-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathtest_material.py
213 lines (174 loc) · 8.77 KB
/
test_material.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os, sys
import numpy as np
import imageio
import json
import random
import time
from pytorch_lightning.utilities.distributed import rank_zero_only
from tqdm import tqdm, trange
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch.optim.lr_scheduler
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning import loggers as pl_loggers
from opt import config_parser
from dataset.llff import LLFFDataset
from models.neroic_renderer import NeROICRenderer
import models.network.neroic as neroic
from utils.utils import *
from utils import exposure_helper
import pickle
import models.sh_functions as sh
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
np.random.seed(0)
DEBUG = False
class NeRFSystem(pl.LightningModule):
def __init__(self, args):
super().__init__()
args.N_rand = 30000000000
self.args = args
if args.model == 'NeROIC':
self.renderer = NeROICRenderer(args)
else:
raise ValueError("Unsupported model.")
self.basedir = args.basedir
self.expname = args.expname
self.render_kwargs_test = {
'perturb' : args.perturb,
'N_importance' : args.N_importance,
'N_samples' : args.N_samples,
'use_viewdirs' : args.use_viewdirs,
'raw_noise_std' : args.raw_noise_std,
}
self.render_kwargs_test['lindisp'] = args.lindisp
self.render_kwargs_test['perturb'] = False
self.render_kwargs_test['N_samples'] = self.render_kwargs_test['N_samples']*4
self.render_kwargs_test['raw_noise_std'] = 0.
def forward(self, pixel_coords, pose, img_id): # Rendering
return self.renderer(pixel_coords=pixel_coords, test_pose=pose, img_id=img_id,
chunk=self.args.chunk, **self.render_kwargs_train)
def test_step(self, batch, batch_idx):
hwf = batch['poses'][0][:3,-1]
img_id = batch['img_id'][0]
print(img_id, batch_idx)
pose = self.renderer.get_pose(img_id, hwf)
ret_dict = self.renderer.batch_render_test(pose, self.args.chunk//4, self.render_kwargs_test, img_id=img_id)
gt_imgs = batch['gt_color'][0]
gt_masks = batch['gt_mask'][0]
rgbs = torch.FloatTensor(ret_dict['rgb_map']).to(gt_imgs.device)
if 'static_only_acc_map' in ret_dict:
rgbs_acc = torch.FloatTensor(ret_dict['static_only_acc_map']).to(gt_imgs.device)[...,[0,0,0]]
else:
rgbs_acc = torch.FloatTensor(ret_dict['acc_map']).to(gt_imgs.device)[...,None][...,[0,0,0]]
rgbs_coarse = torch.FloatTensor(ret_dict['rgb_map_coarse']).to(gt_imgs.device)
rgbs_static = torch.FloatTensor(ret_dict['static_rgb_map']).to(gt_imgs.device)
if 'albedo_map' in ret_dict: # albedo map
rgbs_albedo = torch.FloatTensor(ret_dict['albedo_map']).to(gt_imgs.device)
else:
rgbs_albedo = rgbs
if 'spec_map' in ret_dict: # specular map
rgbs_specular = torch.FloatTensor(ret_dict['spec_map']).to(gt_imgs.device)
else:
rgbs_specular = rgbs
if 'glossiness_map' in ret_dict: # glossiness map
rgbs_glossiness = torch.FloatTensor(ret_dict['glossiness_map']).to(gt_imgs.device)
else:
rgbs_glossiness = rgbs
if 'transient_acc_map' in ret_dict: # transient accumulation map
rgbs_transient = torch.FloatTensor(ret_dict['transient_acc_map']).to(gt_imgs.device)[...,None][...,[0,0,0]]
else:
rgbs_transient = rgbs
if 'is_edge' in ret_dict: # edge map
rgbs_is_edge = torch.FloatTensor(ret_dict['is_edge']).to(gt_imgs.device)[...,None][...,[0,0,0]]
else:
rgbs_is_edge = rgbs
if self.args.model_type == "rendering": # sh env lighting map
rgbs_light = sh.unproject_environment(3, self.renderer.env_lights[img_id],
rgbs.shape[1], rgbs.shape[2])
else:
rgbs_light = rgbs[0]
gt_imgs = gt_imgs
if self.args.debug_green_bkgd:
bkgd = torch.from_numpy(np.array([0,1,0])).type_as(rgbs)
else:
bkgd = torch.from_numpy(np.array([1,1,1])).type_as(rgbs)
log = {}
img_loss = img2mse(rgbs, gt_imgs*gt_masks[...,None] + bkgd*(~gt_masks[...,None]))
loss = img_loss
psnr = mse2psnr(img_loss)
log = {'val_loss': loss, 'val_psnr': psnr}
img = rgbs[0].clamp(0, 1).cpu() # (H, W, 3)
img_static = rgbs_static[0].clamp(0, 1).cpu() # (H, W, 3)
img_albedo = rgbs_albedo[0].clamp(0, 1).cpu() # (H, W, 3)
img_specular = rgbs_specular[0].clamp(0, 1).cpu() # (H, W, 3)
img_glossiness = rgbs_glossiness[0].clamp(0, 1).cpu() # (H, W, 3)
img_transient = rgbs_transient[0].clamp(0, 1).cpu() # (H, W, 3)
img_is_edge = rgbs_is_edge[0].clamp(0, 1).cpu() # (H, W, 3)
img_acc = rgbs_acc[0].clamp(0, 1).cpu() # (H, W, 3)
img_light = rgbs_light.clamp(0, 1).cpu() # (H, W, 3)
print(img_transient.max())
img_gt = gt_imgs.cpu() # (H, W, 3)
depth = visualize_depth(ret_dict['depth_map'][0], cmap=cv2.COLORMAP_HOT).permute(1, 2, 0) # (H, W, 3)
if 'normal_map_weighted' in ret_dict:
rot_mat = self.renderer.get_rotation(img_id)
normal = torch.FloatTensor(ret_dict['normal_map_weighted'][0]).type_as(gt_imgs).reshape(-1, 3).T # 3 x HW
normal = torch.matmul(torch.inverse(rot_mat),normal).T.reshape(gt_imgs.shape)
normal = (normal+1)/2
normal = normal.clamp(0, 1).cpu() # (H, W, 3)
else:
normal = img
gt_masks = gt_masks.cpu()
img_acc = img_acc.cpu()
def mto8b(image, color=bkgd.cpu()):
return to8b((image.cpu()*img_acc + color*(1-img_acc)).numpy())
imageio.imwrite(os.path.join(self.logger.save_dir, self.args.expname, "%d_gt.png"%batch_idx), to8b(img_gt.cpu().numpy()))
imageio.imwrite(os.path.join(self.logger.save_dir, self.args.expname, "%d.png"%batch_idx), mto8b(img))
imageio.imwrite(os.path.join(self.logger.save_dir, self.args.expname, "%d_depth.png"%batch_idx), depth)
imageio.imwrite(os.path.join(self.logger.save_dir, self.args.expname, "%d_static.png"%batch_idx), mto8b(img_static))
imageio.imwrite(os.path.join(self.logger.save_dir, self.args.expname, "%d_albedo.png"%batch_idx), mto8b(img_albedo))
imageio.imwrite(os.path.join(self.logger.save_dir, self.args.expname, "%d_specular.png"%batch_idx), mto8b(img_specular))
imageio.imwrite(os.path.join(self.logger.save_dir, self.args.expname, "%d_glossiness.png"%batch_idx), mto8b(img_glossiness))
imageio.imwrite(os.path.join(self.logger.save_dir, self.args.expname, "%d_transient.png"%batch_idx), to8b(img_transient.cpu().numpy()))
imageio.imwrite(os.path.join(self.logger.save_dir, self.args.expname, "%d_edge.png"%batch_idx), to8b(img_is_edge.cpu().numpy()))
imageio.imwrite(os.path.join(self.logger.save_dir, self.args.expname, "%d_light.png"%batch_idx), to8b(img_light.cpu().numpy()))
imageio.imwrite(os.path.join(self.logger.save_dir, self.args.expname, "%d_normal.png"%batch_idx), mto8b(normal))
return log
def test_epoch_end(self, outputs):
pass
def setup(self, stage):
self.args.split = self.args.test_split
if self.args.dataset_type == 'llff':
self.test_dataset = LLFFDataset(self.args, recenter=True, bd_factor=0.75, path_zflat=False)
else:
raise ValueError('Unknown dataset type: %s'%self.args.dataset_type)
self.bds_dict = {
'near' : self.test_dataset.near,
'far' : self.test_dataset.far,
'bbox': self.test_dataset.bbox,
}
self.render_kwargs_test.update(self.bds_dict)
self.renderer.init_cam_pose(self.test_dataset.get_all_poses())
def test_dataloader(self):
return torch.utils.data.DataLoader(self.test_dataset, shuffle=False, num_workers=4, batch_size=1, pin_memory=True)
def train():
parser = config_parser()
args = parser.parse_args()
args.verbose = True
args.have_mask = True # enforce bg/fg mask
args.mask_ratio = 100000
args.debug_green_bkgd = False
logger = pl_loggers.TensorBoardLogger(
save_dir="results/material",
name=args.expname
)
# Create log dir and copy the config file
nerf_sys = NeRFSystem.load_from_checkpoint(checkpoint_path=args.ft_path, map_location=None, **{'args': args}, strict=False)
trainer = Trainer(gpus=1, logger=logger)
trainer.test(nerf_sys)
if __name__=='__main__':
train()