Skip to content

Latest commit

 

History

History
167 lines (124 loc) · 11 KB

README.md

File metadata and controls

167 lines (124 loc) · 11 KB

Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup

This is the code for the paper "Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup" accepted at ICML'20 (paper, talk, blog). Some parts of the codes are borrowed from manifold mixup (link).

Puzzle Mix image samples

Citing this Work

@inproceedings{kimICML20,
    title= {Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup},
    author = {Kim, Jang-Hyun and Choo, Wonho and Song, Hyun Oh},
    booktitle = {International Conference on Machine Learning (ICML)},
    year = {2020}
}

Updates

  • (21.01.04) ImageNet training for 300 epochs is conducted! (Top-1 accuracy: 78.76%, details are at ./imagenet).
  • (20.12.01/ torch 1.7) We built a multi-processing code for graph-cut, which runs on CPUs. As a result, the Puzzle Mix implementation (50s/epoch) is only slower about 1.5 times than Vanilla training (34s/epoch) on CIFAR-100, PreActResNet-18. To use the multi-processing, just simply add --mp [n_procs] in the command.

Requirements

This code has been tested with
python 3.6.8
pytorch 1.1.0
torchvision 0.3.0
gco-wrapper (https://github.com/Borda/pyGCO)

matplotlib 2.1.0
numpy 1.13.3
six 1.12.0

Download Checkpoints and Test

We provide a checkpoint of adversarial Puzzle Mix with PreActResNet18 trained on CIFAR-100. The model has 80.34% clean test accuracy and 42.89% accuracy against FGSM with 8/255 l-infinity epsilon-ball.

CIFAR-100 dataset will automatically be downloaded at [data_path]. To test corruption robusetness, download the dataset at here. Note that the corruption dataset should be downloaded at [data_path] with the folder name of Cifar100-C (for CIFAR100) and tiny-imagenet-200-C (for Tiny-ImageNet).

To test the model, run:

cd checkpoint   
python test_robust.py --ckpt preactresnet18 --datapath [data_path]

The other models trained with Puzzle Mix can be also downloaded:

Dataset Model Method Description Model file
CIFAR-100 WRN-28-10 Puzzle Mix [Table 2] 84.0% (top-1) drive
CIFAR-100 WRN-28-10 Puzzle Mix + Adv training [Table 2] 84.0% (Top-1) / 52.8% (FGSM) drive
CIFAR-100 WRN-28-10 Puzzle Mix + Augmentation [Table 7] 83.7% (Top-1) / 71.1% (CIFAR100-C) drive
CIFAR-100 PreActResNet-18 Puzzle Mix [Table 3] 80.4% (Top-1) drive
CIFAR-100 PreActResNet-18 Puzzle Mix + Adv training [Table 3] 80.2% (Top-1) / 42.9% (FGSM) drive
Tiny-ImageNet PreActResNet-18 Puzzle Mix [Table 4] 63.9% (Top-1) drive

Also, we provide a jupyter notebook, Visualization.ipynb, by which users can visualize Puzzle Mix results with image samples.

Reproducing the results

Detailed descriptions of arguments are provided in main.py. Below are some of the examples for reproducing the experimental results.

ImageNet

To test with ImageNet, please refer to ./imagenet_fast or ./imagenet (for 300 epochs training). ./imagenet contains the most concise version of Puzzle Mix training code.

CIFAR-100

Dataset will be downloaded at [data_path] and the results will be saved at [save_path]. If you want to run codes without saving results, please set --log_off True.

  • To reproduce Puzzle Mix with PreActResNet18 for 1200 epochs, run:
python main.py --dataset cifar100 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18  --learning_rate 0.1 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 400 800 --gammas 0.1 0.1 --train mixup --mixup_alpha 1.0 --graph True --n_labels 3 --eta 0.2 --beta 1.2 --gamma 0.5 --neigh_size 4 --transport True --t_size 4 --t_eps 0.8
  • To reproduce Puzzle Mix with PreActResNet18 for 600 epochs, run:
python main.py --dataset cifar100 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18  --learning_rate 0.2 --momentum 0.9 --decay 0.0001 --epochs 600 --schedule 350 500 --gammas 0.1 0.1 --train mixup --mixup_alpha 1.0 --graph True --n_labels 3 --eta 0.2 --beta 1.2 --gamma 0.5 --neigh_size 4 --transport True --t_size 4 --t_eps 0.8
  • To reproduce adversarial Puzzle Mix with PreActResNet18 for 1200 epochs, run:
python main.py --dataset cifar100 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18  --learning_rate 0.1 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 400 800 --gammas 0.1 0.1 --train mixup --mixup_alpha 1.0 --graph True --n_labels 3 --eta 0.2 --beta 1.2 --gamma 0.5 --neigh_size 4 --transport True --t_size 4 --t_eps 0.8 --adv_p 0.1 --adv_eps 10.0

Below are commands to reproduce baselines.

  • To reproduce Vanilla with PreActResNet18 for 1200 epochs, run:
python main.py --dataset cifar100 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18  --learning_rate 0.1 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 400 800 --gammas 0.1 0.1 --train vanilla
  • To reproduce input mixup with PreActResNet18 for 1200 epochs, run:
python main.py --dataset cifar100 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18  --learning_rate 0.1 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 400 800 --gammas 0.1 0.1 --train mixup --mixup_alpha 1.0
  • To reproduce manifold mixup with PreActResNet18 for 1200 epochs, run:
python main.py --dataset cifar100 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18  --learning_rate 0.1 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 400 800 --gammas 0.1 0.1 --train mixup_hidden --mixup_alpha 2.0
  • To reproduce CutMix with PreActResNet18 for 1200 epochs, run:
python main.py --dataset cifar100 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18  --learning_rate 0.1 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 400 800 --gammas 0.1 0.1 --train mixup --mixup_alpha 1.0 --box True

For WRN28_10 with 400 epoch, set --arch wrn28_10, --epochs 400, and --schedule 200 300. For WRN28_10 with 200 epoch, set --epochs 200, --schedule 120 170, and --learning_rate 0.2.

Tiny-Imagenet-200

Download dataset

The following process is forked from (link).

  1. Download the zipped data from https://tiny-imagenet.herokuapp.com/
  2. If not already exiting, create a subfolder "data" in root folder "PuzzleMix"
  3. Extract the zipped data in folder PuzzleMix/data
  4. Run the following script (This will arange the validation data in the format required by the pytorch loader)
python load_data.py
  • To reproduce Puzzle Mix with PreActResNet18 for 1200 epochs, run:
python main.py --dataset tiny-imagenet-200 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18  --learning_rate 0.2 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 600 900 --gammas 0.1 0.1 --train mixup --mixup_alpha 1.0 --graph True --n_labels 3 --eta 0.2 --beta 1.2 --gamma 0.5 --neigh_size 4 --transport True --t_eps 0.8 --clean_lam 1
  • To reproduce Puzzle Mix with PreActResNet18 for 600 epochs, run:
python main.py --dataset tiny-imagenet-200 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18  --learning_rate 0.2 --momentum 0.9 --decay 0.0001 --epochs 600 --schedule 300 450 --gammas 0.1 0.1 --train mixup --mixup_alpha 1.0 --graph True --n_labels 3 --eta 0.2 --beta 1.2 --gamma 0.5 --neigh_size 4 --transport True --t_eps 0.8 --clean_lam 1
  • To reproduce adversarial Puzzle Mix with PreActResNet18 for 1200 epochs, run:
python main.py --dataset tiny-imagenet-200 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18  --learning_rate 0.2 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 600 900 --gammas 0.1 0.1 --train mixup --mixup_alpha 1.0 --graph True --n_labels 3 --eta 0.2 --beta 1.2 --gamma 0.5 --neigh_size 4 --transport True --t_eps 0.8 --adv_p 0.15 --adv_eps 10.0 --clean_lam 1
  • To reproduce adversarial Puzzle Mix with PreActResNet18 for 600 epochs, run:
python main.py --dataset tiny-imagenet-200 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18  --learning_rate 0.2 --momentum 0.9 --decay 0.0001 --epochs 600 --schedule 300 450 --gammas 0.1 0.1 --train mixup --mixup_alpha 1.0 --graph True --n_labels 3 --eta 0.2 --beta 1.2 --gamma 0.5 --neigh_size 4 --transport True --t_eps 0.8 --adv_p 0.15 --adv_eps 10.0 --clean_lam 1

Below are commands to reproduce baselines.

  • To reproduce Vanilla with PreActResNet18 for 1200 epochs, run:
python main.py --dataset tiny-imagenet-200 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18  --learning_rate 0.2 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 600 900 --gammas 0.1 0.1 --train vanilla
  • To reproduce input mixup with PreActResNet18 for 1200 epochs, run:
python main.py --dataset tiny-imagenet-200 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18  --learning_rate 0.2 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 600 900 --gammas 0.1 0.1 --train mixup --mixup_alpha 0.2
  • To reproduce manifold mixup with PreActResNet18 for 1200 epochs, run:
python main.py --dataset tiny-imagenet-200 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18  --learning_rate 0.2 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 600 900 --gammas 0.1 0.1 --train mixup_hidden --mixup_alpha 0.2
  • To reproduce CutMix with PreActResNet18 for 1200 epochs, run:
python main.py --dataset tiny-imagenet-200 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18  --learning_rate 0.2 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 600 900 --gammas 0.1 0.1 --train mixup --mixup_alpha 0.2 --box True

License

MIT License