-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_models.py
252 lines (209 loc) · 8.13 KB
/
train_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
This script is used to train and save TensorFlow models.
You should run downloadCaptchas.py, processImg.py and build_tfrecords.py in order beforehand.
Reference:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/how_tos/reading_data/fully_connected_reader.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os.path
import sys
import time
import tensorflow as tf
from PIL import Image
import numpy as np
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Basic model parameters as external flags.
FLAGS = None
# Constants used for dealing with the files, matches convert_to_records.
TRAIN_FILE = []
VALIDATION_FILE = []
Height = 47
Width = 100
IMAGE_PIXELS = Height * Width
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image/encoded': tf.FixedLenFeature([], tf.string),
'image/class/label': tf.FixedLenFeature([], tf.int64),
})
# Convert from a scalar string tensor (whose single string has
# length mnist.IMAGE_PIXELS) to a uint8 tensor with shape
# [mnist.IMAGE_PIXELS].
image = tf.decode_raw(features['image/encoded'], tf.uint8)
image.set_shape([IMAGE_PIXELS])
# OPTIONAL: Could reshape into a 28x28 image and apply distortions
# here. Since we are not applying any distortions in this
# example, and the next step expects the image to be flattened
# into a vector, we don't bother.
# Convert from [0, 255] -> [-0.5, 0.5] floats.
image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
# Convert label from a scalar uint8 tensor to an int32 scalar.
label = tf.cast(features['image/class/label'], tf.int32)
return image, label
def inputs(train, batch_size, num_epochs):
"""Reads input data num_epochs times.
Args:
train: Selects between the training (True) and validation (False) data.
batch_size: Number of examples per returned batch.
num_epochs: Number of times to read the input data, or 0/None to
train forever.
Returns:
A tuple (images, labels), where:
* images is a float tensor with shape [batch_size, mnist.IMAGE_PIXELS]
in the range [-0.5, 0.5].
* labels is an int32 tensor with shape [batch_size] with the true label,
a number in the range [0, mnist.NUM_CLASSES).
Note that an tf.train.QueueRunner is added to the graph, which
must be run using e.g. tf.train.start_queue_runners().
"""
if not num_epochs: num_epochs = None
filename = []
if train:
for name in TRAIN_FILE:
filename.append(os.path.join(FLAGS.train_dir, name))
else:
for name in VALIDATION_FILE:
filename.append(os.path.join(FLAGS.train_dir, name))
with tf.name_scope('input'):
filename_queue = tf.train.string_input_producer(
filename, num_epochs=num_epochs)
# Even when reading in multiple threads, share the filename
# queue.
image, label = read_and_decode(filename_queue)
# Shuffle the examples and collect them into batch_size batches.
# (Internally uses a RandomShuffleQueue.)
# We run this in two threads to avoid being a bottleneck.
images, sparse_labels = tf.train.shuffle_batch(
[image, label], batch_size=batch_size, num_threads=2,
capacity=1000 + 3 * batch_size,
# Ensures a minimum amount of shuffling of examples.
min_after_dequeue=1000, allow_smaller_final_batch=False)
return images, sparse_labels
def run_training():
"""Train for a number of steps."""
images, labels = inputs(train=True, batch_size=FLAGS.batch_size,
num_epochs=FLAGS.num_epochs)
vimages, vlabels = inputs(train=False, batch_size=FLAGS.batch_size,
num_epochs=FLAGS.num_epochs)
# simple model
w = tf.Variable(tf.zeros([Height * Width, 10]), name='w1')
y_pred = tf.matmul(images, w)
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=y_pred)
y_vpred = tf.matmul(vimages, w)
correct_prediction = tf.equal(tf.argmax(y_vpred, 1), tf.cast(vlabels, tf.int64))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.double))
# for monitoring
loss_mean = tf.reduce_mean(loss)
train_op = tf.train.AdamOptimizer().minimize(loss)
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
saver = tf.train.Saver()
# Create a session for running operations in the Graph.
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
# Initialize the variables (the trained variables and the
# epoch counter).
sess.run(init_op)
# Start input enqueue threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
step = 0
try:
while not coord.should_stop():
start_time = time.time()
_, loss_value = sess.run([train_op, loss_mean])
duration = time.time() - start_time
# Print an overview fairly often.
if step % 100 == 0:
print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value,
duration))
print('Validation accuracy = %.6f' % sess.run(accuracy))
step += 1
except tf.errors.OutOfRangeError:
print('Done training for %d epochs, %d steps.' % (FLAGS.num_epochs, step))
finally:
# When done, ask the threads to stop.
coord.request_stop()
# Wait for threads to finish.
coord.join(threads)
# save trained model
if not os.path.exists(FLAGS.models_dir):
os.makedirs(FLAGS.models_dir)
save_path = saver.save(sess, FLAGS.models_dir + '/model.ckpt')
print('Models saved in file: ', save_path)
sess.close()
def main(_):
run_training()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--learning_rate',
type=float,
default=0.01,
help='Initial learning rate.'
)
parser.add_argument(
'--num_epochs',
type=int,
default=2,
help='Number of epochs to run trainer.'
)
parser.add_argument(
'--hidden1',
type=int,
default=128,
help='Number of units in hidden layer 1.'
)
parser.add_argument(
'--hidden2',
type=int,
default=32,
help='Number of units in hidden layer 2.'
)
parser.add_argument(
'--batch_size',
type=int,
default=100,
help='Batch size.'
)
parser.add_argument(
'--train_dir',
type=str,
default='./TFrecord',
help='Directory with the training data.'
)
parser.add_argument(
'--models_dir',
type=str,
default='./models',
help='Directory to save trained model.'
)
for i in range(0, 1024):
TRAIN_FILE.append('train-{:05d}-of-01024'.format(i))
for i in range(0, 128):
VALIDATION_FILE.append('validation-{:05d}-of-00128'.format(i))
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)