-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSafePtr.h
646 lines (548 loc) · 30.6 KB
/
SafePtr.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#pragma once
#ifndef SAFE_PTR_H
#define SAFE_PTR_H
#include <iostream>
#include <string>
#include <vector>
#include <atomic>
#include <memory>
#include <mutex>
#include <thread>
#include <map>
#include <unordered_map>
#include <condition_variable>
#include <array>
#include <sstream>
#include <cASSERT>
#include <random>
#include <iomanip>
#include <algorithm>
#include "ExceptionThrow.h"
// Autodetect C++14
#if (__cplusplus >= 201402L || _MSC_VER >= 1900)
#define SHARED_MTX
#include <shared_mutex>
#endif
namespace sf {
template<typename T, typename mutex_t = std::recursive_mutex, typename x_lock_t = std::unique_lock<mutex_t>,
typename s_lock_t = std::unique_lock<mutex_t >>
// std::shared_lock<std::shared_timed_mutex>, when mutex_t = std::shared_timed_mutex
class safe_ptr {
protected:
const std::shared_ptr<T> ptr; // std::experimental::propagate_const<std::shared_ptr<T>> ptr; // C++17
std::shared_ptr<mutex_t> mtx_ptr;
template<typename req_lock>
class auto_lock_t {
T * const ptr;
req_lock lock;
public:
auto_lock_t(auto_lock_t&& o) : ptr(std::move(o.ptr)), lock(std::move(o.lock)) { }
auto_lock_t(T * const _ptr, mutex_t& _mtx) : ptr(_ptr), lock(_mtx) {}
T* operator -> () { return ptr; }
const T* operator -> () const { return ptr; }
};
template<typename req_lock>
class auto_lock_obj_t {
T * const ptr;
req_lock lock;
public:
auto_lock_obj_t(auto_lock_obj_t&& o) : ptr(std::move(o.ptr)), lock(std::move(o.lock)) { }
auto_lock_obj_t(T * const _ptr, mutex_t& _mtx) : ptr(_ptr), lock(_mtx) {}
template<typename arg_t>
auto operator [] (arg_t &&arg) -> decltype((*ptr)[arg]) { return (*ptr)[arg]; }
};
struct no_lock_t { no_lock_t(no_lock_t &&) {} template<typename sometype> no_lock_t(sometype&) {} };
using auto_nolock_t = auto_lock_obj_t<no_lock_t>;
T * get_obj_ptr() const { return ptr.get(); }
mutex_t * get_mtx_ptr() const { return mtx_ptr.get(); }
template<typename... Args> void lock_shared() const { get_mtx_ptr()->lock_shared(); }
template<typename... Args> void unlock_shared() const { get_mtx_ptr()->unlock_shared(); }
void lock() const { get_mtx_ptr()->lock(); }
void unlock() const { get_mtx_ptr()->unlock(); }
friend struct link_safe_ptrs;
template<typename, typename, typename, typename> friend class safe_obj;
template<typename some_type> friend struct xlocked_safe_ptr;
template<typename some_type> friend struct slocked_safe_ptr;
template<typename, typename, size_t, size_t> friend class lock_timed_transaction;
#if (_MSC_VER && _MSC_VER == 1900)
template<class... mutex_types> friend class std::lock_guard; // MSVS2015
#else
template<class mutex_type> friend class std::lock_guard; // other compilers
#endif
#ifdef SHARED_MTX
template<typename mutex_type> friend class std::shared_lock; // C++14
#endif
public:
template<typename... Args>
safe_ptr(Args... args) : ptr(std::make_shared<T>(args...)), mtx_ptr(std::make_shared<mutex_t>()) {}
auto_lock_t<x_lock_t> operator -> () { return auto_lock_t<x_lock_t>(get_obj_ptr(), *get_mtx_ptr()); }
auto_lock_obj_t<x_lock_t> operator * () { return auto_lock_obj_t<x_lock_t>(get_obj_ptr(), *get_mtx_ptr()); }
const auto_lock_t<s_lock_t> operator -> () const { return auto_lock_t<s_lock_t>(get_obj_ptr(), *get_mtx_ptr()); }
const auto_lock_obj_t<s_lock_t> operator * () const { return auto_lock_obj_t<s_lock_t>(get_obj_ptr(), *get_mtx_ptr()); }
typedef mutex_t mtx_t;
typedef T obj_t;
typedef x_lock_t xlock_t;
typedef s_lock_t slock_t;
};
template<typename T> using default_safe_ptr = safe_ptr<T, std::recursive_mutex, std::unique_lock<std::recursive_mutex>, std::unique_lock<std::recursive_mutex>>;
#ifdef SHARED_MTX // C++14
template<typename T> using shared_mutex_safe_ptr =
safe_ptr< T, std::shared_timed_mutex, std::unique_lock<std::shared_timed_mutex>, std::shared_lock<std::shared_timed_mutex> >;
#endif
// ---------------------------------------------------------------
template<typename T, typename mutex_t = std::recursive_mutex, typename x_lock_t = std::unique_lock<mutex_t>,
typename s_lock_t = std::unique_lock<mutex_t >>
class safe_obj {
protected:
T obj;
mutable mutex_t mtx;
T * get_obj_ptr() const { return const_cast<T*>(&obj); }
mutex_t * get_mtx_ptr() const { return &mtx; }
template<typename req_lock> using auto_lock_t = typename safe_ptr<T, mutex_t, x_lock_t, s_lock_t>::template auto_lock_t<req_lock>;
template<typename req_lock> using auto_lock_obj_t = typename safe_ptr<T, mutex_t, x_lock_t, s_lock_t>::template auto_lock_obj_t<req_lock>;
using auto_nolock_t = typename safe_ptr<T, mutex_t, x_lock_t, s_lock_t>::auto_nolock_t;
template<typename some_type> friend struct xlocked_safe_ptr;
template<typename some_type> friend struct slocked_safe_ptr;
public:
template<typename... Args>
safe_obj(Args... args) : obj(args...) {}
safe_obj(safe_obj const& safe_obj) { std::lock_guard<mutex_t> lock(safe_obj.mtx); obj = safe_obj.obj; }
explicit operator T() const { s_lock_t lock(mtx); T obj_tmp = obj; return obj_tmp; };
auto_lock_t<x_lock_t> operator -> () { return auto_lock_t<x_lock_t>(get_obj_ptr(), *get_mtx_ptr()); }
auto_lock_obj_t<x_lock_t> operator * () { return auto_lock_obj_t<x_lock_t>(get_obj_ptr(), *get_mtx_ptr()); }
const auto_lock_t<s_lock_t> operator -> () const { return auto_lock_t<s_lock_t>(get_obj_ptr(), *get_mtx_ptr()); }
const auto_lock_obj_t<s_lock_t> operator * () const { return auto_lock_obj_t<s_lock_t>(get_obj_ptr(), *get_mtx_ptr()); }
typedef mutex_t mtx_t;
typedef T obj_t;
typedef x_lock_t xlock_t;
typedef s_lock_t slock_t;
};
// ---------------------------------------------------------------
// hide ptr
template<typename T, typename mutex_t = std::recursive_mutex, typename x_lock_t = std::unique_lock<mutex_t>,
typename s_lock_t = std::unique_lock<mutex_t >>
class safe_hide_ptr : protected safe_ptr<T, mutex_t, x_lock_t, s_lock_t> {
public:
template<typename... Args> safe_hide_ptr(Args... args) : safe_ptr<T, mutex_t, x_lock_t, s_lock_t>(args...) {}
friend struct link_safe_ptrs;
template<typename, typename, size_t, size_t> friend class lock_timed_transaction;
template<typename some_type> friend struct xlocked_safe_ptr;
template<typename some_type> friend struct slocked_safe_ptr;
template<typename req_lock> using auto_lock_t = typename safe_ptr<T, mutex_t, x_lock_t, s_lock_t>::template auto_lock_t<req_lock>;
template<typename req_lock> using auto_lock_obj_t = typename safe_ptr<T, mutex_t, x_lock_t, s_lock_t>::template auto_lock_obj_t<req_lock>;
using auto_nolock_t = typename safe_ptr<T, mutex_t, x_lock_t, s_lock_t>::auto_nolock_t;
typedef mutex_t mtx_t;
typedef T obj_t;
typedef x_lock_t xlock_t;
typedef s_lock_t slock_t;
};
// hide obj
template<typename T, typename mutex_t = std::recursive_mutex, typename x_lock_t = std::unique_lock<mutex_t>,
typename s_lock_t = std::unique_lock<mutex_t >>
class safe_hide_obj : protected safe_obj<T, mutex_t, x_lock_t, s_lock_t> {
public:
template<typename... Args> safe_hide_obj(Args... args) : safe_obj<T, mutex_t, x_lock_t, s_lock_t>(args...) {}
explicit operator T() const { return static_cast<safe_obj<T, mutex_t, x_lock_t, s_lock_t>>(*this); };
friend struct link_safe_ptrs;
template<typename, typename, size_t, size_t> friend class lock_timed_transaction;
template<typename some_type> friend struct xlocked_safe_ptr;
template<typename some_type> friend struct slocked_safe_ptr;
template<typename req_lock> using auto_lock_t = typename safe_obj<T, mutex_t, x_lock_t, s_lock_t>::template auto_lock_t<req_lock>;
template<typename req_lock> using auto_lock_obj_t = typename safe_obj<T, mutex_t, x_lock_t, s_lock_t>::template auto_lock_obj_t<req_lock>;
using auto_nolock_t = typename safe_obj<T, mutex_t, x_lock_t, s_lock_t>::auto_nolock_t;
typedef mutex_t mtx_t;
typedef T obj_t;
typedef x_lock_t xlock_t;
typedef s_lock_t slock_t;
};
// ---------------------------------------------------------------
struct link_safe_ptrs {
template<typename T1, typename... Args>
link_safe_ptrs(T1 &first_ptr, Args&... args) {
std::lock_guard<T1> lock(first_ptr);
typedef typename T1::mtx_t mutex_t;
std::shared_ptr<mutex_t> old_mtxs[] = { args.mtx_ptr ... }; // to unlock before mutexes will be destroyed
std::shared_ptr<std::lock_guard<mutex_t>> locks[] = { std::make_shared<std::lock_guard<mutex_t>>(*args.mtx_ptr) ... };
std::shared_ptr<mutex_t> mtxs[] = { (args.mtx_ptr = first_ptr.mtx_ptr) ... };
}
};
// ---------------------------------------------------------------
enum lock_count_t { lock_once, lock_infinity };
template<size_t lock_count, typename duration = std::chrono::nanoseconds,
size_t deadlock_timeout = 100000, size_t spin_iterations = 100>
class lock_timed_any {
std::vector<std::shared_ptr<void>> locks_ptr_vec;
bool success;
template<typename mtx_t>
std::unique_lock<mtx_t> try_lock_one(mtx_t &mtx) const {
std::unique_lock<mtx_t> lock(mtx, std::defer_lock_t());
for (size_t i = 0; i < spin_iterations; ++i) if (lock.try_lock()) return lock;
const std::chrono::steady_clock::time_point start_time = std::chrono::steady_clock::now();
//while (!lock.try_lock_for(duration(deadlock_timeout))) // only for timed mutexes
while (!lock.try_lock()) {
auto const time_remained = duration(deadlock_timeout) - std::chrono::duration_cast<duration>(std::chrono::steady_clock::now() - start_time);
if (time_remained <= duration(0))
break;
else
std::this_thread::sleep_for(time_remained);
}
return lock;
}
template<typename mtx_t>
std::shared_ptr<std::unique_lock<mtx_t>> try_lock_ptr_one(mtx_t &mtx) const {
return std::make_shared<std::unique_lock<mtx_t>>(try_lock_one(mtx));
}
public:
template<typename... Args>
lock_timed_any(Args& ...args) {
do {
success = true;
for (auto &lock_ptr : { try_lock_ptr_one(*args.mtx_ptr.get()) ... }) {
locks_ptr_vec.emplace_back(lock_ptr);
if (!lock_ptr->owns_lock()) {
success = false;
locks_ptr_vec.clear();
std::this_thread::sleep_for(duration(deadlock_timeout));
break;
}
}
} while (!success && lock_count == lock_count_t::lock_infinity);
}
explicit operator bool() const throw() { return success; }
lock_timed_any(lock_timed_any&& other) throw() : locks_ptr_vec(other.locks_ptr_vec) { }
lock_timed_any(const lock_timed_any&) = delete;
lock_timed_any& operator=(const lock_timed_any&) = delete;
};
using lock_timed_any_once = lock_timed_any<lock_count_t::lock_once>;
using lock_timed_any_infinity = lock_timed_any<lock_count_t::lock_infinity>;
// ---------------------------------------------------------------
template<typename T>
struct xlocked_safe_ptr {
T &ref_safe;
typename T::xlock_t xlock;
xlocked_safe_ptr(T const& p) : ref_safe(*const_cast<T*>(&p)), xlock(*(ref_safe.get_mtx_ptr())) {}// ++xp;}
typename T::obj_t* operator -> () { return ref_safe.get_obj_ptr(); }
typename T::auto_nolock_t operator * () { return typename T::auto_nolock_t(ref_safe.get_obj_ptr(), *ref_safe.get_mtx_ptr()); }
operator typename T::obj_t() { return ref_safe.obj; } // only for safe_obj
};
template<typename T>
xlocked_safe_ptr<T> xlock_safe_ptr(T const& arg) { return xlocked_safe_ptr<T>(arg); }
template<typename T>
struct slocked_safe_ptr {
T &ref_safe;
typename T::slock_t slock;
slocked_safe_ptr(T const& p) : ref_safe(*const_cast<T*>(&p)), slock(*(ref_safe.get_mtx_ptr())) { }//++sp;}
typename T::obj_t const* operator -> () const { return ref_safe.get_obj_ptr(); }
const typename T::auto_nolock_t operator * () const { return typename T::auto_nolock_t(ref_safe.get_obj_ptr(), *ref_safe.get_mtx_ptr()); }
operator typename T::obj_t() const { return ref_safe.obj; } // only for safe_obj
};
template<typename T>
slocked_safe_ptr<T> slock_safe_ptr(T const& arg) { return slocked_safe_ptr<T>(arg); }
// ---------------------------------------------------------------
class spinlock_t {
std::atomic_flag lock_flag;
public:
spinlock_t() { lock_flag.clear(); }
bool try_lock() { return !lock_flag.test_and_set(std::memory_order_acquire); }
void lock() { for (volatile size_t i = 0; !try_lock(); ++i) if (i % 100000 == 0) std::this_thread::yield(); }
void unlock() { lock_flag.clear(std::memory_order_release); }
};
struct spinlock_e_t {
spinlock_e_t() = delete;
spinlock_e_t(const spinlock_e_t&) = delete;
spinlock_e_t(std::atomic_flag& flag) : lock_flag(flag) { lock(); }
~spinlock_e_t() { unlock(); }
private:
bool try_lock() { return !lock_flag.test_and_set(std::memory_order_acquire); }
void lock() { for (volatile size_t i = 0; !try_lock(); ++i) if (i % 100000 == 0) std::this_thread::yield(); }
void unlock() { lock_flag.clear(std::memory_order_release); }
std::atomic_flag& lock_flag;
};
// ---------------------------------------------------------------
class recursive_spinlock_t {
std::atomic_flag lock_flag;
int64_t recursive_counter;
#if (_WIN32 && _MSC_VER < 1900)
typedef int64_t thread_id_t;
std::atomic<thread_id_t> owner_thread_id;
int64_t get_fast_this_thread_id() {
static __declspec(thread) int64_t fast_this_thread_id = 0; // MSVS 2013 thread_local partially supported - only POD
if (fast_this_thread_id == 0) {
std::stringstream ss;
ss << std::this_thread::get_id(); // https://connect.microsoft.com/VisualStudio/feedback/details/1558211
fast_this_thread_id = std::stoll(ss.str());
}
return fast_this_thread_id;
}
#else
typedef std::thread::id thread_id_t;
std::atomic<std::thread::id> owner_thread_id;
std::thread::id get_fast_this_thread_id() { return std::this_thread::get_id(); }
#endif
public:
recursive_spinlock_t() : recursive_counter(0), owner_thread_id(thread_id_t()) { lock_flag.clear(); }
bool try_lock() {
if (!lock_flag.test_and_set(std::memory_order_acquire)) {
owner_thread_id.store(get_fast_this_thread_id(), std::memory_order_release);
}
else {
if (owner_thread_id.load(std::memory_order_acquire) != get_fast_this_thread_id())
return false;
}
++recursive_counter;
return true;
}
void lock() {
for (volatile size_t i = 0; !try_lock(); ++i)
if (i % 100000 == 0) std::this_thread::yield();
}
void unlock() {
ASSERT(owner_thread_id.load(std::memory_order_acquire) == get_fast_this_thread_id());
ASSERT(recursive_counter > 0);
if (--recursive_counter == 0) {
owner_thread_id.store(thread_id_t(), std::memory_order_release);
lock_flag.clear(std::memory_order_release);
}
}
};
// ---------------------------------------------------------------
// contention free shared mutex (same-lock-type is recursive for X->X, X->S or S->S locks), but (S->X - is UB)
template<unsigned contention_free_count = 36, bool shared_flag = false>
class contention_free_shared_mutex {
std::atomic<bool> want_x_lock;
//struct cont_free_flag_t { alignas(std::hardware_destructive_interference_size) std::atomic<int> value; cont_free_flag_t() { value = 0; } }; // C++17
struct cont_free_flag_t { char tmp[60]; std::atomic<int> value; cont_free_flag_t() { value = 0; } }; // tmp[] to avoid false sharing
typedef std::array<cont_free_flag_t, contention_free_count> array_slock_t;
const std::shared_ptr<array_slock_t> shared_locks_array_ptr; // 0 - unregistred, 1 registred & free, 2... - busy
char avoid_falsesharing_1[64];
array_slock_t &shared_locks_array;
char avoid_falsesharing_2[64];
int recursive_xlock_count;
enum index_op_t { unregister_thread_op, get_index_op, register_thread_op };
#if (_WIN32 && _MSC_VER < 1900) // only for MSVS 2013
typedef int64_t thread_id_t;
std::atomic<thread_id_t> owner_thread_id;
std::array<int64_t, contention_free_count> register_thread_array;
int64_t get_fast_this_thread_id() {
static __declspec(thread) int64_t fast_this_thread_id = 0; // MSVS 2013 thread_local partially supported - only POD
if (fast_this_thread_id == 0) {
std::stringstream ss;
ss << std::this_thread::get_id(); // https://connect.microsoft.com/VisualStudio/feedback/details/1558211
fast_this_thread_id = std::stoll(ss.str());
}
return fast_this_thread_id;
}
int get_or_set_index(index_op_t index_op = get_index_op, int set_index = -1) {
if (index_op == get_index_op) { // get index
auto const thread_id = get_fast_this_thread_id();
for (size_t i = 0; i < register_thread_array.size(); ++i) {
if (register_thread_array[i] == thread_id) {
set_index = i; // thread already registred
break;
}
}
}
else if (index_op == register_thread_op) { // register thread
register_thread_array[set_index] = get_fast_this_thread_id();
}
return set_index;
}
#else
typedef std::thread::id thread_id_t;
std::atomic<std::thread::id> owner_thread_id;
std::thread::id get_fast_this_thread_id() { return std::this_thread::get_id(); }
struct unregister_t {
int thread_index;
std::shared_ptr<array_slock_t> array_slock_ptr;
unregister_t(int index, std::shared_ptr<array_slock_t> const& ptr) : thread_index(index), array_slock_ptr(ptr) {}
unregister_t(unregister_t &&src) : thread_index(src.thread_index), array_slock_ptr(std::move(src.array_slock_ptr)) {}
~unregister_t() { if (array_slock_ptr.use_count() > 0) (*array_slock_ptr)[thread_index].value--; }
};
int get_or_set_index(index_op_t index_op = get_index_op, int set_index = -1) {
thread_local static std::unordered_map<void *, unregister_t> thread_local_index_hashmap;
// get thread index - in any cases
auto it = thread_local_index_hashmap.find(this);
if (it != thread_local_index_hashmap.cend())
set_index = it->second.thread_index;
if (index_op == unregister_thread_op) { // unregister thread
if (shared_locks_array[set_index].value == 1) // if isn't shared_lock now
thread_local_index_hashmap.erase(this);
else
return -1;
}
else if (index_op == register_thread_op) { // register thread
thread_local_index_hashmap.emplace(this, unregister_t(set_index, shared_locks_array_ptr));
// remove info about deleted contfree-mutexes
for (auto it = thread_local_index_hashmap.begin(), ite = thread_local_index_hashmap.end(); it != ite;) {
if (it->second.array_slock_ptr->at(it->second.thread_index).value < 0) // if contfree-mtx was deleted
it = thread_local_index_hashmap.erase(it);
else
++it;
}
}
return set_index;
}
#endif
public:
contention_free_shared_mutex() :
shared_locks_array_ptr(std::make_shared<array_slock_t>()), shared_locks_array(*shared_locks_array_ptr), want_x_lock(false), recursive_xlock_count(0),
owner_thread_id(thread_id_t()) {}
~contention_free_shared_mutex() {
for (auto &i : shared_locks_array) i.value = -1;
}
bool unregister_thread() { return get_or_set_index(unregister_thread_op) >= 0; }
int register_thread() {
int cur_index = get_or_set_index();
if (cur_index == -1) {
if (shared_locks_array_ptr.use_count() <= (int)shared_locks_array.size()) // try once to register thread
{
for (size_t i = 0; i < shared_locks_array.size(); ++i) {
int unregistred_value = 0;
if (shared_locks_array[i].value == 0)
if (shared_locks_array[i].value.compare_exchange_strong(unregistred_value, 1)) {
cur_index = i;
get_or_set_index(register_thread_op, cur_index); // thread registred success
break;
}
}
//std::cout << "\n thread_id = " << std::this_thread::get_id() << ", register_thread_index = " << cur_index <<
// ", shared_locks_array[cur_index].value = " << shared_locks_array[cur_index].value << std::endl;
}
}
return cur_index;
}
void lock_shared() {
int const register_index = register_thread();
if (register_index >= 0) {
int recursion_depth = shared_locks_array[register_index].value.load(std::memory_order_acquire);
ASSERT(recursion_depth >= 1);
if (recursion_depth > 1)
shared_locks_array[register_index].value.store(recursion_depth + 1, std::memory_order_release); // if recursive -> release
else {
shared_locks_array[register_index].value.store(recursion_depth + 1, std::memory_order_seq_cst); // if first -> sequential
while (want_x_lock.load(std::memory_order_seq_cst)) {
shared_locks_array[register_index].value.store(recursion_depth, std::memory_order_seq_cst);
for (volatile size_t i = 0; want_x_lock.load(std::memory_order_seq_cst); ++i)
if (i % 100000 == 0) std::this_thread::yield();
shared_locks_array[register_index].value.store(recursion_depth + 1, std::memory_order_seq_cst);
}
}
// (shared_locks_array[register_index] == 2 && want_x_lock == false) || // first shared lock
// (shared_locks_array[register_index] > 2) // recursive shared lock
}
else {
if (owner_thread_id.load(std::memory_order_acquire) != get_fast_this_thread_id()) {
size_t i = 0;
for (bool flag = false; !want_x_lock.compare_exchange_weak(flag, true, std::memory_order_seq_cst); flag = false)
if (++i % 100000 == 0) std::this_thread::yield();
owner_thread_id.store(get_fast_this_thread_id(), std::memory_order_release);
}
++recursive_xlock_count;
}
}
void unlock_shared() {
int const register_index = get_or_set_index();
if (register_index >= 0) {
int const recursion_depth = shared_locks_array[register_index].value.load(std::memory_order_acquire);
ASSERT(recursion_depth > 1);
shared_locks_array[register_index].value.store(recursion_depth - 1, std::memory_order_release);
}
else {
if (--recursive_xlock_count == 0) {
owner_thread_id.store(decltype(owner_thread_id)(), std::memory_order_release);
want_x_lock.store(false, std::memory_order_release);
}
}
}
void lock() {
// forbidden upgrade S-lock to X-lock - this is an excellent opportunity to get deadlock
int const register_index = get_or_set_index();
if (register_index >= 0)
{
ASSERT(shared_locks_array[register_index].value.load(std::memory_order_acquire) == 1);
}
if (owner_thread_id.load(std::memory_order_acquire) != get_fast_this_thread_id()) {
size_t i = 0;
for (bool flag = false; !want_x_lock.compare_exchange_weak(flag, true, std::memory_order_seq_cst); flag = false)
if (++i % 1000000 == 0) std::this_thread::yield();
owner_thread_id.store(get_fast_this_thread_id(), std::memory_order_release);
for (auto &i : shared_locks_array)
while (i.value.load(std::memory_order_seq_cst) > 1);
}
++recursive_xlock_count;
}
void unlock() {
ASSERT(recursive_xlock_count > 0);
if (--recursive_xlock_count == 0) {
owner_thread_id.store(decltype(owner_thread_id)(), std::memory_order_release);
want_x_lock.store(false, std::memory_order_release);
}
}
};
template<typename mutex_t>
struct shared_lock_guard {
mutex_t &ref_mtx;
shared_lock_guard(mutex_t &mtx) : ref_mtx(mtx) { ref_mtx.lock_shared(); }
~shared_lock_guard() { ref_mtx.unlock_shared(); }
};
using default_contention_free_shared_mutex = contention_free_shared_mutex<>;
template<typename T> using contfree_safe_ptr = safe_ptr<T, contention_free_shared_mutex<>,
std::unique_lock<contention_free_shared_mutex<>>, shared_lock_guard<contention_free_shared_mutex<>> >;
// ---------------------------------------------------------------
// safe partitioned map
template<typename key_t, typename val_t, template<class> class safe_ptr_t = default_safe_ptr,
typename container_t = std::map<key_t, val_t>, typename part_t = std::map<key_t, safe_ptr_t<container_t>> >
class safe_map_partitioned_t
{
using safe_container_t = safe_ptr_t<container_t>;
typedef typename part_t::iterator part_iterator;
typedef typename part_t::const_iterator const_part_iterator;
std::shared_ptr<part_t> partition;
public:
typedef std::vector<std::pair<key_t, val_t>> result_vector_t;
safe_map_partitioned_t() : partition(std::make_shared<part_t>()) { partition->emplace(key_t(), container_t()); }
safe_map_partitioned_t(const key_t start, const key_t end, const key_t step) : partition(std::make_shared<part_t>()) {
for (key_t i = start; i <= end; i += step) partition->emplace(i, container_t());
}
safe_map_partitioned_t(std::initializer_list<key_t> const& il) : partition(std::make_shared<part_t>()) {
for (auto &i : il) partition->emplace(i, container_t());
}
part_iterator part_it(key_t const& k) { auto it = partition->lower_bound(k); if (it == partition->cend()) --it; return it; }
const_part_iterator part_it(key_t const& k) const { auto it = partition->lower_bound(k); if (it == partition->cend()) --it; return it; }
safe_container_t& part(key_t const& k) { return part_it(k)->second; }
const safe_container_t& part(key_t const& k) const { return part_it(k)->second; }
slocked_safe_ptr<safe_container_t> read_only_part(key_t const& k) const { return slock_safe_ptr(part(k)); }
void get_range_equal(const key_t& key, result_vector_t &result_vec) const {
result_vec.clear();
auto slock_container = slock_safe_ptr(part(key));
for (auto it = slock_container->lower_bound(key); it != slock_container->upper_bound(key); ++it)
result_vec.emplace_back(*it);
}
void get_range_lower_upper(const key_t& low, const key_t& up, result_vector_t &result_vec) const {
result_vec.clear();
auto const& const_part = *partition;
auto end_it = (const_part.upper_bound(up) == const_part.cend()) ? const_part.cend() : std::next(const_part.upper_bound(up), 1);
auto it = const_part.lower_bound(low);
if (it == const_part.cend()) --it;
for (; it != end_it; ++it)
result_vec.insert(result_vec.end(), it->second->lower_bound(low), it->second->upper_bound(up));
}
void erase_lower_upper(const key_t& low, const key_t& up) {
auto end_it = (partition->upper_bound(up) == partition->end()) ? partition->end() : std::next(partition->upper_bound(up), 1);
for (auto it = part_it(low); it != end_it; ++it)
it->second->erase(it->second->lower_bound(low), it->second->upper_bound(up));
}
template<typename T, typename... Args> void emplace(T const& key, Args const&&...args) {
part(key)->emplace(key, args...);
}
size_t size() const {
size_t size = 0;
for (auto it = partition->begin(); it != partition->end(); ++it) size += it->second->size();
return size;
}
size_t erase(key_t const& key) throw() { return part(key)->erase(key); }
void clear() { for (auto it = partition->begin(); it != partition->end(); ++it) it->second->clear(); }
};
// ---------------------------------------------------------------
}
#endif // #ifndef SAFE_PTR_H