-
Notifications
You must be signed in to change notification settings - Fork 4
/
sampling.py
56 lines (45 loc) · 1.48 KB
/
sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torchvision
import os
import gc
import tqdm
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
from transformers import CLIPTextModel
from peft import PeftModel, LoraConfig
from lora_w2w import LoRAw2w
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel, LMSDiscreteScheduler
from peft.utils.save_and_load import load_peft_weights, set_peft_model_state_dict
from transformers import AutoTokenizer, PretrainedConfig
from PIL import Image
import warnings
warnings.filterwarnings("ignore")
from diffusers import (
AutoencoderKL,
DDPMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
UNet2DConditionModel,
PNDMScheduler,
StableDiffusionPipeline
)
######## Sampling utilities
def sample_weights(unet, proj, mean, std, v, device, factor = 1.0):
# get mean and standard deviation for each principal component
m = torch.mean(proj, 0)
standev = torch.std(proj, 0)
del proj
torch.cuda.empty_cache()
# sample
sample = torch.zeros([1, 1000]).to(device)
for i in range(1000):
sample[0, i] = torch.normal(m[i], factor*standev[i], (1,1))
# load weights into network
network = LoRAw2w( sample, mean, std, v,
unet,
rank=1,
multiplier=1.0,
alpha=27.0,
train_method="xattn-strict"
).to(device, torch.bfloat16)
return network