-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_setup_and_train.py
120 lines (96 loc) · 3.25 KB
/
mnist_setup_and_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import time
start_time = time.time()
data = pd.read_csv('/home/pi/Desktop/mnist_train.csv')
data = np.array(data)
m, n = data.shape
np.random.shuffle(data) # shuffle before splitting into dev and training sets
data_dev = data[0:1000].T
Y_dev = data_dev[0]
X_dev = data_dev[1:n]
X_dev = X_dev / 255.
data_train = data[1000:m].T
Y_train = data_train[0]
X_train = data_train[1:n]
X_train = X_train / 255.
_,m_train = X_train.shape
Y_train
def init_params():
W1 = np.random.rand(10, 784) - 0.5
b1 = np.random.rand(10, 1) - 0.5
W2 = np.random.rand(10, 10) - 0.5
b2 = np.random.rand(10, 1) - 0.5
return W1, b1, W2, b2
def ReLU(Z):
return np.maximum(Z, 0)
def softmax(Z):
A = np.exp(Z) / sum(np.exp(Z))
return A
def forward_prop(W1, b1, W2, b2, X):
Z1 = W1.dot(X) + b1
A1 = ReLU(Z1)
Z2 = W2.dot(A1) + b2
A2 = softmax(Z2)
return Z1, A1, Z2, A2
def ReLU_deriv(Z):
return Z > 0
def one_hot(Y):
one_hot_Y = np.zeros((Y.size, Y.max() + 1))
one_hot_Y[np.arange(Y.size), Y] = 1
one_hot_Y = one_hot_Y.T
return one_hot_Y
def backward_prop(Z1, A1, Z2, A2, W1, W2, X, Y):
one_hot_Y = one_hot(Y)
dZ2 = A2 - one_hot_Y
dW2 = 1 / m * dZ2.dot(A1.T)
db2 = 1 / m * np.sum(dZ2)
dZ1 = W2.T.dot(dZ2) * ReLU_deriv(Z1)
dW1 = 1 / m * dZ1.dot(X.T)
db1 = 1 / m * np.sum(dZ1)
return dW1, db1, dW2, db2
def update_params(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha):
W1 = W1 - alpha * dW1
b1 = b1 - alpha * db1
W2 = W2 - alpha * dW2
b2 = b2 - alpha * db2
return W1, b1, W2, b2
def get_predictions(A2):
return np.argmax(A2, 0)
def get_accuracy(predictions, Y):
print(predictions, Y)
return np.sum(predictions == Y) / Y.size
def gradient_descent(X, Y, alpha, iterations):
W1, b1, W2, b2 = init_params()
for i in range(iterations):
Z1, A1, Z2, A2 = forward_prop(W1, b1, W2, b2, X)
dW1, db1, dW2, db2 = backward_prop(Z1, A1, Z2, A2, W1, W2, X, Y)
W1, b1, W2, b2 = update_params(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha)
if i % 10 == 0:
print("Iteration: ", i)
predictions = get_predictions(A2)
print(get_accuracy(predictions, Y))
return W1, b1, W2, b2
#uncomment the line below if you'd like to train the model
W1, b1, W2, b2 = gradient_descent(X_train, Y_train, 0.10, 100)
print("--- %s seconds ---" % (time.time() - start_time))
def make_predictions(X, W1, b1, W2, b2):
_, _, _, A2 = forward_prop(W1, b1, W2, b2, X)
predictions = get_predictions(A2)
return predictions
def test_prediction(index, W1, b1, W2, b2):
current_image = X_train[:, index, None]
prediction = make_predictions(X_train[:, index, None], W1, b1, W2, b2)
label = Y_train[index]
print("Prediction: ", prediction)
print("Label: ", label)
current_image = current_image.reshape((28, 28)) * 255
plt.gray()
plt.imshow(current_image, interpolation='nearest')
plt.show()
#Test this with the following lines in the Thonny shell below:
#test_prediction(0, W1, b1, W2, b2)
#test_prediction(1, W1, b1, W2, b2)
#dev_predictions = make_predictions(X_dev, W1, b1, W2, b2)
#get_accuracy(dev_predictions, Y_dev)