-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_hpsv2.py
211 lines (183 loc) · 7.58 KB
/
test_hpsv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import argparse
import copy
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torchvision
import torchvision.datasets as datasets
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler, IterableDataset, get_worker_info
from torch.utils.data.distributed import DistributedSampler
import torch.optim as optim
import numpy as np
import torch.nn.functional as F
from pipelines.pipeline_stable_diffusion import StableDiffusionPipelineTC as StableDiffusionPipeline
from pipelines.scheduling_ddim import DDIMScheduler
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.schedulers import DDPMScheduler, \
DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, \
PNDMScheduler, EulerAncestralDiscreteScheduler
import csv
import json
from pprint import pprint
import pandas as pd
import logging
from PIL import Image
from collections import OrderedDict, defaultdict
import random
import argparse
from transformers import pipeline
import hpsv2
def parser_spec():
parser = argparse.ArgumentParser()
# Select which models to export (All are needed for text-to-image pipeline to function)
parser.add_argument(
"--ckpt_path",
default="",
help=
("pytorch checkpoint"
))
parser.add_argument(
"--unet_path",
default=None,
help=
("unet checkpoint"
))
parser.add_argument(
"--text_path",
default=None,
help=
("text checkpoint"
))
parser.add_argument(
"--prompt_eng",
default=False,
action="store_true",
help=
("whether use prompt engineering"
))
parser.add_argument(
"--output_path",
default="tests/paper_ckpt_hpsv2",
help=
("output path for saving images"
))
parser.add_argument('--seed', default=2023, type=int, help='seed')
parser.add_argument('--guidance', default=7.5, type=float, help='cfg guidance')
parser.add_argument('--step', default=25, type=int, help='numer of steps')
parser.add_argument('--grad_steps', default=25, type=int, help='numer of text aug steps')
parser.add_argument('--prompt_weighting', default=1.0, type=float, help='prompt weighting')
parser.add_argument('--scheduler', default='DDIM', type=str, choices=['DDIM', 'DPMSingle', 'Eulr'],
help='scheduler')
return parser
def main(args):
'''
settings there ############################################################################################
'''
args.gpu = 0
seed = args.seed
guidance = args.guidance
ckpt_path = args.ckpt_path
output_path_name = args.scheduler + args.ckpt_path.split('/')[0] + 'St{:.0f}C{:.1f}/'.format(
args.step, args.guidance)
output_path = os.path.join(args.output_path, output_path_name)
'''
settings end #############################################################################################
'''
generator_s = torch.Generator("cuda").manual_seed(seed)
pipe_textcraftor = StableDiffusionPipeline.from_pretrained("./stable-diffusion-v1-5")
scheduler_config = pipe_textcraftor.scheduler.config
# scheduler_config['prediction_type'] = 'v_prediction'
# scheduler_config['prediction_type'] = 'sample'
scheduler_config['prediction_type'] = 'epsilon'
if args.scheduler == 'DDIM':
noise_scheduler = DDIMScheduler.from_config(scheduler_config)
elif args.scheduler == 'DPMSingle':
noise_scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config)
elif args.scheduler == 'Eulr':
noise_scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)
pipe_textcraftor.scheduler = noise_scheduler
pipe_textcraftor.__setattr__('text_encoder_origin', copy.deepcopy(pipe_textcraftor.text_encoder))
if args.text_path is not None:
ckpt = torch.load(args.text_path, map_location="cpu")
new_ckpt = {}
for item in ckpt:
new_ckpt[item[7:]] = ckpt[item]
pipe_textcraftor.text_encoder.load_state_dict(new_ckpt, strict=False)
print('text weight load success: ', args.text_path)
if args.unet_path is not None:
ckpt = torch.load(args.unet_path, map_location="cpu")
new_ckpt = {}
for item in ckpt:
new_ckpt[item[7:]] = ckpt[item]
pipe_textcraftor.unet.load_state_dict(new_ckpt, strict=True)
print('unet weight load success: ', args.unet_path)
if args.prompt_eng:
text_pipe = pipeline('text-generation', model='daspartho/prompt-extend')
# hpsv2 score #################################################################
from typing import Union
from hpsv2.src.open_clip import create_model_and_transforms, get_tokenizer
hps_model, preprocess_train, preprocess_val = create_model_and_transforms(
'ViT-H-14',
'laion2B-s32B-b79K',
precision='amp',
device="cuda",
jit=False,
force_quick_gelu=False,
force_custom_text=False,
force_patch_dropout=False,
force_image_size=None,
pretrained_image=False,
image_mean=None,
image_std=None,
light_augmentation=True,
aug_cfg={},
output_dict=True,
with_score_predictor=False,
with_region_predictor=False
)
checkpoint = torch.load("./hpsv2/HPS_v2_compressed.pt", map_location="cpu")
hps_model.load_state_dict(checkpoint['state_dict'])
tokenizer = get_tokenizer('ViT-H-14')
hps_model = hps_model.to("cuda")
hps_model.eval()
pipe_textcraftor.unet.eval()
pipe_textcraftor.vae.eval()
pipe_textcraftor.text_encoder.eval()
pipe_textcraftor = pipe_textcraftor.to('cuda')
pipe_textcraftor.text_encoder_origin = pipe_textcraftor.text_encoder_origin.to("cuda")
os.makedirs("tests", exist_ok=True)
os.makedirs(output_path, exist_ok=True)
# Get benchmark prompts (<style> = all, anime, concept-art, paintings, photo)
all_prompts = hpsv2.benchmark_prompts('all')
# Iterate over the benchmark prompts to generate images
for style, prompts in all_prompts.items():
os.makedirs(os.path.join(output_path, style), exist_ok=True)
for idx, prompt in enumerate(prompts):
# prompt engineering
if args.prompt_eng:
enhanced_prompts = []
extended_prompt = text_pipe(prompt, num_return_sequences=1)
for item in extended_prompt:
enhanced_prompts.append(item["generated_text"])
print("finish prompt enhancement:", len(enhanced_prompts))
prompt = enhanced_prompts
output = pipe_textcraftor(prompt, num_inference_steps=args.step, guidance_scale=guidance,
num_images_per_prompt=1,
generator=generator_s,
grad_steps=args.grad_steps,
prompt_weighting=args.prompt_weighting,
)
image = output.images[0]
# TextToImageModel is the model you want to evaluate
image.save(os.path.join(output_path, style, f"{idx:05d}.jpg"))
# <image_path> is the folder path to store generated images, as the input of hpsv2.evaluate().
hpsv2.evaluate(output_path)
exit()
if __name__ == '__main__':
parser = parser_spec()
args = parser.parse_args()
main(args)