This repository has been archived by the owner on May 27, 2022. It is now read-only.
forked from phadej/igbinary
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhash_si.c
268 lines (224 loc) · 6.26 KB
/
hash_si.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*
+----------------------------------------------------------------------+
| See COPYING file for further copyright information |
+----------------------------------------------------------------------+
| Author: Oleg Grenrus <[email protected]> |
| See CREDITS for contributors |
+----------------------------------------------------------------------+
*/
#ifdef PHP_WIN32
# include "ig_win32.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "hash.h"
#include "hash_function.h"
/* {{{ nextpow2 */
/** Next power of 2.
* @param n Integer.
* @return next to n power of 2 .
*/
inline static uint32_t nextpow2(uint32_t n) {
uint32_t m = 1;
while (m < n) {
m = m << 1;
}
return m;
}
/* }}} */
/* {{{ hash_si_init */
int hash_si_init(struct hash_si *h, size_t size) {
size = nextpow2(size);
h->size = size;
h->used = 0;
h->data = (struct hash_si_pair *) malloc(sizeof(struct hash_si_pair) * size);
if (h->data == NULL) {
return 1;
}
memset(h->data, 0, sizeof(struct hash_si_pair) * size);
return 0;
}
/* }}} */
/* {{{ hash_si_deinit */
void hash_si_deinit(struct hash_si *h) {
size_t i;
for (i = 0; i < h->size; i++) {
if (h->data[i].key != NULL) {
free(h->data[i].key);
}
}
free(h->data);
h->size = 0;
h->used = 0;
}
/* }}} */
/* {{{ _hash_si_find */
/** Returns index of key, or where it should be.
* @param h Pointer to hash_si struct.
* @param key Pointer to key.
* @param key_len Key length.
* @return index.
*/
inline static size_t _hash_si_find(struct hash_si *h, const char *key, size_t key_len) {
uint32_t hv;
size_t size;
assert(h != NULL);
size = h->size;
hv = hash_function(key, key_len, 0) & (h->size-1);
while (size > 0 &&
h->data[hv].key != NULL &&
(h->data[hv].key_len != key_len || memcmp(h->data[hv].key, key, key_len) != 0)) {
/* linear prob */
hv = (hv + 1) & (h->size-1);
size--;
}
return hv;
}
/* }}} */
/* {{{ hash_si_remove */
int hash_si_remove(struct hash_si *h, const char *key, size_t key_len, uint32_t *value) {
uint32_t hv;
uint32_t j, k;
assert(h != NULL);
hv = _hash_si_find(h, key, key_len);
/* dont exists */
if (h->data[hv].key == NULL) {
return 1;
}
h->used--;
free(h->data[hv].key);
if (value != NULL)
*value = h->data[hv].value;
j = (hv + 1) & (h->size-1);
while (h->data[j].key != NULL) {
k = hash_function(h->data[j].key, strlen(h->data[j].key), 0) & (h->size-1);
if ((j > hv && (k <= hv || k > j)) || (j < hv && (k <= hv && k > j))) {
h->data[hv].key = h->data[j].key;
h->data[hv].key_len = h->data[j].key_len;
h->data[hv].value = h->data[j].value;
hv = j;
}
j = (j + 1) & (h->size-1);
}
h->data[hv].key = NULL;
return 0;
/*
* loop
* j := (j+1) modulo num_slots
* if slot[j] is unoccupied
* exit loop
* k := hash(slot[j].key) modulo num_slots
* if (j > i and (k <= i or k > j)) or
* (j < i and (k <= i and k > j)) (note 2)
* slot[i] := slot[j]
* i := j
* mark slot[i] as unoccupied
*
* For all records in a cluster, there must be no vacant slots between their natural
* hash position and their current position (else lookups will terminate before finding
* the record). At this point in the pseudocode, i is a vacant slot that might be
* invalidating this property for subsequent records in the cluster. j is such a
* subsequent record. k is the raw hash where the record at j would naturally land in
* the hash table if there were no collisions. This test is asking if the record at j
* is invalidly positioned with respect to the required properties of a cluster now
* that i is vacant.
*
* Another technique for removal is simply to mark the slot as deleted. However
* this eventually requires rebuilding the table simply to remove deleted records.
* The methods above provide O(1) updating and removal of existing records, with
* occasional rebuilding if the high water mark of the table size grows.
*/
}
/* }}} */
/* {{{ hash_si_rehash */
/** Rehash/resize hash_si.
* @param h Pointer to hash_si struct.
*/
inline static void hash_si_rehash(struct hash_si *h) {
uint32_t hv;
size_t i;
struct hash_si newh;
assert(h != NULL);
hash_si_init(&newh, h->size * 2);
for (i = 0; i < h->size; i++) {
if (h->data[i].key != NULL) {
hv = _hash_si_find(&newh, h->data[i].key, h->data[i].key_len);
newh.data[hv].key = h->data[i].key;
newh.data[hv].key_len = h->data[i].key_len;
newh.data[hv].value = h->data[i].value;
}
}
free(h->data);
h->data = newh.data;
h->size *= 2;
}
/* }}} */
/* {{{ hash_si_insert */
int hash_si_insert(struct hash_si *h, const char *key, size_t key_len, uint32_t value) {
uint32_t hv;
if (h->size / 4 * 3 < h->used + 1) {
hash_si_rehash(h);
}
hv = _hash_si_find(h, key, key_len);
if (h->data[hv].key == NULL) {
h->data[hv].key = (char *) malloc(key_len + 1);
if (h->data[hv].key == NULL) {
return 1;
}
memcpy(h->data[hv].key, key, key_len);
h->data[hv].key[key_len] = '\0';
h->data[hv].key_len = key_len;
h->used++;
} else {
return 2;
}
h->data[hv].value = value;
return 0;
}
/* }}} */
/* {{{ hash_si_find */
int hash_si_find(struct hash_si *h, const char *key, size_t key_len, uint32_t *value) {
uint32_t hv;
assert(h != NULL);
hv = _hash_si_find(h, key, key_len);
if (h->data[hv].key == NULL) {
return 1;
} else {
*value = h->data[hv].value;
return 0;
}
}
/* }}} */
/* {{{ hash_si_traverse */
void hash_si_traverse(struct hash_si *h, int (*traverse_function) (const char *key, size_t key_len, uint32_t value)) {
size_t i;
assert(h != NULL && traverse_function != NULL);
for (i = 0; i < h->size; i++) {
if (h->data[i].key != NULL && traverse_function(h->data[i].key, h->data[i].key_len, h->data[i].value) != 1) {
return;
}
}
}
/* }}} */
/* {{{ hash_si_size */
size_t hash_si_size(struct hash_si *h) {
assert(h != NULL);
return h->used;
}
/* }}} */
/* {{{ hash_si_capacity */
size_t hash_si_capacity(struct hash_si *h) {
assert(h != NULL);
return h->size;
}
/* }}} */
/*
* Local variables:
* tab-width: 2
* c-basic-offset: 4
* End:
* vim600: noet sw=4 ts=4 fdm=marker
* vim<600: noet sw=4 ts=4
*/