROnPlateau(self.configure_optimizers(), 'min' if self.n_classes > 1 else 'max',
patience=2)
if __name__ == '__main__':
hparams = get_opts()
systems = TrainSystem(hparams)
checkpoint_callback = ModelCheckpoint(filepath=os.path.join(f'ckpts/{hparams.exp_name}',
'{epoch:02d}'),
monitor='Dice/test',
mode='max',
save_top_k=5, )
logger = TestTubeLogger(
save_dir="./logs",
name=hparams.exp_name,
debug=False,
create_git_tag=False
)
if hparams.load_ckpt == 'model':
trainer = Trainer(max_epochs=hparams.num_epochs,
checkpoint_callback=checkpoint_callback,
resume_from_checkpoint=hparams.ckpt_path,
logger=logger,
# early_stop_callback=None,
weights_summary=None,
progress_bar_refresh_rate=1,
gpus=hparams.num_gpus,
distributed_backend='ddp' if hparams.num_gpus > 1 else None,
num_sanity_val_steps=0 if hparams.num_gpus > 1 else 5,
# benchmark=True,
precision=16 if hparams.use_amp else 32,
amp_level='O2')
else:
trainer = Trainer(max_epochs=hparams.num_epochs,
checkpoint_callback=checkpoint_callback,
# resume_from_checkpoint=hparams.ckpt_path,
logger=logger,
# early_stop_callback=None,
weights_summary=None,
progress_bar_refresh_rate=1,
gpus=hparams.num_gpus,
distributed_backend='ddp' if hparams.num_gpus > 1 else None,
num_sanity_val_steps=0 if hparams.num_gpus > 1 else 5,
# benchmark=True,
precision=16 if hparams.use_amp else 32,
amp_level='O2')
trainer.fit(systems)