-
Notifications
You must be signed in to change notification settings - Fork 4
/
plotting.py
459 lines (385 loc) · 18.4 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
import os
import seaborn as sns
import matplotlib.ticker as ticker
import pandas as pd
# set paper context, font scale 2, white background
sns.set_theme(context='paper', style='white', palette='pastel', font='sans-serif', font_scale=1.5)
# set default figure size
plt.rcParams['figure.figsize'] = [12, 6]
PATH_TO_SAVED_PLOTS = './plots' # folder holding plots, eg, network figures
GRAPH_TYPES = ['real', 'global', 'local', 'sequential'] # 'iterative']
def parse_save_name(save_name):
elements = save_name.split('_', 2)
if len(elements) == 2:
method, model = elements
ext = None
else:
method, model, ext = elements
return method, model, ext
def define_color(save_names):
"""
Create a color palette dictionary mapping save_name to color.
"""
# Define your base palettes
pastel_palette = sns.color_palette("pastel")
# Map each save_name to a specific color
color_map = {name: pastel_palette[custom_sort_key(name)] for name in save_names}
return color_map
def get_short_name(save_name, include_model=False):
"""
Helper function to get short name for save name.
"""
if save_name == 'real':
return 'Real'
method, model, ext = parse_save_name(save_name)
if method == 'sequential':
method = 'seq.'
if ext is None:
name = method.capitalize()
else:
if ext == 'ALL_SHUFFLED':
name = method.capitalize() + ', ' + 'shuffled'
else:
name = method.capitalize() + ', ' + ext.replace('_', ' ').lower()
if include_model:
model_el = model.split('-')
name += f' (GPT-{model_el[1]})'
return name
def adapt_legend(legend, mapper=None, include_model=False):
"""
Modify text in legend.
"""
legend.set_title(None)
for text in legend.get_texts():
t = text.get_text()
if mapper is None:
text.set_text(get_short_name(t, include_model=include_model))
else:
text.set_text(mapper[t])
def get_pallete(df):
"""
Helper function to return color pallete dictionary.
"""
return define_color(df['save_name'].unique())
def custom_sort_key(x):
if 'SHUFFLED' in x:
return 1 + len(GRAPH_TYPES)
if 'interests' in x:
return len(GRAPH_TYPES)
for idx, graph_type in enumerate(GRAPH_TYPES):
if graph_type in x:
return idx
return len(GRAPH_TYPES)+2 # all other names
def change_order(df):
df['sort_order'] = df['save_name'].apply(custom_sort_key)
df_sorted = df.sort_values(by=['sort_order', 'save_name'])
return df_sorted
def plot_metrics_separately(network_metrics_df, save_name=None, plot_type='default', x_to_keep=None,
simplify_legend=True, legend_mapper=None, palette=None, dodge=0.6):
"""
Make plot of network metrics with separate plot per metric.
"""
assert plot_type in ['default', 'bar']
assert '_metric_value' in network_metrics_df.columns
assert 'metric_name' in network_metrics_df.columns
orig_len = len(network_metrics_df)
network_metrics_df = network_metrics_df[pd.isnull(network_metrics_df.node)]
print(f'Dropping node-level stats: kept {len(network_metrics_df)} out of {orig_len} rows')
if x_to_keep is not None:
orig_len = len(network_metrics_df)
network_metrics_df = network_metrics_df[network_metrics_df['metric_name'].isin(x_to_keep)]
print(f'Keeping rows in {x_to_keep}: kept {len(network_metrics_df)} out of {orig_len} rows')
if x_to_keep is None:
x_to_keep = network_metrics_df.metric_name.unique()
num_plots = len(x_to_keep)
fig, axes = plt.subplots(1, num_plots, figsize=(num_plots*3, 2.5))
fig.subplots_adjust(wspace=0.3)
if palette is None:
palette = get_pallete(network_metrics_df)
for ax, x_name in zip(axes, x_to_keep):
kept_df = network_metrics_df[network_metrics_df.metric_name == x_name]
include_legend = x_name == x_to_keep[-1]
if plot_type == 'default':
ax = sns.stripplot(ax=ax, data=kept_df, x='metric_name', y='_metric_value',
hue='save_name', palette=palette, dodge=dodge, alpha=0.8, zorder=1, legend=include_legend)
ax = sns.pointplot(ax=ax, data=kept_df, x='metric_name', y='_metric_value', errorbar='se',
hue='save_name', palette='dark:black', dodge=dodge, legend=False,
capsize=0.05, linestyle='none', zorder=2) # use zorder to determine which plot ends up on top
else:
sns.barplot(ax=ax, data=kept_df, x='metric_name', y='_metric_value',
hue="save_name", palette=palette)
ymin, ymax = ax.get_ylim()
ax.set_ylim(ymin, min(ymax, 2))
if include_legend:
legend = plt.legend(bbox_to_anchor=(1, 1), fontsize=18)
ax.tick_params(axis='x', labelsize=18)
ax.set_ylabel('')
ax.set_xlabel('')
ax.grid(alpha=0.2)
if legend_mapper is not None:
adapt_legend(legend, mapper=legend_mapper)
elif simplify_legend:
save_names = network_metrics_df['save_name'].unique()
models = [parse_save_name(n)[1] for n in save_names if n != 'real']
if len(set(models)) > 1:
adapt_legend(legend, include_model=True)
else:
adapt_legend(legend, include_model=False)
if save_name is not None:
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, save_name), bbox_inches='tight')
plt.show()
def make_plot(network_metrics_df, save_name=None, plot_type='default', plot_homophily=False, homophily_metric='same_ratio',
x_to_keep=None, figsize=None, y_lim=None, simplify_legend=True, legend_mapper=None, legend_pos=None,
palette=None, dodge=0.6):
"""
Make plot of network metrics.
"""
assert plot_type in ['default', 'bar']
assert '_metric_value' in network_metrics_df.columns
plt.figure(figsize=figsize)
if plot_homophily:
x_name = 'demo'
x_label = 'Demographic variable'
network_metrics_df = network_metrics_df[network_metrics_df.metric_name == homophily_metric]
if homophily_metric == 'same_ratio':
y_label = 'Observed/expected same-group relations'
elif homophily_metric == 'cross_ratio':
y_label = 'Observed/expected cross-group relations'
else:
y_label = 'Homophily'
else:
x_name = 'metric_name'
x_label = 'Network metric'
y_label = 'Value'
orig_len = len(network_metrics_df)
network_metrics_df = network_metrics_df[pd.isnull(network_metrics_df.node)]
print(f'Dropping node-level stats: kept {len(network_metrics_df)} out of {orig_len} rows')
if x_to_keep is not None:
orig_len = len(network_metrics_df)
network_metrics_df = network_metrics_df[network_metrics_df[x_name].isin(x_to_keep)]
print(f'Keeping rows in {x_to_keep}: kept {len(network_metrics_df)} out of {orig_len} rows')
if palette is None:
palette = get_pallete(network_metrics_df)
# default is SE + data points
if plot_type == 'default':
sns.stripplot(data=network_metrics_df, x=x_name, y='_metric_value',
hue='save_name', palette=palette, dodge=dodge, alpha=0.8, legend=True, zorder=1)
sns.pointplot(data=network_metrics_df, x=x_name, y='_metric_value', errorbar='se',
hue='save_name', palette='dark:black', dodge=dodge, legend=False,
capsize=0.05, linestyle='none', zorder=2) # use zorder to determine which plot ends up on top
else:
sns.barplot(data=network_metrics_df, x=x_name, y='_metric_value',
hue="save_name", palette=palette)
if len(network_metrics_df[x_name].unique()) > 1:
plt.xlabel(x_label)
else:
plt.xlabel('')
plt.ylabel(y_label)
if y_lim is not None:
plt.ylim(y_lim)
if plot_homophily:
xmin, xmax = plt.xlim()
plt.hlines([1.0], xmin, xmax, color='grey', linestyle='dashed') # draw line at 1 for homophily
plt.grid(alpha=0.2)
if (len(network_metrics_df['save_name'].unique()) > 5) or (legend_pos is not None):
if legend_pos is None:
legend_pos = (1,1)
# move legend outside the plot if there are too many things in legend
legend = plt.legend(bbox_to_anchor=legend_pos)
else:
legend = plt.legend()
if legend_mapper is not None:
adapt_legend(legend, mapper=legend_mapper)
elif simplify_legend:
save_names = network_metrics_df['save_name'].unique()
models = [parse_save_name(n)[1] for n in save_names if n != 'real']
if len(set(models)) > 1:
adapt_legend(legend, include_model=True)
else:
adapt_legend(legend, include_model=False)
if save_name is not None:
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, save_name), bbox_inches='tight')
plt.show()
def plot_comparison_homophily(homophily_metrics_df, save_name):
if not os.path.exists(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}')):
os.makedirs(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}'))
homophily_metrics_df = change_order(homophily_metrics_df)
# plot homophily
sns.boxplot(x='demo', y='metric_value', data=homophily_metrics_df, hue='save_name', palette=get_pallete(homophily_metrics_df))
# sns.stripplot(x='demo', y='metric_value', data=homophily_metrics_df, hue='save_name', size=4, palette='dark:.3')
plt.xlabel('Demographic variable')
plt.ylabel('Observed/expected same-group relations')
adapt_legend(plt.legend())
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}/homophily.png'))
plt.close()
sns.barplot(x='demo', y='metric_value', hue='save_name', data=homophily_metrics_df, palette=get_pallete(homophily_metrics_df))
plt.xlabel('Demographic Category')
plt.ylabel('Observed/expected same-group relations')
adapt_legend(plt.legend())
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}/homophily_bar.png'))
plt.close()
def plot_divs(cross_metrics_df, save_name):
if not os.path.exists(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}')):
os.makedirs(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}'))
for metric_name in ['degree_centrality', 'betweenness_centrality', 'closeness_centrality']:
plt.figure(figsize=(12, 6))
# Create the boxplot
df = cross_metrics_df[cross_metrics_df['metric_name'].isin([metric_name])]
#set metric value type to float with and set 0.01 precision
df.loc[:, 'divs'] = df['divs'].astype(float).round(2)
sns.boxplot(x='metric_name', y='divs', hue='save_name', data=df, palette=get_pallete(cross_metrics_df))
# Add stripplot on top of the boxplot to show individual points, no legend
sns.stripplot(x='metric_name', y='divs', hue='save_name', data=df,
jitter=True, dodge=True, linewidth=1, palette=get_pallete(cross_metrics_df), legend=False)
# Adjust the y-axis
ax = plt.gca()
ax.yaxis.set_major_locator(ticker.LinearLocator(numticks=10))
plt.legend(title=f'Networks')
plt.ylabel('JSD')
plt.xlabel('Metric')
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}/cross_network_{metric_name}.png'))
plt.close()
def plot_comparison(network_metrics_df, save_name):
if not os.path.exists(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}')):
os.makedirs(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}'))
for metric_name in ['density', 'avg_clustering_coef', 'prop_nodes_lcc', 'radius', 'diameter']:
# Create the boxplot
df = network_metrics_df[network_metrics_df['metric_name'].isin([metric_name])]
df = change_order(df)
# modify df to 0.01 precision
# print data tyopes for columns in df
print(df.dtypes)
#set metric value type to float with and set 0.01 precision
df.loc[:, 'metric_value'] = df['metric_value'].astype(float).round(2)
sns.boxplot(x='metric_name', y='metric_value', hue='save_name', data=df, palette=get_pallete(df))
# Add stripplot on top of the boxplot to show individual points, no legend
sns.stripplot(x='metric_name', y='metric_value', hue='save_name', data=df,
jitter=True, dodge=True, linewidth=1, palette=get_pallete(df), legend=False)
# Adjust the y-axis
ax = plt.gca()
ax.yaxis.set_major_locator(ticker.LinearLocator(numticks=10))
plt.ylabel('Value')
plt.xlabel('Network Metric')
legend = plt.legend()
adapt_legend(legend)
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}/network_{metric_name}.png'))
plt.close()
# now just bar plots
sns.barplot(x='metric_name', y='metric_value', data=df, hue='save_name', palette=get_pallete(df))
plt.xlabel('Network Metric')
plt.ylabel('Value')
adapt_legend(plt.legend())
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}/network_{metric_name}_bar.png'))
plt.close()
def plot_network_metrics(network_metrics_df, save_name=None):
if save_name is not None:
save_path = os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}')
if not os.path.exists(save_path):
os.makedirs(save_path)
network_metrics_df = change_order(network_metrics_df)
# plot scalar metrics
curr_metrics = ['density', 'avg_clustering_coef', 'prop_nodes_lcc', 'radius', 'diameter']
sns.barplot(x='metric_name', y='metric_value',
data=network_metrics_df[network_metrics_df['metric_name'].isin(curr_metrics)],
hue='save_name', palette=get_pallete(network_metrics_df))
plt.xlabel('Network Metric')
plt.ylabel('Value')
adapt_legend(plt.legend())
if save_name is None:
plt.show()
else:
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}/network_metrics_bar.png'))
plt.close()
# plot histograms of distribution metrics
node_metrics = ['degree_centrality', 'betweenness_centrality', 'closeness_centrality']
for metric in node_metrics:
# get all values with metric_name = metric
metric_df = network_metrics_df[network_metrics_df['metric_name'] == metric]
for graph_name, graph_df in metric_df.groupby('save_name'):
values = graph_df['metric_value'].values # num_graphs x num_nodes
print(len(values))
if metric == 'betweenness_centrality':
bins = np.linspace(0, 0.5, 25)
plt.xlim(0, 0.5)
else:
bins = np.linspace(0, 0.85, 25)
plt.xlim(0, 0.85)
sns.histplot(x=values, bins=bins, stat='density', color=get_pallete(network_metrics_df)[graph_name])
plt.xlabel(metric.replace('_', ' ').capitalize())
plt.ylabel('Frequency')
plt.title(graph_name)
# adapt_legend(plt.legend([save_name]))
if save_name is None:
plt.show()
else:
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}/{graph_name}_{metric}_hist.png'))
plt.close()
def plot_communities(counts, sizes, modularities, save_name):
if not os.path.exists(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}')):
os.makedirs(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}'))
# plot communities
bins = np.linspace(0, max(max(counts), 10), max(max(counts)//2, 10))
sns.histplot(x=counts, bins=bins, stat='density', color=define_color([save_name])[save_name])
plt.xlabel('Community count')
plt.ylabel('Frequency')
adapt_legend(plt.legend([save_name]))
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}/community_count_hist.png'))
plt.close()
bins = np.linspace(0, 30, 15)
sns.histplot(x=sizes, bins=bins, stat='density', color=define_color([save_name])[save_name])
plt.xlabel('Community size')
plt.ylabel('Frequency')
adapt_legend(plt.legend([save_name]))
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}/community_size_hist.png'))
plt.close()
bins = np.linspace(0, 1, 50)
sns.histplot(x=modularities, bins=bins, stat='density', color=define_color([save_name])[save_name])
plt.xlabel('Modularity')
plt.ylabel('Frequency')
adapt_legend(plt.legend([save_name]))
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}/modularity_hist.png'))
plt.close()
def plot_edges(num_edges, save_name):
if not os.path.exists(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}')):
os.makedirs(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}'))
sns.boxplot(x=num_edges, whis=[0, 100], palette='pastel')
sns.stripplot(x=num_edges, size=4, color=".3")
plt.xlabel('Num edges')
if SHOW_PLOTS:
plt.show()
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}/num_edges.png'))
plt.close()
def plot_edge_dist(all_real_d, save_name):
if not os.path.exists(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}')):
os.makedirs(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}'))
sns.histplot(all_real_d, bins=30)
plt.xlabel('Edge distance')
plt.ylabel('Num graph pairs')
if SHOW_PLOTS:
plt.show()
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}/edge_distance.png'))
plt.close()
def plot_props(props, edges, save_name):
if not os.path.exists(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}')):
os.makedirs(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}'))
sns.histplot(props, bins=30)
plt.xlabel('Prop of networks where edge appeared')
plt.ylabel(f'Num edges (out of {len(edges)})')
if SHOW_PLOTS:
plt.show()
with open(os.path.join(PATH_TO_TEXT_FILES, 'edge_props.txt'), 'w') as f:
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}/edge_props.png'))
plt.close()
def plot_nr_edges(edges, save_name):
if not os.path.exists(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}')):
os.makedirs(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}'))
sns.histplot(edges, bins=10, color='black')
plt.xlabel('Num edges')
plt.ylabel('Num networks')
if SHOW_PLOTS:
plt.show()
plt.savefig(os.path.join(PATH_TO_SAVED_PLOTS, f'{save_name}/num_edges.png'))
plt.close()