-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis_selma.py
401 lines (354 loc) · 18.1 KB
/
analysis_selma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
from scipy import io
from scipy.io import loadmat
from scipy import stats
import sys
sys.path.append("..")
import nibabel as nib
import numpy as np
import os
from tqdm import tqdm
import pandas as pd
from scipy.stats import spearmanr
import pingouin as pg
from create_folder import create_folder
groups = 34 #TODO change for 1 or 34 groups - for 1 group don't run age analyses
basedir = '/home/sellug/wrkgrp/Selma/CamCAN_movie/'
ngroups_dir = basedir + 'highpass_filtered_intercept2/' + str(groups) + 'groups/'
datadir = ngroups_dir + 'GSBS_results/searchlights/'
savedir = ngroups_dir + 'analyses_results/'
create_folder(savedir)
save_maineffects = 'figsmaineffects/'
SL_dir = basedir + 'masks/searchlights/'
ISS_dir = ngroups_dir + 'preGSBS/age_groups/'
# collect results
ntime=192
nregs=5204
kfold_data=groups
maxk=96
# TODO till line 84 only run first time if you still need to extract all data from the GSBS files - this step takes long
# nstates = np.full([nregs,kfold_data], 0).astype(int)
# tdists = np.full([nregs,kfold_data, maxk + 2], 0).astype(float)
# bounds = np.full([nregs,kfold_data, ntime],0).astype(int)
# strengths = np.full([nregs,kfold_data, ntime],0).astype(float)
# deltas = np.full([nregs,kfold_data, ntime],0).astype(int)
# median_duration = np.full([nregs,kfold_data], 0).astype(float)
# variability_duration =np.full([nregs,kfold_data], 0).astype(float)
#
# # load data
# for k in range(kfold_data):
# print(k)
# for r in range(nregs): #SL
# print(r)
# filename = (datadir + 'GR' + str(k) + '/' + 'GSBS_GR' + str(k) + '_stride2_radius3_minvox15_SL' + str(r) +
# '.npy')
# GSBS_obj = np.load(filename, allow_pickle=True).item()
#
# nstates[r,k] = GSBS_obj.nstates
# tdists[r,k,:] = GSBS_obj.tdists
# bounds[r, k, :] = GSBS_obj.bounds
# strengths[r, k,:] = GSBS_obj.strengths
# deltas[r,k,:] = GSBS_obj.deltas
#
# durations = [] # in TR
# count = 0
# for d in deltas[r,k,:]:
# if d:
# durations.append(count)
# count = 1
# else:
# count += 1
# median_duration[r,k] = np.median(durations)
# q1= np.percentile(durations, 25)
# q3 = np.percentile(durations, 75)
# iqr_duration = q3 - q1
# variability_duration[r,k] = iqr_duration/median_duration[r,k]
#
# io.savemat(savedir + 'GSBS_obj.mat',
# {'nstates': nstates, 'tdists': tdists, 'bounds': bounds, 'strengths': strengths, 'deltas': deltas, 'median_duration': median_duration, 'variability_duration': variability_duration})
#
# # Creating a dictionary containing all variables
# data_to_save = {
# 'nstates': nstates,
# 'tdists': tdists,
# 'bounds': bounds,
# 'strengths': strengths,
# 'deltas': deltas,
# 'median_duration': median_duration,
# 'variability_duration': variability_duration
# }
# # Saving all variables in a single .npy file
# np.savez(savedir + 'key_GSBS_output.npz', **data_to_save)
# TODO next 3 lines only if you only run the second half - load variables
data = loadmat(savedir + 'GSBS_obj.mat')
median_duration = data['median_duration']
variability_duration = data['variability_duration']
# edit Linda - 04/09/24 check group similarity
cs = np.corrcoef(np.transpose(median_duration))
ind=np.where(np.triu(np.ones(cs.shape)))
np.mean(cs[ind])
stride=2
radius=3
min_vox=15
params_name = 'stride' + str(stride) + '_' + 'radius' + str(radius) + '_minvox' + str(min_vox)
img = nib.load(basedir + 'masks/data_plus_GM_mask.nii')
affine = img.affine
# Get searchlight information
coordinates = np.load(SL_dir + 'SL_voxelCoordinates_' + params_name + '.npy', allow_pickle=True)
searchlights = np.load(SL_dir + 'SL_voxelsIndices_' + params_name + '.npy', allow_pickle=True)
# Correlation between median number of states (+iqr) and group with ISS as covariate
ISS = np.load(ISS_dir + 'all_groups_mean_correlation_per_SL.npy')
group = np.arange(groups)
# for median duration
age_dur = np.full([nregs], 0).astype(float)
pval_age_dur = np.full([nregs], 0).astype(float)
age_dur_iss = np.full([nregs], 0).astype(float)
pval_age_dur_iss = np.full([nregs], 0).astype(float)
# for variability in duration
age_vardur = np.full([nregs], 0).astype(float)
pval_age_vardur = np.full([nregs], 0).astype(float)
age_vardur_iss = np.full([nregs], 0).astype(float)
pval_age_vardur_iss = np.full([nregs], 0).astype(float)
# for correlation between age and ISS
age_iss = np.full([nregs], 0).astype(float)
pval_age_iss = np.full([nregs], 0).astype(float)
for SL in range(nregs):
# Calculate the Spearman correlation between the ordinal (group) and continuous variable (median duration)
age_dur[SL], pval_age_dur[SL] = stats.spearmanr(group, median_duration[SL,:])
# Calculate the Spearman correlation between the ordinal (group) and continuous variable (ISS)
age_iss[SL], pval_age_iss[SL] = stats.spearmanr(group, ISS[SL,:])
# Calculate partial correlation with ISS as covariate
data = {'x':group, 'y':median_duration[SL,:], 'cv1':ISS[SL,:]}
df = pd.DataFrame(data)
spearman_age_dur_iss = pg.partial_corr(data=df, x='x', y='y', covar='cv1', method='spearman')
age_dur_iss[SL] = spearman_age_dur_iss['r']
pval_age_dur_iss[SL] = spearman_age_dur_iss['p-val']
# Calculate the Spearman correlation between the ordinal (group) and continuous variable (variability in median duration)
age_vardur[SL], pval_age_vardur[SL] = stats.spearmanr(group, variability_duration[SL,:])
# Calculate partial correlation with ISS as covariate
data_vardur = {'x':group, 'y':variability_duration[SL,:], 'cv1':ISS[SL,:]}
df_vardur = pd.DataFrame(data_vardur)
spearman_age_vardur_iss = pg.partial_corr(data=df_vardur, x='x', y='y', covar='cv1', method='spearman')
age_vardur_iss[SL] = spearman_age_vardur_iss['r']
pval_age_vardur_iss[SL] = spearman_age_vardur_iss['p-val']
# save age_dur to calculate correlation with overlap event and neural state boundaries
np.save(os.path.join(savedir, "age_dur_vector.npy"), age_dur)
np.save(os.path.join(savedir, "age_iss_vector.npy"), age_iss)
# correct for multiple testing median duration
# based on reject FALSE/TRUE you get the indices for the significant elements and extract the original corresponding p-values
reject, pvals_cmt = pg.multicomp(pval_age_dur, method='fdr_bh')
true_indices = [index for index, value in enumerate(reject) if value]
cmt_pval_age_dur = [pval_age_dur[index] for index in true_indices]
reject, pvals_cmt = pg.multicomp(pval_age_dur_iss, method='fdr_bh')
true_indices = [index for index, value in enumerate(reject) if value]
cmt_pval_age_dur_iss = [pval_age_dur_iss[index] for index in true_indices]
# correct for multiple testing age - iss
reject, pvals_cmt = pg.multicomp(pval_age_iss, method='fdr_bh')
true_indices = [index for index, value in enumerate(reject) if value]
cmt_pval_age_iss = [pval_age_iss[index] for index in true_indices]
# correct for multiple testing variability duration
reject, pvals_cmt = pg.multicomp(pval_age_vardur, method='fdr_bh')
true_indices = [index for index, value in enumerate(reject) if value]
cmt_pval_age_vardur = [pval_age_vardur[index] for index in true_indices]
reject, pvals_cmt = pg.multicomp(pval_age_vardur_iss, method='fdr_bh')
true_indices = [index for index, value in enumerate(reject) if value]
cmt_pval_age_vardur_iss = [pval_age_vardur_iss[index] for index in true_indices]
print("Start plotting")
# from SL to voxel
x_max, y_max, z_max = img.shape
counter = np.zeros((x_max, y_max, z_max))
dur_sum = np.zeros((x_max, y_max, z_max))
vardur_sum = np.zeros((x_max, y_max, z_max))
age_dur_sum = np.zeros((x_max, y_max, z_max))
pval_age_dur_sum = np.zeros((x_max, y_max, z_max))
age_iss_sum = np.zeros((x_max, y_max, z_max))
pval_age_iss_sum = np.zeros((x_max, y_max, z_max))
age_dur_iss_sum = np.zeros((x_max, y_max, z_max))
pval_age_dur_iss_sum = np.zeros((x_max, y_max, z_max))
age_vardur_sum = np.zeros((x_max, y_max, z_max))
pval_age_vardur_sum = np.zeros((x_max, y_max, z_max))
age_vardur_iss_sum = np.zeros((x_max, y_max, z_max))
pval_age_vardur_iss_sum = np.zeros((x_max, y_max, z_max))
# create .nii for median duration and variability per group
for k in range(kfold_data):
for SL_idx, voxel_indices in enumerate(tqdm(searchlights)):
median_dur = median_duration[SL_idx][k]
var_dur = variability_duration[SL_idx][k]
for vox in voxel_indices:
x, y, z = coordinates[vox]
counter[x, y, z] += 1
dur_sum[x, y, z] += median_dur
vardur_sum[x, y, z] += var_dur
# Take mean across searchlights
mean_durations = np.divide(dur_sum, counter)
mean_variability = np.divide(vardur_sum, counter)
# Convert to nifti
map_nifti = nib.Nifti1Image(mean_durations, affine)
nib.save(map_nifti, savedir + 'analysis_GR' + str(k) + '_durations.nii')
map_nifti = nib.Nifti1Image(mean_variability, affine)
nib.save(map_nifti, savedir + 'analysis_GR' + str(k) + '_variability.nii')
# go from SL to voxels for median duration and variability and iss
counter = np.zeros((x_max, y_max, z_max))
for SL_idx, voxel_indices in enumerate(tqdm(searchlights)):
for vox in voxel_indices:
x, y, z = coordinates[vox]
counter[x, y, z] += 1
age_dur_sum[x, y, z] += age_dur[SL_idx]
pval_age_dur_sum[x,y,z] += pval_age_dur[SL_idx]
age_iss_sum[x, y, z] += age_iss[SL_idx]
pval_age_iss_sum[x,y,z] += pval_age_iss[SL_idx]
age_dur_iss_sum[x, y, z] += age_dur_iss[SL_idx]
pval_age_dur_iss_sum[x,y,z] += pval_age_dur_iss[SL_idx]
age_vardur_sum[x, y, z] += age_vardur[SL_idx]
pval_age_vardur_sum[x,y,z] += pval_age_vardur[SL_idx]
age_vardur_iss_sum[x, y, z] += age_vardur_iss[SL_idx]
pval_age_vardur_iss_sum[x,y,z] += pval_age_vardur_iss[SL_idx]
# Take mean across searchlights for median duration - age - (ISS)
mean_age_dur = np.divide(age_dur_sum, counter)
mean_pval_age_dur = np.divide(pval_age_dur_sum, counter)
mean_age_dur_iss = np.divide(age_dur_iss_sum, counter)
mean_pval_age_dur_iss = np.divide(pval_age_dur_iss_sum, counter)
# Take mean across searchlights for iss - age
mean_age_iss = np.divide(age_iss_sum, counter)
mean_pval_age_iss = np.divide(pval_age_iss_sum, counter)
# Take mean across searchlights for variability in duration - age (ISS)
mean_age_vardur = np.divide(age_vardur_sum, counter)
mean_pval_age_vardur = np.divide(pval_age_vardur_sum, counter)
mean_age_vardur_iss = np.divide(age_vardur_iss_sum, counter)
mean_pval_age_vardur_iss = np.divide(pval_age_vardur_iss_sum, counter)
# Convert to nifti unthresholded
map_nifti = nib.Nifti1Image(mean_age_dur, affine)
nib.save(map_nifti, savedir + 'analysis_age_durations.nii')
map_nifti = nib.Nifti1Image(mean_age_dur_iss, affine)
nib.save(map_nifti, savedir + 'analysis_age_durations_iss.nii')
map_nifti = nib.Nifti1Image(mean_age_vardur, affine)
nib.save(map_nifti, savedir + 'analysis_age_variability.nii')
map_nifti = nib.Nifti1Image(mean_age_vardur_iss, affine)
nib.save(map_nifti, savedir + 'analysis_age_variability_iss.nii')
map_nifti = nib.Nifti1Image(mean_age_iss, affine)
nib.save(map_nifti, savedir + 'analysis_age_iss.nii')
# Create map of <0.05 - uncorrected for multiple testing
idx_keep = np.where(mean_pval_age_dur < 0.05)
mean_age_dur_pthresh = np.zeros_like(mean_age_dur) * np.nan
mean_age_dur_pthresh[idx_keep] = mean_age_dur[idx_keep]
map_nifti = nib.Nifti1Image(mean_age_dur_pthresh, affine)
nib.save(map_nifti, savedir + 'analysis_age_durations_pthresh.nii')
idx_keep = np.where(mean_pval_age_dur_iss < 0.05)
mean_age_dur_iss_pthresh= np.zeros_like(mean_age_dur_iss) * np.nan
mean_age_dur_iss_pthresh[idx_keep] = mean_age_dur_iss[idx_keep]
map_nifti = nib.Nifti1Image(mean_age_dur_iss_pthresh, affine)
nib.save(map_nifti, savedir + 'analysis_age_durations_iss_pthresh.nii')
idx_keep = np.where(mean_pval_age_vardur < 0.05)
mean_age_vardur_pthresh = np.zeros_like(mean_age_vardur) * np.nan
mean_age_vardur_pthresh[idx_keep] = mean_age_vardur[idx_keep]
map_nifti = nib.Nifti1Image(mean_age_vardur_pthresh, affine)
nib.save(map_nifti, savedir + 'analysis_age_variability_pthresh.nii')
idx_keep = np.where(mean_pval_age_vardur_iss < 0.05)
mean_age_vardur_iss_pthresh = np.zeros_like(mean_age_vardur_iss) * np.nan
mean_age_vardur_iss_pthresh[idx_keep] = mean_age_vardur_iss[idx_keep]
map_nifti = nib.Nifti1Image(mean_age_vardur_iss_pthresh, affine)
nib.save(map_nifti, savedir + 'analysis_age_variability_iss_pthresh.nii')
idx_keep = np.where(mean_pval_age_iss < 0.05)
mean_age_iss_pthresh = np.zeros_like(mean_age_iss) * np.nan
mean_age_iss_pthresh[idx_keep] = mean_age_iss[idx_keep]
map_nifti = nib.Nifti1Image(mean_age_iss_pthresh, affine)
nib.save(map_nifti, savedir + 'analysis_age_iss_pthresh.nii')
# Create map of <0.05 - corrected for multiple testing at SL level for median duration (without and with ISS) and variability
if cmt_pval_age_dur:
idx_keep = np.where(mean_pval_age_dur < max(cmt_pval_age_dur))
mean_age_dur_cmt = np.zeros_like(mean_age_dur) * np.nan
mean_age_dur_cmt[idx_keep] = mean_age_dur[idx_keep]
map_nifti = nib.Nifti1Image(mean_age_dur_cmt, affine)
nib.save(map_nifti, savedir + 'analysis_age_durations_cmt.nii')
if cmt_pval_age_dur_iss:
idx_keep = np.where(mean_pval_age_dur_iss < max(cmt_pval_age_dur_iss))
mean_age_dur_iss_cmt = np.zeros_like(mean_age_dur_iss) * np.nan
mean_age_dur_iss_cmt[idx_keep] = mean_age_dur_iss[idx_keep]
map_nifti = nib.Nifti1Image(mean_age_dur_iss_cmt, affine)
nib.save(map_nifti, savedir + 'analysis_age_durations_iss_cmt.nii')
if cmt_pval_age_iss:
idx_keep = np.where(mean_pval_age_iss < max(cmt_pval_age_iss))
mean_age_iss_cmt = np.zeros_like(mean_age_iss) * np.nan
mean_age_iss_cmt[idx_keep] = mean_age_iss[idx_keep]
map_nifti = nib.Nifti1Image(mean_age_iss_cmt, affine)
nib.save(map_nifti, savedir + 'analysis_age_iss_cmt.nii')
if cmt_pval_age_vardur:
idx_keep = np.where(mean_pval_age_vardur < max(cmt_pval_age_vardur))
mean_age_vardur_cmt = np.zeros_like(mean_age_vardur) * np.nan
mean_age_vardur_cmt[idx_keep] = mean_age_vardur[idx_keep]
map_nifti = nib.Nifti1Image(mean_age_vardur_cmt, affine)
nib.save(map_nifti, savedir + 'analysis_age_variability_cmt.nii')
if cmt_pval_age_vardur_iss:
idx_keep = np.where(mean_pval_age_vardur_iss < max(cmt_pval_age_vardur_iss))
mean_age_vardur_iss_cmt = np.zeros_like(mean_age_vardur_iss) * np.nan
mean_age_vardur_iss_cmt[idx_keep] = mean_age_vardur_iss[idx_keep]
map_nifti = nib.Nifti1Image(mean_age_vardur_iss_cmt, affine)
nib.save(map_nifti, savedir + 'analysis_age_variability_iss_cmt.nii')
print("correlations with age done")
#Get figures for main effects of duration, variability
#get mean of median_durations across groups per searchlight
mean_medianduration = np.mean(np.asarray(median_duration), axis=1)
mean_variabilitymedianduration = np.mean(np.asarray(variability_duration), axis=1)
# For median_duration for young - middle - old
mean_medianduration_groupy = np.mean(np.asarray(median_duration)[:, :11], axis=1)
mean_medianduration_groupm = np.mean(np.asarray(median_duration)[:, 11:23], axis=1)
mean_medianduration_groupo = np.mean(np.asarray(median_duration)[:, 23:], axis=1)
# For variability_duration for young - middle - old
mean_variabilitymedianduration_groupy = np.mean(np.asarray(variability_duration)[:, :11], axis=1)
mean_variabilitymedianduration_groupm = np.mean(np.asarray(variability_duration)[:, 11:23], axis=1)
mean_variabilitymedianduration_groupo = np.mean(np.asarray(variability_duration)[:, 23:], axis=1)
x_max, y_max, z_max = img.shape
counter = np.zeros((x_max, y_max, z_max))
sum_dur = np.zeros((x_max, y_max, z_max))
sum_vardur = np.zeros((x_max, y_max, z_max))
sum_dur_gry = np.zeros((x_max, y_max, z_max))
sum_vardur_gry = np.zeros((x_max, y_max, z_max))
sum_dur_grm = np.zeros((x_max, y_max, z_max))
sum_vardur_grm = np.zeros((x_max, y_max, z_max))
sum_dur_gro = np.zeros((x_max, y_max, z_max))
sum_vardur_gro = np.zeros((x_max, y_max, z_max))
for SL_idx, voxel_indices in enumerate(tqdm(searchlights)):
dur = mean_medianduration[SL_idx]
vardur = mean_variabilitymedianduration[SL_idx]
dur_gry = mean_medianduration_groupy[SL_idx]
vardur_gry = mean_variabilitymedianduration_groupy[SL_idx]
dur_grm = mean_medianduration_groupm[SL_idx]
vardur_grm = mean_variabilitymedianduration_groupm[SL_idx]
dur_gro = mean_medianduration_groupo[SL_idx]
vardur_gro = mean_variabilitymedianduration_groupo[SL_idx]
for vox in voxel_indices:
x, y, z = coordinates[vox]
counter[x, y, z] += 1
sum_dur[x, y, z] += dur
sum_vardur[x, y, z] += vardur
sum_dur_gry[x, y, z] += dur_gry
sum_vardur_gry[x, y, z] += vardur_gry
sum_dur_grm[x, y, z] += dur_grm
sum_vardur_grm[x, y, z] += vardur_grm
sum_dur_gro[x, y, z] += dur_gro
sum_vardur_gro[x, y, z] += vardur_gro
# Take mean across searchlights
mean_sum_dur = np.divide(sum_dur, counter)
mean_sum_vardur = np.divide(sum_vardur, counter)
mean_sum_dur_gry = np.divide(sum_dur_gry, counter)
mean_sum_vardur_gry = np.divide(sum_vardur_gry, counter)
mean_sum_dur_grm = np.divide(sum_dur_grm, counter)
mean_sum_vardur_grm = np.divide(sum_vardur_grm, counter)
mean_sum_dur_gro = np.divide(sum_dur_gro, counter)
mean_sum_vardur_gro = np.divide(sum_vardur_gro, counter)
# Convert to nifti
map_nifti = nib.Nifti1Image(mean_sum_dur, affine)
nib.save(map_nifti, savedir + 'mediandurations.nii')
map_nifti = nib.Nifti1Image(mean_sum_vardur, affine)
nib.save(map_nifti, savedir + 'variability_mediandurations.nii')
map_nifti = nib.Nifti1Image(mean_sum_dur_gry, affine)
nib.save(map_nifti, savedir + 'mediandurations_gry.nii')
map_nifti = nib.Nifti1Image(mean_sum_vardur_gry, affine)
nib.save(map_nifti, savedir + 'variability_mediandurations_gry.nii')
map_nifti = nib.Nifti1Image(mean_sum_dur_grm, affine)
nib.save(map_nifti, savedir + 'mediandurations_grm.nii')
map_nifti = nib.Nifti1Image(mean_sum_vardur_grm, affine)
nib.save(map_nifti, savedir + 'variability_mediandurations_grm.nii')
map_nifti = nib.Nifti1Image(mean_sum_dur_gro, affine)
nib.save(map_nifti, savedir + 'mediandurations_gro.nii')
map_nifti = nib.Nifti1Image(mean_sum_vardur_gro, affine)
nib.save(map_nifti, savedir + 'variability_mediandurations_gro.nii')