-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdata_loader.py
214 lines (193 loc) · 11.1 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import sys
sys.path.append('./lib')
from google_bert import BasicTokenizer
import random
import torch
from treelstm import Tree
class DataLoader:
def __init__(self, train_path, dev_path, max_len):
self.tokenizer = BasicTokenizer()
self.train_path = train_path
self.dev_path = dev_path
self.max_len = max_len
self.train_seg_list, self.train_tgt_list, self.train_segment_list, self.train_type_list, self.train_category_list, self.train_a_seg_list, self.train_a_tree_list, self.train_b_seg_list, self.train_b_tree_list = self.load_data(train_path)
self.dev_seg_list, self.dev_tgt_list, self.dev_segment_list, self.dev_type_list, self.dev_category_list, self.dev_a_seg_list, self.dev_a_tree_list, self.dev_b_seg_list, self.dev_b_tree_list = self.load_data(dev_path)
self.train_num, self.dev_num = len(self.train_seg_list), len(self.dev_seg_list)
print ('train number is %d, dev number is %d' % (self.train_num, self.dev_num))
num_train_segment, num_dev_segment = len(self.train_segment_list), len(self.dev_segment_list)
num_train_type, num_dev_type = len(self.train_type_list), len(self.dev_type_list)
assert num_train_segment == num_train_type == self.train_num
assert num_dev_segment == num_dev_type == self.dev_num
self.train_idx_list, self.dev_idx_list = [i for i in range(self.train_num)], [j for j in range(self.dev_num)]
self.shuffle_train_idx()
self.train_current_idx = 0
self.dev_current_idx = 0
def segment(self, text):
seg = [1 for _ in range(len(text))]
idx = text.index("sep")
seg[:idx] = [0 for _ in range(idx)]
return [0]+seg+[1] # [CLS]+seg+[SEP]
def profile(self, text):
seg = [3 for _ in range(len(text))]
loc_idx = text.index("loc")
gender_idx = text.index("gender")
sep_idx = text.index("sep")
seg[:loc_idx] = [0 for _ in range(loc_idx)]
seg[loc_idx:gender_idx] = [1 for _ in range(gender_idx-loc_idx)]
seg[gender_idx:sep_idx] = [2 for _ in range(sep_idx-gender_idx)]
return [0]+seg+[3] # [CLS]+seg+[SEP]
def read_trees(self, batch):
trees = [self.read_tree(line) for line in batch]
return trees
def read_tree(self, line):
parents = list(map(int, line.split()))
trees = dict()
root = None
for i in range(1, len(parents) + 1):
if i - 1 not in trees.keys() and parents[i - 1] != -1:
idx = i
prev = None
while True:
parent = parents[idx - 1]
if parent == -1:
break
tree = Tree()
if prev is not None:
tree.add_child(prev)
trees[idx - 1] = tree
tree.idx = idx - 1
if parent - 1 in trees.keys():
trees[parent - 1].add_child(tree)
break
elif parent == 0:
root = tree
break
else:
prev = tree
idx = parent
return root
def load_data(self, path):
src_list = list() # src_list contains segmented text
tgt_list = list() # tgt_list contains class number
seg_list = list() # seg_list contains 0,1 to indicate profile and response
typ_list = list() # typ_list contains 0,1,2,3 to indicate constellation, location, gender and response
cat_list = list()
a_seg_list = list()
a_parse_list = list()
b_seg_list = list()
b_parse_list = list()
with open(path, 'r', encoding = 'utf8') as i:
lines = i.readlines()
for l in lines:
content_list = l.strip('\n').split('\t')
text = content_list[0]
target = int(content_list[1])
category = int(content_list[2])
a_seg = self.seq_cut(content_list[3].split(' '))
a_tree = self.read_tree(content_list[4])
b_seg = self.seq_cut(content_list[5].split(' '))
b_tree = self.read_tree(content_list[6])
seg_text = self.tokenizer.tokenize(text)
post_text = self.seq_cut(seg_text)
seg_tmp = self.segment(post_text)
typ_tmp = self.profile(post_text)
src_list.append(post_text)
tgt_list.append(target)
seg_list.append(seg_tmp)
typ_list.append(typ_tmp)
cat_list.append(category)
a_seg_list.append(a_seg)
a_parse_list.append(a_tree)
b_seg_list.append(b_seg)
b_parse_list.append(b_tree)
assert len(seg_tmp) == len(typ_tmp) == len(post_text)+2
assert len(src_list) == len(tgt_list) == len(seg_list) == len(typ_list) == len(cat_list)
assert len(cat_list) == len(a_seg_list) == len(a_parse_list) == len(b_seg_list) == len(b_parse_list)
return src_list, tgt_list, seg_list, typ_list, cat_list, a_seg_list, a_parse_list, b_seg_list, b_parse_list
def shuffle_train_idx(self):
random.shuffle(self.train_idx_list)
def seq_cut(self, seq):
if len(seq) > self.max_len:
seq = seq[ : self.max_len]
return seq
def get_next_batch(self, batch_size, mode):
batch_text_list, batch_label_list = list(), list()
batch_seg_list, batch_type_list = list(), list()
batch_category_list = list()
batch_a_seg_list, batch_a_tree_list = list(), list()
batch_b_seg_list, batch_b_tree_list = list(), list()
if mode == 'train':
if self.train_current_idx + batch_size < self.train_num - 1:
for i in range(batch_size):
curr_idx = self.train_current_idx + i
batch_text_list.append(self.train_seg_list[self.train_idx_list[curr_idx]])
batch_label_list.append(self.train_tgt_list[self.train_idx_list[curr_idx]])
batch_seg_list.append(self.train_segment_list[self.train_idx_list[curr_idx]])
batch_type_list.append(self.train_type_list[self.train_idx_list[curr_idx]])
batch_category_list.append(self.train_category_list[self.train_idx_list[curr_idx]])
batch_a_seg_list.append(self.train_a_seg_list[self.train_idx_list[curr_idx]])
batch_a_tree_list.append(self.train_a_tree_list[self.train_idx_list[curr_idx]])
batch_b_seg_list.append(self.train_b_seg_list[self.train_idx_list[curr_idx]])
batch_b_tree_list.append(self.train_b_tree_list[self.train_idx_list[curr_idx]])
self.train_current_idx += batch_size
else:
for i in range(batch_size):
curr_idx = self.train_current_idx + i
if curr_idx > self.train_current_idx - 1:
self.shuffle_train_idx()
curr_idx = 0
batch_text_list.append(self.train_seg_list[self.train_idx_list[curr_idx]])
batch_label_list.append(self.train_tgt_list[self.train_idx_list[curr_idx]])
batch_seg_list.append(self.train_segment_list[self.train_idx_list[curr_idx]])
batch_type_list.append(self.train_type_list[self.train_idx_list[curr_idx]])
batch_category_list.append(self.train_category_list[self.train_idx_list[curr_idx]])
batch_a_seg_list.append(self.train_a_seg_list[self.train_idx_list[curr_idx]])
batch_a_tree_list.append(self.train_a_tree_list[self.train_idx_list[curr_idx]])
batch_b_seg_list.append(self.train_b_seg_list[self.train_idx_list[curr_idx]])
batch_b_tree_list.append(self.train_b_tree_list[self.train_idx_list[curr_idx]])
else:
batch_text_list.append(self.train_seg_list[self.train_idx_list[curr_idx]])
batch_label_list.append(self.train_tgt_list[self.train_idx_list[curr_idx]])
batch_seg_list.append(self.train_segment_list[self.train_idx_list[curr_idx]])
batch_type_list.append(self.train_type_list[self.train_idx_list[curr_idx]])
batch_category_list.append(self.train_category_list[self.train_idx_list[curr_idx]])
batch_a_seg_list.append(self.train_a_seg_list[self.train_idx_list[curr_idx]])
batch_a_tree_list.append(self.train_a_tree_list[self.train_idx_list[curr_idx]])
batch_b_seg_list.append(self.train_b_seg_list[self.train_idx_list[curr_idx]])
batch_b_tree_list.append(self.train_b_tree_list[self.train_idx_list[curr_idx]])
self.train_current_idx = 0
elif mode == 'dev':
if self.dev_current_idx + batch_size < self.dev_num - 1:
for i in range(batch_size):
curr_idx = self.dev_current_idx + i
batch_text_list.append(self.dev_seg_list[curr_idx])
batch_label_list.append(self.dev_tgt_list[curr_idx])
batch_seg_list.append(self.dev_segment_list[curr_idx])
batch_type_list.append(self.dev_type_list[curr_idx])
batch_category_list.append(self.dev_category_list[curr_idx])
batch_a_seg_list.append(self.dev_a_seg_list[curr_idx])
batch_a_tree_list.append(self.dev_a_tree_list[curr_idx])
batch_b_seg_list.append(self.dev_b_seg_list[curr_idx])
batch_b_tree_list.append(self.dev_b_tree_list[curr_idx])
self.dev_current_idx += batch_size
else:
for i in range(batch_size):
curr_idx = self.dev_current_idx + i
if curr_idx > self.dev_num - 1: # 对dev_current_idx重新赋值
curr_idx = 0
self.dev_current_idx = 0
else:
pass
batch_text_list.append(self.dev_seg_list[curr_idx])
batch_label_list.append(self.dev_tgt_list[curr_idx])
batch_seg_list.append(self.dev_segment_list[curr_idx])
batch_type_list.append(self.dev_type_list[curr_idx])
batch_category_list.append(self.dev_category_list[curr_idx])
batch_a_seg_list.append(self.dev_a_seg_list[curr_idx])
batch_a_tree_list.append(self.dev_a_tree_list[curr_idx])
batch_b_seg_list.append(self.dev_b_seg_list[curr_idx])
batch_b_tree_list.append(self.dev_b_tree_list[curr_idx])
self.dev_current_idx = 0
else:
raise Exception('Wrong batch mode!!!')
return batch_text_list, batch_label_list, batch_seg_list, batch_type_list, batch_category_list, batch_a_seg_list, batch_a_tree_list, batch_b_seg_list, batch_b_tree_list