-
Notifications
You must be signed in to change notification settings - Fork 3
/
InstantIR_node.py
161 lines (132 loc) · 6.95 KB
/
InstantIR_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# !/usr/bin/env python
# -*- coding: UTF-8 -*-
import os
import torch
import numpy as np
import logging
import folder_paths
from .utils import load_list_images, tensor2imglist, tensor_upscale,instantIR_main, instantIR_load_model, auto_downlaod,clear_memory
node_cur_path = os.path.dirname(os.path.abspath(__file__))
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
MAX_SEED = np.iinfo(np.int32).max
# add checkpoints dir
InstantIR_current_path = os.path.join(folder_paths.models_dir, "InstantIR")
if not os.path.exists(InstantIR_current_path):
os.makedirs(InstantIR_current_path)
try:
folder_paths.add_model_folder_path("InstantIR", InstantIR_current_path, False)
except:
folder_paths.add_model_folder_path("InstantIR", InstantIR_current_path)
InstantIR_base_path = os.path.join(InstantIR_current_path, "models") # InstantIR/models
if not os.path.exists(InstantIR_base_path):
os.makedirs(InstantIR_base_path)
InstantIR_dino_path = os.path.join(InstantIR_current_path, "dino") # InstantIR/models
if not os.path.exists(InstantIR_dino_path):
os.makedirs(InstantIR_dino_path)
class InstantIR_Loader:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
INSTANT_LIST=["none"]+[i for i in folder_paths.get_filename_list("InstantIR") if ".bin" in i or ".pt" in i] if folder_paths.get_filename_list("InstantIR") else ["none"]
return {
"required": {
"sdxl_checkpoints": (["none"] + folder_paths.get_filename_list("checkpoints"),),
"dino_repo": ("STRING", {"default": "facebook/dinov2-large"}),
"adapter_checkpoints": (INSTANT_LIST,),
"aggregator_checkpoints": (INSTANT_LIST,),
"lora": (["none"] + folder_paths.get_filename_list("loras"),),
"InstantIR_lora": (INSTANT_LIST,),
"use_clip_encoder": ("BOOLEAN", {"default": False},),
}
}
RETURN_TYPES = ("InstantIR_MODEL",)
RETURN_NAMES = ("model",)
FUNCTION = "main_"
CATEGORY = "InstantIR"
def main_(self, sdxl_checkpoints, dino_repo, adapter_checkpoints, aggregator_checkpoints,lora, InstantIR_lora,
use_clip_encoder,):
if not dino_repo:
logging.info("no dino files in dir ,auto download from facebook/dinov2-large")
vision_encoder_path = auto_downlaod(InstantIR_current_path, "dino")
else:
vision_encoder_path = dino_repo
if sdxl_checkpoints != "none":
sdxl_path = folder_paths.get_full_path("checkpoints", sdxl_checkpoints)
else:
#sdxl_path='stabilityai/stable-diffusion-xl-base-1.0'
raise "need chocie a sdxl checkpoint"
if adapter_checkpoints != "none":
adapter_path = folder_paths.get_full_path("InstantIR", adapter_checkpoints)
else:
raise "need chocie a adapter checkpoint"
if InstantIR_lora != "none":
previewer_lora_path = folder_paths.get_full_path("InstantIR", InstantIR_lora)
else:
raise "need chocie a lora checkpoint"
if lora != "none":
lora_path = folder_paths.get_full_path("loras", lora)
else:
raise "need chocie a SDXL lcm lora checkpoint"
if aggregator_checkpoints != "none":
aggregator_path = folder_paths.get_full_path("InstantIR", aggregator_checkpoints)
else:
raise "need chocie a aggregator checkpoint"
model = instantIR_load_model(use_clip_encoder, vision_encoder_path, sdxl_path, adapter_path,
previewer_lora_path,lora_path, aggregator_path,device)
logging.info("loading checkpoint done.")
model.to(dtype=torch_dtype)
if not torch.backends.mps.is_available():
model.enable_model_cpu_offload() # MPS not support
return (model,)
class InstantIR_Sampler:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("InstantIR_MODEL",),
"pixels": ("IMAGE",),
"prompt": ("STRING", {"multiline": True, "default": "Photorealistic, highly detailed, hyper detailed photo - realistic maximum detail, 32k, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations, taken using a Canon EOS R camera, Cinematic, High Contrast, Color Grading. "}),
"negative_prompt": ("STRING", {"multiline": True,
"default": "blurry, out of focus, unclear, depth of field, over-smooth, sketch, oil painting, cartoon, CG Style, 3D render, unreal engine, dirty, messy, worst quality, low quality, frames, painting, illustration, drawing, art, watermark, signature, jpeg artifacts, deformed, lowres"}),
"seed": ("INT", {"default": 0, "min": 0, "max": MAX_SEED}),
"steps": ("INT", {"default": 20, "min": 1, "max": 100}),
"cfg": ("FLOAT", {"default": 7, "min": 0.1, "max": 10.0, "step": 0.1, "round": 0.01}),
"creative_restoration": ("BOOLEAN", {"default": False},),
"width": ("INT", {"default": 768, "min": 128, "max": 1024, "step": 64, "display": "number"}),
"height": ("INT", {"default": 768, "min": 128, "max": 1024, "step": 64, "display": "number"}),
"preview_start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 30.0, "step": 0.1,}),
"guidance_end": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 30.0, "step": 0.1,}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64, "step": 1, }),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "main"
CATEGORY = "InstantIR"
def main(self, model, pixels, prompt, negative_prompt, seed, steps, cfg, creative_restoration, width, height, preview_start,guidance_end,batch_size):
# pre image
image = tensor_upscale(pixels, width, height)
image_list, _ = tensor2imglist(image, np_out=True)
logging.info(f"Start infer {len(image_list)} images.")
ouput_img = instantIR_main(image_list, model, seed, creative_restoration, steps, prompt, negative_prompt, cfg,
batch_size, device,preview_start,guidance_end)
logging.info("finish processing")
clear_memory()
image = load_list_images(ouput_img)
return (image,)
NODE_CLASS_MAPPINGS = {
"InstantIR_Loader": InstantIR_Loader,
"InstantIR_Sampler": InstantIR_Sampler,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"InstantIR_Loader": "InstantIR_Loader",
"InstantIR_Sampler": "InstantIR_Sampler",
}