forked from lvze92/DMR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
220 lines (171 loc) · 12.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# coding: utf-8
from utils import *
# user feature size
user_size = 1141730
cms_segid_size = 97
cms_group_id_size = 13
final_gender_code_size = 3
age_level_size = 7
pvalue_level_size = 4
shopping_level_size = 4
occupation_size = 3
new_user_class_level_size = 5
# item feature size
adgroup_id_size = 846812
cate_size = 12978
campaign_id_size = 423437
customer_size = 255876
brand_size = 461529
# context feature size
btag_size = 5
pid_size = 2
# embedding size
main_embedding_size = 32
other_embedding_size = 8
class Model(object):
def __init__(self, lr, global_step):
# input
with tf.name_scope('Inputs'):
self.feature_ph = tf.placeholder(tf.float32, [None, None], name='feature_ph')
self.target_ph = tf.placeholder(tf.float32, [None, ], name='target_ph')
self.btag_his = tf.cast(self.feature_ph[:, 0:50], tf.int32)
self.cate_his = tf.cast(self.feature_ph[:, 50:100], tf.int32)
self.brand_his = tf.cast(self.feature_ph[:, 100:150], tf.int32)
self.mask = tf.cast(self.feature_ph[:, 150:200], tf.int32)
self.match_mask = tf.cast(self.feature_ph[:, 200:250], tf.int32)
self.uid = tf.cast(self.feature_ph[:, 250], tf.int32)
self.cms_segid = tf.cast(self.feature_ph[:, 251], tf.int32)
self.cms_group_id = tf.cast(self.feature_ph[:, 252], tf.int32)
self.final_gender_code = tf.cast(self.feature_ph[:, 253], tf.int32)
self.age_level = tf.cast(self.feature_ph[:, 254], tf.int32)
self.pvalue_level = tf.cast(self.feature_ph[:, 255], tf.int32)
self.shopping_level = tf.cast(self.feature_ph[:, 256], tf.int32)
self.occupation = tf.cast(self.feature_ph[:, 257], tf.int32)
self.new_user_class_level = tf.cast(self.feature_ph[:, 258], tf.int32)
self.mid = tf.cast(self.feature_ph[:, 259], tf.int32)
self.cate_id = tf.cast(self.feature_ph[:, 260], tf.int32)
self.campaign_id = tf.cast(self.feature_ph[:, 261], tf.int32)
self.customer = tf.cast(self.feature_ph[:, 262], tf.int32)
self.brand = tf.cast(self.feature_ph[:, 263], tf.int32)
self.price = tf.expand_dims(tf.cast(self.feature_ph[:, 264], tf.float32), 1)
self.pid = tf.cast(self.feature_ph[:, 265], tf.int32)
# Embedding layer
with tf.name_scope('Embedding_layer'):
self.uid_embeddings_var = tf.get_variable("uid_embedding_var", [user_size, main_embedding_size])
tf.summary.histogram('uid_embeddings_var', self.uid_embeddings_var)
self.uid_batch_embedded = tf.nn.embedding_lookup(self.uid_embeddings_var, self.uid)
self.mid_embeddings_var = tf.get_variable("mid_embedding_var", [adgroup_id_size, main_embedding_size])
tf.summary.histogram('mid_embeddings_var', self.mid_embeddings_var)
self.mid_batch_embedded = tf.nn.embedding_lookup(self.mid_embeddings_var, self.mid)
self.cat_embeddings_var = tf.get_variable("cat_embedding_var", [cate_size, main_embedding_size])
tf.summary.histogram('cat_embeddings_var', self.cat_embeddings_var)
self.cat_batch_embedded = tf.nn.embedding_lookup(self.cat_embeddings_var, self.cate_id)
self.cat_his_batch_embedded = tf.nn.embedding_lookup(self.cat_embeddings_var, self.cate_his)
self.brand_embeddings_var = tf.get_variable("brand_embedding_var", [brand_size, main_embedding_size])
self.brand_batch_embedded = tf.nn.embedding_lookup(self.brand_embeddings_var, self.brand)
self.brand_his_batch_embedded = tf.nn.embedding_lookup(self.brand_embeddings_var, self.brand_his)
self.btag_embeddings_var = tf.get_variable("btag_embedding_var", [btag_size, other_embedding_size])
self.btag_his_batch_embedded = tf.nn.embedding_lookup(self.btag_embeddings_var, self.btag_his)
self.dm_btag_embeddings_var = tf.get_variable("dm_btag_embedding_var", [btag_size, other_embedding_size])
self.dm_btag_his_batch_embedded = tf.nn.embedding_lookup(self.dm_btag_embeddings_var, self.btag_his)
self.campaign_id_embeddings_var = tf.get_variable("campaign_id_embedding_var", [campaign_id_size, main_embedding_size])
self.campaign_id_batch_embedded = tf.nn.embedding_lookup(self.campaign_id_embeddings_var, self.campaign_id)
self.customer_embeddings_var = tf.get_variable("customer_embedding_var", [customer_size, main_embedding_size])
self.customer_batch_embedded = tf.nn.embedding_lookup(self.customer_embeddings_var, self.customer)
self.cms_segid_embeddings_var = tf.get_variable("cms_segid_embedding_var", [cms_segid_size, other_embedding_size])
self.cms_segid_batch_embedded = tf.nn.embedding_lookup(self.cms_segid_embeddings_var, self.cms_segid)
self.cms_group_id_embeddings_var = tf.get_variable("cms_group_id_embedding_var", [cms_group_id_size, other_embedding_size])
self.cms_group_id_batch_embedded = tf.nn.embedding_lookup(self.cms_group_id_embeddings_var, self.cms_group_id)
self.final_gender_code_embeddings_var = tf.get_variable("final_gender_code_embedding_var", [final_gender_code_size, other_embedding_size])
self.final_gender_code_batch_embedded = tf.nn.embedding_lookup(self.final_gender_code_embeddings_var, self.final_gender_code)
self.age_level_embeddings_var = tf.get_variable("age_level_embedding_var", [age_level_size, other_embedding_size])
self.age_level_batch_embedded = tf.nn.embedding_lookup(self.age_level_embeddings_var, self.age_level)
self.pvalue_level_embeddings_var = tf.get_variable("pvalue_level_embedding_var", [pvalue_level_size, other_embedding_size])
self.pvalue_level_batch_embedded = tf.nn.embedding_lookup(self.pvalue_level_embeddings_var, self.pvalue_level)
self.shopping_level_embeddings_var = tf.get_variable("shopping_level_embedding_var", [shopping_level_size, other_embedding_size])
self.shopping_level_batch_embedded = tf.nn.embedding_lookup(self.shopping_level_embeddings_var, self.shopping_level)
self.occupation_embeddings_var = tf.get_variable("occupation_embedding_var", [occupation_size, other_embedding_size])
self.occupation_batch_embedded = tf.nn.embedding_lookup(self.occupation_embeddings_var, self.occupation)
self.new_user_class_level_embeddings_var = tf.get_variable("new_user_class_level_embedding_var", [new_user_class_level_size, other_embedding_size])
self.new_user_class_level_batch_embedded = tf.nn.embedding_lookup(self.new_user_class_level_embeddings_var, self.new_user_class_level)
self.pid_embeddings_var = tf.get_variable("pid_embedding_var", [pid_size, other_embedding_size])
self.pid_batch_embedded = tf.nn.embedding_lookup(self.pid_embeddings_var, self.pid)
self.user_feat = tf.concat([self.uid_batch_embedded, self.cms_segid_batch_embedded, self.cms_group_id_batch_embedded, self.final_gender_code_batch_embedded, self.age_level_batch_embedded, self.pvalue_level_batch_embedded, self.shopping_level_batch_embedded, self.occupation_batch_embedded, self.new_user_class_level_batch_embedded], -1)
self.item_his_eb = tf.concat([self.cat_his_batch_embedded, self.brand_his_batch_embedded], -1)
self.item_his_eb_sum = tf.reduce_sum(self.item_his_eb, 1)
self.item_feat = tf.concat([self.mid_batch_embedded, self.cat_batch_embedded, self.brand_batch_embedded, self.campaign_id_batch_embedded, self.customer_batch_embedded, self.price], -1)
self.item_eb = tf.concat([self.cat_batch_embedded, self.brand_batch_embedded], -1)
self.context_feat = self.pid_batch_embedded
self.lr = lr
self.global_step = global_step
def build_fcn_net(self, inp):
inp = tf.layers.batch_normalization(inputs=inp, name='bn_inp', training=True)
dnn0 = tf.layers.dense(inp, 512, activation=None, name='f0')
dnn0 = prelu(dnn0, 'prelu0')
dnn1 = tf.layers.dense(dnn0, 256, activation=None, name='f1')
dnn1 = prelu(dnn1, 'prelu1')
dnn2 = tf.layers.dense(dnn1, 128, activation=None, name='f2')
dnn2 = prelu(dnn2, 'prelu2')
dnn3 = tf.layers.dense(dnn2, 1, activation=None, name='f3')
self.y_hat = tf.nn.sigmoid(dnn3)
with tf.name_scope('Metrics'):
if self.target_ph is not None:
# Cross-entropy loss and optimizer initialization
ctr_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=self.target_ph, logits=tf.reduce_sum(dnn3, 1)))
self.ctr_loss = ctr_loss
self.loss = ctr_loss + self.aux_loss
tf.summary.scalar('loss', self.loss)
# Accuracy metric
self.accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.round(self.y_hat), self.target_ph), tf.float32))
tf.summary.scalar('accuracy', self.accuracy)
self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr)
with tf.control_dependencies(self.update_ops):
self.training_op = self.optimizer.minimize(self.loss, global_step=self.global_step)
def train(self, sess, features, targets):
loss, accuracy, aux_loss, _, probs = sess.run([self.loss, self.accuracy, self.aux_loss, self.training_op, self.y_hat], feed_dict={
self.feature_ph: features,
self.target_ph: targets
})
return loss, accuracy, aux_loss, probs
def calculate(self, sess, features, targets):
loss, accuracy, aux_loss, probs = sess.run([self.loss, self.accuracy, self.aux_loss, self.y_hat], feed_dict={
self.feature_ph: features,
self.target_ph: targets
})
return loss, accuracy, aux_loss, probs
class Model_DMR(Model):
def __init__(self, lr, global_step):
super(Model_DMR, self).__init__(lr, global_step)
self.position_his = tf.range(50)
self.position_embeddings_var = tf.get_variable("position_embeddings_var", [50, other_embedding_size])
self.position_his_eb = tf.nn.embedding_lookup(self.position_embeddings_var, self.position_his) # T,E
self.position_his_eb = tf.tile(self.position_his_eb, [tf.shape(self.mid)[0], 1]) # B*T,E
self.position_his_eb = tf.reshape(self.position_his_eb, [tf.shape(self.mid)[0], -1, self.position_his_eb.get_shape().as_list()[1]]) # B,T,E
self.dm_position_his = tf.range(50)
self.dm_position_embeddings_var = tf.get_variable("dm_position_embeddings_var", [50, other_embedding_size])
self.dm_position_his_eb = tf.nn.embedding_lookup(self.dm_position_embeddings_var, self.dm_position_his) # T,E
self.dm_position_his_eb = tf.tile(self.dm_position_his_eb, [tf.shape(self.mid)[0], 1]) # B*T,E
self.dm_position_his_eb = tf.reshape(self.dm_position_his_eb, [tf.shape(self.mid)[0], -1, self.dm_position_his_eb.get_shape().as_list()[1]]) # B,T,E
self.position_his_eb = tf.concat([self.position_his_eb, self.btag_his_batch_embedded], -1)
self.dm_position_his_eb = tf.concat([self.dm_position_his_eb, self.dm_btag_his_batch_embedded], -1)
# User-to-Item Network
with tf.name_scope('u2i_net'):
dm_item_vectors = tf.get_variable("dm_item_vectors", [cate_size, main_embedding_size])
tf.summary.histogram('dm_item_vectors', dm_item_vectors)
dm_item_biases = tf.get_variable('dm_item_biases', [cate_size], initializer=tf.zeros_initializer(), trainable=False)
# Auxiliary Match Network
self.aux_loss, dm_user_vector, scores = deep_match(self.item_his_eb, self.dm_position_his_eb, self.mask, tf.cast(self.match_mask, tf.float32), self.cate_his, main_embedding_size, dm_item_vectors, dm_item_biases, cate_size)
self.aux_loss *= 0.1
dm_item_vec = tf.nn.embedding_lookup(dm_item_vectors, self.cate_id) # B,E
rel_u2i = tf.reduce_sum(dm_user_vector * dm_item_vec, axis=-1, keep_dims=True) # B,1
self.rel_u2i = rel_u2i
# Item-to-Item Network
with tf.name_scope('i2i_net'):
att_outputs, alphas, scores_unnorm = dmr_fcn_attention(self.item_eb, self.item_his_eb, self.position_his_eb, self.mask)
tf.summary.histogram('att_outputs', alphas)
rel_i2i = tf.expand_dims(tf.reduce_sum(scores_unnorm, [1,2]), -1)
self.rel_i2i = rel_i2i
self.scores = tf.reduce_sum(alphas, 1)
inp = tf.concat([self.user_feat, self.item_feat, self.context_feat, self.item_his_eb_sum,self.item_eb * self.item_his_eb_sum, rel_u2i, rel_i2i, att_outputs], -1)
self.build_fcn_net(inp)