-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
543 lines (429 loc) · 17.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import os
import errno
import sys
import time
import math
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.init as init
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.utils.data as data
import ast
import json
from common import *
import matplotlib
import matplotlib.pyplot as plt
plt.style.use('ggplot')
def compute_thresholds(net, dataloader, out_dir, percentile=99.9, device='cuda:0', spiking=True, find_zeros=False):
relus = []
relu_names = []
ftr_zeros_dict = {}
for k,v in net.named_modules():
if isinstance( v, nn.Conv2d) or \
isinstance(v, nn.Linear) or \
isinstance(v, nn.AdaptiveAvgPool2d) or \
isinstance(v, nn.AvgPool2d):
relus.append(v)
relu_names.append(k)
ftr_zeros_dict[k] = 0
hooks = [Hook(layer) for layer in relus]
print('number of spike layers with thresholds: {}'.format(len(hooks)))
net.eval()
test_loss = 0
correct = 0
total = 0
criterion = nn.CrossEntropyLoss()
acts = np.zeros((len(hooks)+1, 50000))
if find_zeros:
ftr_zeros = torch.zeros((len(hooks), 10000))
#ftr_zeros = torch.zeros(len(hooks))
prev_batch_size = 0
with torch.no_grad():
for n, data in enumerate(dataloader):
images, targets = data
images, targets = images.to(device), targets.to(device)
outputs = net(images)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
batch_idx = n
progress_bar(batch_idx, len(dataloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
batch_size = targets.size(0)
#print(batch_size)
img_max = np.amax(images.cpu().numpy(), axis=(1,2,3))
acts[0,n*batch_size:(n+1)*batch_size] = img_max
for i, hook in enumerate(hooks):
batch_mean = ftr_zeros_dict[relu_names[i]]
#print(hook.output.size())
if len(hook.output.size()) > 2:
acts[i+1][n*batch_size:(n+1)*batch_size] = np.amax(hook.output.cpu().numpy(), axis=(1,2,3))
if find_zeros:
layer_sz = hook.output.size()
layer_sz = layer_sz[1] * layer_sz[2] * layer_sz[3]
#print(layer_sz)
batch_zeros = (1/layer_sz)*torch.sum(torch.where(hook.output > 0, torch.ones(1, device=device), torch.zeros(1, device=device)), dim=(1,2,3))
ftr_zeros[i][n*batch_size:(n+1)*batch_size] = batch_zeros
else:
acts[i+1][n*batch_size:(n+1)*batch_size] = np.amax(hook.output.cpu().numpy(), axis=1)
if find_zeros:
layer_sz = hook.output.size()
layer_sz = layer_sz[1]
batch_zeros = (1/layer_sz)*torch.sum(torch.where(hook.output > 0, torch.ones(1, device=device), torch.zeros(1, device=device)), dim=1)
ftr_zeros[i][n*batch_size:(n+1)*batch_size] = batch_zeros
prev_batch_size = batch_size
max_val = np.percentile(acts, percentile, axis=1)
print('{}th percentile of max activations: {}'.format(percentile, max_val))
if spiking:
thresholds = torch.zeros(len(max_val)-1)
for i in range(len(thresholds)):
thresholds[i] = max_val[i+1] / max_val[i]
np.savetxt(os.path.join(out_dir, 'thresholds.txt'), thresholds, fmt='%.5f')
print('thresholds: ', thresholds)
filenm = 'max_acts.txt'
elif find_zeros:
for r in range(len(hooks)):
ftr_zeros_dict[relu_names[r]] = torch.mean(ftr_zeros[r])
for k,v in ftr_zeros_dict.items():
print(k, v)
ftr_zeros_dict[k] = v.cpu().data.numpy().tolist()
filenm = 'avg_sparsity.json'
j_str = json.dumps(ftr_zeros_dict, indent=2)
print(ftr_zeros_dict)
print(j_str)
with open(os.path.join(out_dir, filenm), "w") as f:
f.write(j_str)
f.close()
else:
filenm = 'max_acts_{}.txt'.format(percentile)
np.savetxt(os.path.join(out_dir, filenm), max_val, fmt='%.5f')
def copy_weights(new_net, net):
" true copies weights from net to new_net "
layer_num = 0
net_dict = {}
for _,t in net.named_modules():
if isinstance(t, nn.Conv2d) or isinstance(t, nn.Linear):
net_dict[layer_num] = t
layer_num += 1
layer_num = 0
new_net_dict = {}
for _,t in new_net.named_modules():
if isinstance(t, nn.Conv2d) or isinstance(t, nn.Linear):
new_net_dict[layer_num] = t
layer_num += 1
for n,t in net_dict.items():
new_layer = new_net_dict[n]
new_layer.weight.data = t.weight.data.clone()
if t.bias is not None:
new_layer.bias.data = t.bias.data.clone()
def adjust_weights(wt_layer, bn_layer):
num_out_channels = wt_layer.weight.size()[0]
bias = torch.zeros(num_out_channels)
wt_layer_bias = torch.zeros(num_out_channels)
if wt_layer.bias is not None:
wt_layer_bias = wt_layer.bias
wt_cap = torch.zeros(wt_layer.weight.size())
for i in range(num_out_channels):
beta, gamma = 0, 1
if bn_layer.weight is not None:
gamma = bn_layer.weight[i]
if bn_layer.bias is not None:
beta = bn_layer.bias[i]
sigma = bn_layer.running_var[i]
mu = bn_layer.running_mean[i]
eps = bn_layer.eps
scale_fac = gamma / torch.sqrt(eps+sigma)
wt_cap[i,:,:,:] = wt_layer.weight[i,:,:,:]*scale_fac
bias[i] = (wt_layer_bias[i]-mu)*scale_fac + beta
return (wt_cap, bias)
def merge_bn(model, model_nobn):
"merges bn params with those of the previous layer"
"works for the layer pattern: conv->bn only"
# Serialize the original model
name_to_type = serialize_model(model)
key_list = list(name_to_type.keys())
# Serialize the nobn model
name_to_type_nobn = serialize_model(model_nobn)
conv_names = []
for k,v in name_to_type_nobn.items():
if type(v) == nn.Conv2d or type(v) == nn.Linear:
conv_names.append(k)
nobn_num = 0
layer_num = 0
for i,n in enumerate(key_list):
if isinstance(name_to_type[n], nn.Conv2d) and \
isinstance(name_to_type[key_list[i+1]], nn.BatchNorm2d):
conv_layer = name_to_type[n]
bn_layer = name_to_type[key_list[i+1]]
new_wts, new_bias = adjust_weights(conv_layer, bn_layer)
nobn_name = conv_names[layer_num]
conv_layer_nobn = name_to_type_nobn[nobn_name]
conv_layer_nobn.weight.data = new_wts
if conv_layer_nobn.bias is not None:
conv_layer_nobn.bias.data = new_bias
layer_num += 1
elif isinstance(name_to_type[n], nn.Conv2d) or \
isinstance(name_to_type[n], nn.Linear):
layer = name_to_type[n]
nobn_name = conv_names[layer_num]
layer_nobn = name_to_type_nobn[nobn_name]
layer_nobn.weight.data = layer.weight.data.clone()
if layer.bias is not None and layer_nobn.bias is not None:
layer_nobn.bias.data = layer.bias.data.clone()
layer_num += 1
return model_nobn
def has_bn(net):
for m in net.modules():
if type(m) == nn.BatchNorm2d:
return True
return False
import numpy as np
import matplotlib.pyplot as plt
def validate(net, testloader, device='cuda:0'):
net.eval()
test_loss = 0
correct = 0
total = 0
display_imgs = False
criterion = nn.CrossEntropyLoss()
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
#print(inputs.size())
if display_imgs:
inp = inputs[0].numpy().transpose((1, 2, 0))
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
plt.show()
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
acc = 100.*correct/total
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), acc, correct, total))
return acc
def load_imagenet(data_dir, batch_size=128, shuffle=True):
"""
Load the ImageNet dataset.
"""
#print('loading tiny imagenet')
train_dir = os.path.join(data_dir, 'Train_Data')
test_dir = os.path.join(data_dir, 'Validation_Data')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # using mean and std of original imagenet dataset
#print('reading data..')
train_transform = transforms.Compose([
transforms.RandomCrop(224, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
train_dataset = datasets.ImageFolder(train_dir, train_transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=2)
train_loader = None
test_transform = transforms.Compose([
transforms.Resize(256), # this line is imp for pre-trained imagenet models to yield reported acc.
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
test_dataset = datasets.ImageFolder(test_dir, test_transform)
val_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=2)
return (train_loader, val_loader)
def load_cifar10(data_dir='./data', arch='mobilenet_cifar10', batch_size=128, class_num=-1):
#print('class_num: {}'.format(class_num))
# Data
print('==> Preparing data..')
mean = (0.4914, 0.4822, 0.4465)
std = (0.2023, 0.1994, 0.2010)
if arch == 'vgg_cifar10':
std = (0.2470, 0.2435, 0.2616)
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean, std),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean, std),
])
trainset = datasets.CIFAR10(root=data_dir, train=True, download=True, transform=transform_test)
trainloader = data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2)
testset = datasets.CIFAR10(root=data_dir, train=False, download=True, transform=transform_test)
targets = torch.tensor(testset.targets)
target_idx, sampler = None, None
if class_num >= 0:
target_idx = (targets==class_num).nonzero()
sampler = torch.utils.data.sampler.SubsetRandomSampler(target_idx)
testloader = data.DataLoader(testset, batch_size=batch_size, shuffle=False, sampler=sampler, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
return (trainloader, testloader)
def load_cifar100(data_dir='./data', arch='mobilenet_cifar10', batch_size=128, class_num=-1):
MEAN = (0.5070751592371323, 0.48654887331495095, 0.4409178433670343)
STD = (0.2673342858792401, 0.2564384629170883, 0.27615047132568404)
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(MEAN, STD),
])
trainset = datasets.CIFAR100(root=data_dir, train=True, download=True, transform=transform_test)
trainloader = data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2)
testset = datasets.CIFAR100(root=data_dir, train=False, download=True, transform=transform_test)
targets = torch.tensor(testset.targets)
target_idx, sampler = None, None
if class_num >= 0:
target_idx = (targets==class_num).nonzero()
sampler = torch.utils.data.sampler.SubsetRandomSampler(target_idx)
testloader = data.DataLoader(testset, batch_size=batch_size, shuffle=False, sampler=sampler, num_workers=2)
return (trainloader, testloader)
def load_svhn(data_dir='./data', arch='mobilenet_cifar10', batch_size=128, class_num=-1):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]),
trainset = datasets.SVHN( root=data_dir, split='train', download=True, transform=transform)
trainloader = data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2)
testset = datasets.SVHN(root=data_dir, split='test', download=True, transform=transform)
testloader = torch.utils.data.DataLoader(
datasets.SVHN(
root=data_dir, split='test', download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]),
#target_transform=target_transform
),
batch_size=batch_size, shuffle=False )
return (trainloader, testloader)
def load_mnist(data_dir='./data', arch='mobilenet_cifar10', batch_size=128, class_num=-1):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.1307], std=[0.3081]) ])
trainset = datasets.MNIST(root=data_dir, train=True, transform=transform)
testset = datasets.MNIST(root=data_dir, train=False, transform=transform)
trainloader = data.DataLoader( testset, batch_size=batch_size, shuffle=False, num_workers=4 )
testloader = data.DataLoader( testset, batch_size=batch_size, shuffle=False, num_workers=4)
return trainloader, testloader
def save_model(net, state, model_path, file_name):
assert os.path.isdir(model_path), 'Error: no {} directory found!'.format(model_path)
file_path = os.path.join(model_path, file_name)
print('Saving..')
state['net'] = net.state_dict()
torch.save(state, file_path)
def load_model(net, model_path, file_name):
# Load checkpoint.
file_path = os.path.join(model_path, file_name)
if not os.path.exists(file_path):
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), file_path)
print('==> Resuming from checkpoint..')
checkpoint = torch.load(file_path, map_location=lambda storage, loc: storage)
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
print (best_acc, start_epoch)
return checkpoint, net
def read_max_acts(out_dir):
max_acts = []
with open(os.path.join(out_dir, 'max_acts.txt')) as f:
for line in f.readlines():
a,b = line.rstrip('\n').split(',')
max_acts.append((float(a), b))
return max_acts
def init_params(net):
'''Init layer parameters.'''
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal(m.weight, mode='fan_out')
if m.bias:
init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant(m.weight, 1)
init.constant(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal(m.weight, std=1e-3)
if m.bias:
init.constant(m.bias, 0)
#_, term_width = os.popen('stty size', 'r').read().split()
term_width = '143'
term_width = int(term_width)
TOTAL_BAR_LENGTH = 65.
last_time = time.time()
begin_time = last_time
def progress_bar(current, total, msg=None):
global last_time, begin_time
if current == 0:
begin_time = time.time() # Reset for new bar.
cur_len = int(TOTAL_BAR_LENGTH*current/total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
sys.stdout.write(' [')
for i in range(cur_len):
sys.stdout.write('=')
sys.stdout.write('>')
for i in range(rest_len):
sys.stdout.write('.')
sys.stdout.write(']')
cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time
L = []
L.append(' Step: %s' % format_time(step_time))
L.append(' | Tot: %s' % format_time(tot_time))
if msg:
L.append(' | ' + msg)
msg = ''.join(L)
sys.stdout.write(msg)
for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
sys.stdout.write(' ')
# Go back to the center of the bar.
for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2):
sys.stdout.write('\b')
sys.stdout.write(' %d/%d ' % (current+1, total))
if current < total-1:
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
sys.stdout.flush()
def format_time(seconds):
days = int(seconds / 3600/24)
seconds = seconds - days*3600*24
hours = int(seconds / 3600)
seconds = seconds - hours*3600
minutes = int(seconds / 60)
seconds = seconds - minutes*60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds*1000)
f = ''
i = 1
if days > 0:
f += str(days) + 'D'
i += 1
if hours > 0 and i <= 2:
f += str(hours) + 'h'
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + 'm'
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + 's'
i += 1
if millis > 0 and i <= 2:
f += str(millis) + 'ms'
i += 1
if f == '':
f = '0ms'
return f