-
Notifications
You must be signed in to change notification settings - Fork 5
/
preprocess.py
executable file
·202 lines (157 loc) · 7.14 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import os
import glob
import sys
import torch
import onmt.io
import opts
def check_existing_pt_files(opt):
# We will use glob.glob() to find sharded {train|valid}.[0-9]*.pt
# when training, so check to avoid tampering with existing pt files
# or mixing them up.
for t in ['train', 'valid', 'vocab']:
pattern = opt.save_data + '.' + t + '*.pt'
if glob.glob(pattern):
sys.stderr.write("Please backup exisiting pt file: %s, "
"to avoid tampering!\n" % pattern)
sys.exit(1)
def parse_args():
parser = argparse.ArgumentParser(
description='preprocess.py',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
opts.add_md_help_argument(parser)
opts.preprocess_opts(parser)
opt = parser.parse_args()
torch.manual_seed(opt.seed)
check_existing_pt_files(opt)
return opt
def build_save_text_dataset_in_shards(src_corpus, tgt_corpus, per_corpus, nli_corpus, fields,
corpus_type, opt):
'''
Divide the big corpus into shards, and build dataset separately.
This is currently only for data_type=='text'.
The reason we do this is to avoid taking up too much memory due
to sucking in a huge corpus file.
To tackle this, we only read in part of the corpus file of size
`max_shard_size`(actually it is multiples of 64 bytes that equals
or is slightly larger than this size), and process it into dataset,
then write it to disk along the way. By doing this, we only focus on
part of the corpus at any moment, thus effectively reducing memory use.
According to test, this method can reduce memory footprint by ~50%.
Note! As we process along the shards, previous shards might still
stay in memory, but since we are done with them, and no more
reference to them, if there is memory tight situation, the OS could
easily reclaim these memory.
If `max_shard_size` is 0 or is larger than the corpus size, it is
effectively preprocessed into one dataset, i.e. no sharding.
'''
corpus_size = os.path.getsize(src_corpus)
if corpus_size > 10 * (1024**2) and opt.max_shard_size == 0:
print("Warning. The corpus %s is larger than 10M bytes, you can "
"set '-max_shard_size' to process it by small shards "
"to use less memory." % src_corpus)
ret_list = []
src_iter = onmt.io.ShardedTextCorpusIterator(
src_corpus, opt.src_seq_length_trunc,
"src", opt.max_shard_size)
tgt_iter = onmt.io.ShardedTextCorpusIterator(
tgt_corpus, opt.tgt_seq_length_trunc,
"tgt", opt.max_shard_size,
assoc_iter=src_iter)
per_iter = onmt.io.ShardedTextCorpusIterator(
per_corpus, opt.per_seq_length_trunc,
"per", opt.max_shard_size,
assoc_iter=src_iter)
nli_iter = onmt.io.ShardedTextCorpusIterator(
nli_corpus, opt.nli_seq_length_trunc,
"nli", opt.max_shard_size,
assoc_iter=src_iter)
print(' * divide corpus into shards and build dataset separately'
'(shard_size = %d bytes).' % opt.max_shard_size)
index = 0
while not src_iter.hit_end():
index += 1
dataset = onmt.io.TextDataset(
fields, src_iter, tgt_iter, per_iter, nli_iter,
src_iter.num_feats, tgt_iter.num_feats,
src_seq_length=opt.src_seq_length,
tgt_seq_length=opt.tgt_seq_length,
per_seq_length=opt.per_seq_length,
nli_seq_length=opt.nli_seq_length,
dynamic_dict=opt.dynamic_dict)
# We save fields in vocab.pt seperately, so make it empty.
dataset.fields = []
pt_file = "{:s}.{:s}.{:d}.pt".format(
opt.save_data, corpus_type, index)
print(" * saving train data shard to %s." % pt_file)
torch.save(dataset, pt_file)
ret_list.append(pt_file)
return ret_list
def build_save_dataset(corpus_type, fields, opt):
assert corpus_type in ['train', 'valid']
if corpus_type == 'train':
src_corpus = opt.train_src
tgt_corpus = opt.train_tgt
per_corpus = opt.train_per
nli_corpus = opt.train_nli
else:
src_corpus = opt.valid_src
tgt_corpus = opt.valid_tgt
per_corpus = opt.valid_per
nli_corpus = opt.valid_nli
# Currently we only do preprocess sharding for corpus: data_type=='text'.
if opt.data_type == 'text':
return build_save_text_dataset_in_shards(
src_corpus, tgt_corpus, per_corpus, nli_corpus, fields,
corpus_type, opt)
# For data_type == 'img' or 'audio', currently we don't do
# preprocess sharding. We only build a monolithic dataset.
# But since the interfaces are uniform, it would be not hard
# to do this should users need this feature.
dataset = onmt.io.build_dataset(
fields, opt.data_type, src_corpus, tgt_corpus,
src_dir=opt.src_dir,
src_seq_length=opt.src_seq_length,
tgt_seq_length=opt.tgt_seq_length,
src_seq_length_trunc=opt.src_seq_length_trunc,
tgt_seq_length_trunc=opt.tgt_seq_length_trunc,
dynamic_dict=opt.dynamic_dict,
sample_rate=opt.sample_rate,
window_size=opt.window_size,
window_stride=opt.window_stride,
window=opt.window)
# We save fields in vocab.pt seperately, so make it empty.
dataset.fields = []
pt_file = "{:s}.{:s}.pt".format(opt.save_data, corpus_type)
print(" * saving train dataset to %s." % pt_file)
torch.save(dataset, pt_file)
return [pt_file]
def build_save_vocab(train_dataset, fields, opt):
fields = onmt.io.build_vocab(train_dataset, fields, opt.data_type,
opt.share_vocab,
opt.src_vocab_size,
opt.src_words_min_frequency,
opt.tgt_vocab_size,
opt.tgt_words_min_frequency)
# Can't save fields, so remove/reconstruct at training time.
vocab_file = opt.save_data + '.vocab.pt'
torch.save(onmt.io.save_fields_to_vocab(fields), vocab_file)
def main():
opt = parse_args()
print("Extracting features...")
src_nfeats = onmt.io.get_num_features(opt.data_type, opt.train_src, 'src')
tgt_nfeats = onmt.io.get_num_features(opt.data_type, opt.train_tgt, 'tgt')
print(" * number of source features: %d." % src_nfeats)
print(" * number of target features: %d." % tgt_nfeats)
print("Loading Fields object...")
fields = onmt.io.get_fields(opt.data_type, src_nfeats, tgt_nfeats)
print("Building & saving training data...")
train_dataset_files = build_save_dataset('train', fields, opt)
print("Building & saving vocabulary...")
build_save_vocab(train_dataset_files, fields, opt)
print("Building & saving validation data...")
build_save_dataset('valid', fields, opt)
if __name__ == "__main__":
main()