-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path科研方法论答案.html
82 lines (82 loc) · 538 KB
/
科研方法论答案.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
<!DOCTYPE html><html lang="zh-CN"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=2"><meta name="theme-color" content="#222"><meta name="generator" content="Hexo 6.0.0"><link rel="apple-touch-icon" sizes="180x180" href="/images/apple-touch-icon.png"><link rel="icon" type="image/png" sizes="32x32" href="/images/favicon-32x32.png"><link rel="icon" type="image/png" sizes="16x16" href="/images/favicon-16x16.png"><link rel="mask-icon" href="/images/logo.svg" color="#222"><link rel="stylesheet" href="/css/main.css"><link rel="stylesheet" href="/lib/font-awesome/css/all.min.css"><script id="hexo-configurations">var NexT=window.NexT||{},CONFIG={hostname:"qingjiu.life",root:"/",scheme:"Gemini",version:"7.8.0",exturl:!1,sidebar:{position:"right",display:"post",padding:18,offset:12,onmobile:!1},copycode:{enable:!0,show_result:!0,style:"mac"},back2top:{enable:!0,sidebar:!0,scrollpercent:!0},bookmark:{enable:!1,color:"#222",save:"auto"},fancybox:!1,mediumzoom:!1,lazyload:!1,pangu:!1,comments:{style:"tabs",active:null,storage:!0,lazyload:!1,nav:null},algolia:{hits:{per_page:10},labels:{input_placeholder:"Search for Posts",hits_empty:"We didn't find any results for the search: ${query}",hits_stats:"${hits} results found in ${time} ms"}},localsearch:{enable:!1,trigger:"auto",top_n_per_article:1,unescape:!1,preload:!1},motion:{enable:!0,async:!1,transition:{post_block:"fadeIn",post_header:"slideDownIn",post_body:"slideDownIn",coll_header:"slideLeftIn",sidebar:"slideUpIn"}},path:"search.xml"}</script><meta name="description" content="1备注:正确与否不做保证,但尽力保证答案正确,仅供参考!! 第3章 数值计算方法3.1 常用算法和计算机辅助软件3.1.1【简答题】 试用你熟悉的程序设计软件设计一个三角追赶法的函数,求解问题为L*Ux=b,要求输入为L、U和b,输出为x。 我的答案: 1、根据题意,所输入的L、U三角矩阵用向量a,p,q来表示。"><meta property="og:type" content="article"><meta property="og:title" content="科研方法论答案"><meta property="og:url" content="https://qingjiu.life/%E7%A7%91%E7%A0%94%E6%96%B9%E6%B3%95%E8%AE%BA%E7%AD%94%E6%A1%88.html"><meta property="og:site_name" content="青酒的代码馆"><meta property="og:description" content="1备注:正确与否不做保证,但尽力保证答案正确,仅供参考!! 第3章 数值计算方法3.1 常用算法和计算机辅助软件3.1.1【简答题】 试用你熟悉的程序设计软件设计一个三角追赶法的函数,求解问题为L*Ux=b,要求输入为L、U和b,输出为x。 我的答案: 1、根据题意,所输入的L、U三角矩阵用向量a,p,q来表示。"><meta property="og:locale" content="zh_CN"><meta property="og:image" content="%0A6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAndSURB%0AVHhe7Z3rteI6DIUpZ2qgi2mCPm4HVMOv6YRiuNqykziO37byAH1rZQ2EYPmx%0AIzm2DnP7KIoAKixFBBWWIoIKSxFhB2G9Po/b7fN42beNvB73z+32oNL2wNT5%0AxsdeNhdej/7+6uP9ed5N+1vrcQmP9X7eP/fnm8VF/4jzfj52sRPk/fzcB9yI%0A7dibqrMCFxAW7p49vcbirSDmvXk9n5/nYR7LeKoR7W4T1uvxud2f1AkIT6Yi%0A8CrBweA70Hqa+bUTalI9CDsl10lgPYfbnnUbaRAQnqkf+ofBQu1FM0OhUNw2%0A4DZTHci+3+e19huE5d3R7gDYii3Vma71xDRdw8LJhDe6xjQmhrnLTLne0S1G%0A1NnzlraNT/IsqVrVQ+14GkvROZaYbQOL50HthW07rqt6VNhv81iugGKvJ/ic%0A77HMR5v3AdDYpK6qqRPiCx1tXxvwfbdOU3n+daDC1otCoC0zPnn3bQPvRt9Q%0AXgf0tVsG6rEuM2Cfx9CU5157cmGhIaEBc6kYvGpC9o29bYfn6pkGg+jXfyuU%0Are03eQ9jN+BdKzEeaykhLCzv3JumQfyC7Duh8dzCwufd4uggEIZfDxpIhHB0%0AIjqVP+4XlkvMY4VtL3Q/Na/GA0Jdl5e0T9+1kZxpEJZRLe6ox8t9jbLNBG9R%0A/fL5jTr+Mb1m8bmfhWM2yttdV+g4riMdjvE3n193+mPuSVlhpW0v4Iky1I9V%0AOO2f6pCzP3tbp9JtHmsntvObszJWWE3Q4O9+E65Y98EJhWUrSK714frhU3Ow%0AsOBRjlUV43rMkwqL3GokPJ6RORQcUOd5+uGFr72Y2+7ZPnUoVK6LCksRQYWl%0AiKDCUkRQYSkiqLAUEVRYiggnEdZbJr9IOYwTCAuiwkq7SmoE2Ne7B/YR54Vn%0AXsxcby6bzefA+Q6OF9altm7Oy/tF/UjCQTZIqDfdPH5eLZ+jg5PFwAIbszV1%0AvLAO3zyVBN5YOLwjM5cF9SSvb8/lcAW02mc0Xm3EeFxWWNMemcmXGj9HG1N+%0AXlg9dvi7vGFvT5QCYVkbXIYzAPBmfg5aC9f2WPbOk8oB7y8/Lyymw84bHovm%0AqM8adfE8zFwPYblCUmExNHAS+eczfvkAcxLzvfAAJOxEPZFnh4VmvlM6yDzH%0AKhIYQudSDxVWEDOI647AuTET0FD5dTnm9P2iOZZnB2m//GItghJYYMGnQsMm%0AeZL6X+dYHtL55/055mXCitohz5XQSDXwTouGpqdx3CDOU2GlkGNcUljS+efj%0AcszTwkrZmRPoEp0zX+Mfge9sr3Vuijn0Ouc6uXgoDDHOYyUZXu8QO7VFABVW%0AC/A08qpihvzlzQF8nbBmlz9oruDD6z5OSJHQlxu2dtLvcA4X1qE/GaSIocJS%0ARFBhKSKosBQRVFiKCCosRQQVliKCCksR4XBh/fv75/P3n33jsCxEjtu/KgMr%0A99MC5b62sTAquSAaz4df2NahrT/OKax5590KbMflZ9eD8gr4sBV8GqDUoNqN%0AYImm5vLhZwJ1aO2P03qsGb7LxgytgQa4IJWF4Y4ete+YFpbI77tX5sNn61DR%0AHycX1nYwphBpxAaR0Psqr1IpLKfsPtsJYdn9Uj8M9djj72Izvqxy0Tqs8Poj%0AxYmFhfwkE9s3HsveOW256BXCCnnLKttka56feMc8QIvggoPa0dbyfPhMHSYq%0Aosfhwso9FZq71ne/GDB3IjkNYMxNlwywD8JI6DPfNkjcBDPL4K3I/r57wB6L%0ALWdvIZsPn60DiPVHmNMLixsUFJbfqThXEv/pugKPFf9h3a3tsjx4+l5AWBjI%0AldA3Ygm0FenL/KJusGP58Pk6pPojzPmFRe7Xfyrsy3XPCwtecjZJ3sH9S+32%0APPiwsFxC3iJpj+qWKbKaUB1S/RHjlMKaJq18OK0ck+ueFtb27jX2xuXBx3EH%0ANWdvrqevAsu2HfaIXD/hCyvWHzkuEApLKRWWICSGzLgN5gRtjnC4sLLrWMUc%0A3MnwMPuqijlrTvzXCGt22RWT2VGsQjcd0vpyw9MBWi5CXFgIdam2j/NYypkQ%0AFRYeb3P/e1dOeMo16RIWRBFbqCtz1+knNOW6dAgLk+XUo2dqsZB4v0hUo54I%0AlbPRFwqxWBZzR8mnJIgqk8KhXJr+ORbWbjZuB94s88SiHuuraRQW5kY2zGFD%0A1H/ExzmEQWxB2FNhIECdY30jjcLC/GmanK/3kTgD8T8Kg3fyRtMWxHQ+4MHG%0ArbwrZ6I/FHYiLaxl8bJsj2sMZiqwl91ULvsx7f92YeHhwhbOHZyc9I3DbRMv%0AuwiF+2wu+0HtB1/vsWb4rh5lCHPMQrFM8037dgiVuezM0Pbn+RFhkRC8UDGF%0ACNPZEAq9L/YslcLyyu2xzd/FZntZRS3b9kvzA8JaHjQ2d6z1JvX55BXCinmK%0AZtv01eJcdpBovyA/EwqNl/BDEgmkOHd++ixwRL0NQlbsM982qBNBNpfdIdx+%0AOX5njsWDFhKWP4g4lxsAuqbAY6XzxLe2635DfiGWy76mrsxefmry7j8VtefO%0A54UFDzGbc57OJtpz5xsJtF+SrxbWNEnmw+nU/tz5tLBSeeK9ufPbsu0REE2s%0A/XvwQ6GwlBJhCUPi21kHw1FhbThYWDuHLClUWB5zqClcVxrJKnTRcWV9qbAU%0AEVRYiggqLEUEFZYiggpLEUGFpYigwlJEUGEpIvyUsF68MVxhjHOmsFhZsiEs%0Anz3AC6jJVVPsGkwLrGWb2MuirLN/OWBx+HBh7fujIO8Psgb4L4iyAjMbxNzZ%0ANikvPqTOtT783bJBTjELICEs9yYtyrV3si5Wos22N8+PCcvCfyybEdhqz854%0AgtiYYhCTjmQQeY/lUCsOau8qL61zz/JywpruXNMJSF+BQBpdN1J8uaxtB/qD%0ACPEEszoxgFH7NjQN2nesFlaxXarnpg9Q93ZPe02PZe/Gtt95N+TSejGIrpBi%0AwsoNtl/OghUdz2+8I1JelbB8DxTF3Fyw61/f44kvGgrTd1MyJbjwDxFqhJUa%0AwJGZoOXCojZWekku2wudubaluLCwIqEpASa3xU+FhXOsdOenBljOY9X+JrsB%0AnuvHhRXPF48LoB50tPU2iflKcrARjsZUhikRFq6ZL6F6b38JKEJgsv4zobAo%0AX5zmTrG+REfVeAgWFF+TCGcZ0bUOzAZu+1JfFhm9dsvftm+pd+j66Rwfm4qm%0Apxs5DhfW6AXSI36eOnxnY2BaQlIFJOrAA22cmusDHqyG7xIWXH9HZ7TjhE0W%0AFH5TgTyZZF0w8NH5W4Ca61H3qy+QosGjhDU09FQzeSgzz+PfV7CfXIvtJL6F%0A44WFhpAa2rVFA8l/47dD6FGKOYGwCPuzPK0x3Uxaj/RWis85hKV8HSosRYDP%0A53+ugqlMe8AgPwAAAABJRU5ErkJggg=="><meta property="og:image" content="%0A6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAApHSURB%0AVHhe7Z3rsYO6DoV3OaeGdHGaoI/bQarh1+kkxeRqyQaM8RNk84i+GWYIAT/k%0AZdmxtdl/X0URQIWkiHB5IY3D6/v3N3xH+1mKcfj7DtKJRvl8368/qgeO1/f9%0AsZcfxKWF9Hm/vi+yOsQkavzP+/uiRu0lpM97mMsPAf+93iStZ3FhIaEXy3si%0AML7f33dXj+TAIm5RL7LXcJ5Ay4Q0DtyLRvIQcM/wEvAW07kP9zp243Rway2u%0AfRjH7xB5bgb5rZ4XhNJGkv7Qtq4PGoU+t/AcEJKXrkzeeSG1rGOBkEzDzwWw%0Aw8Jy7vUu11Cr75EOhiiqwLtAHNTgpsIpKK157uEdQQEueQfnSLa8b/JYEsYN%0AEqvX4bzzQmIa1bHMI7mCiJ37zF7F+Z7vL5vvoPeU3FfFSEOaTTM82YYw3Xwn%0AoYbqWCtiQJ0p6gH8vIHXiTckylCaD7eJeSbfceM0EJKtPBsT58731JAvqniZ%0Apwk1nk9dY66GXHusy2LS214rKUuecUils837Q17D3O/ZMQg9XzRH8vKhEcKc%0ApUSeR1xIPA7PjegYAPfydVQk423me9sR8kgjNcQITwqDwsBcRhkhwS5zflS/%0AwTNAOO+F/C/XMiFF86Eylcw4YhQIySgYvXcY3XNjHO7ZbouwuJYezwc1xIDn%0AzEP2+3jjrIzeCFdIHx6Gp4aC+Cn/2arHhbT1hIso0nkv4JdmWiRpIaXymct3%0AwOhlHqkz6SGgN8eFdBgSQeuOdbSeFxKSrUjA7Z/LyUKCJ2mvIibv9eJcTEjk%0AXg9M+Fowu/0TyjVPHezRQk/usHsk/UsObcr9UCEpIqiQFBFUSIoIKiRFBBWS%0AIoIKSRHhJCF9RGNhlPM5QUgQEVawayRkFyt54Sy3eakA7K29Iruw6431iWM2%0A7i+kHVsgvxDzLMVnJPuSIBA9EbJRcKOdOGrj/kI6ugHJ0QMnb6JWAy/cWPwf%0AxBNBQG/y9vZahLBHcthh43sKyestUy8zwVry86/j6eeFdCQPfpY3vO2FDEVC%0AerxH4rE/UEXbi5rFWx9Kv9AjHcjjA49Ec893gZqyQorZOMHNhAT3HTMyNdYc%0AeYlzTBpj7nn6PnBEC+emDxAcZp4JGz2RR1EdLCwu81xJ4/IcKSOotJBSNo5z%0AKyHVxTzjs+Rcap1+l3hqgHBYPqlrYBZU1a82w96gwtsICZWfn6Nemo95lhVS%0AKqa6eTw1oDpHdFFNTEg5G6e4hZDc4CtzLA0Xj0WWEVJJTHXLeGow1z9iuK19%0A7BG6n/Pafp+ycQn3m2wXI+uRojytPjtRIR0BvbtPZZgjMdWteayQZle94xdI%0ACTzPcIaCVnVyh5yOmq2mu5DcpXjlOaiQFBFUSIoIKiRFBBWSIoIKSRFBhaSI%0AoEJSRLiNkNwFwJJwCjmwQj4tCtbtP8nQLn+8XBbvvCohZ/+bCMlsZPJzHJ/T%0Ar0Hd8vIqc6OV8hht8zfvMEd0ZTogLm//ewiJCz/tmzmVOgz19oLwjplVOU6g%0AVf6fkeyQEFSB/W/ikax7x2bTuA4DnVyuuQZhwCCl4tghJCftY3nvwMsfiJYB%0A4bqcli/VuP0nbjTZNpUM7rbbHlMf61wppJARd+e9g0gjSpQhH6KbsD9xESFZ%0AxaOg/mELbp6z9216HK677nZKLzQMJPJK9mQyZPB7P29gjU5HsOFTZYg0VDx/%0A4JWBhWXSC+fvUPhHA2n732mONBfeVGZtb3NtbTRcy80n6J5CjxSPZd7mXRfP%0AXUZVvDrCdPkkJT6UEyE9BbXP2v+2k+11RcKxznJCwjxkzo/K4sYyJ+OsCYn/%0A7JTKH0TLQPeKxHln7A9uM0eaJpWuu07HOssIKRbLXBLLDY5GNcbyB6kyzM/5%0ALe6wTdsegWdC9ne50WS7lhIhNYYaOtGOHehng+5C+u/ff77//mc/NOVkIcFb%0AnKsiplec92OFNLvtxGSzFe4wgKO3ntwhq1feD/ZISk9USIoIKiRFBBWSIoIK%0ASRFBhaSI0F1I/RYklZ6okBQRfnRow6r3tGi37F09jWVhtH0df1JIrlfkVeAT%0AVr+b40QJsKAaL3GLCwmNlCry5SbbqxCJo+SjCU5hrH9LbS2iQkK4Zu7/9eeE%0A1h0IyfFI03BgDA9h0Odij5UX0rH090B5iAQlpakSEkQQC+Es2yi8YI8N9Vbr%0ApZrFgO9Kn9Ke53XeETW4CULDPRfySKhIatKGQie8Df/JS49fbDUGpzIHvYFf%0A1ynNUP0S+UU9TcCWLC7znHSjGy/YdiSoG9qoskNM/cn4G4go/E9WzqQmDttc%0AyzUG3VPkcQPpI0SWT1Li9oQ6HVG7T2Q6uQD1cyRE/W16jKlksj7dPFIZ6KVz%0AedFBnIK1jgHv9T7tmWQnl6FQSDCQNSJcsN9j2C3T93OvioHGyBu6NdtYZTPM%0AtI4BP/o+7RqmSb1UejkKhYRK20Kh8rNtzbg+/A+9C5NH+8V0PVD++65slwhJ%0Agl75yFI/tB1EhZTnyu/TjqFCKmQedhoNzWXLJ9dFhaSIoEJSRFAhKSKokBQR%0AVEiKCCokRQQVkiKCCkkRQYV0C9wtqmsuWqqQ7sA4rrZm9v5L9ZaokIKkd/HP%0A5Zple6yQnhd7bfls3yF5BZ7tkWyc1LVirwGlvzPa8aoevbuQ+v45Ehqsc+y1%0AMzGWjr3m/C465D58jmTE0TP2uuwd2+a5jWBxJD0SpXnRGJNHC+nU2GtC4h3b%0AKyivq8YqPVJIZ8deT0hHOl7xZ//Ew4e2ECVCEuDC3qMFKqQWwGP9koqInxNS%0A69jr1Z8B0fErevpBj6S0QIWkiKBCUkRQISkiqJAUEVRIiggqJEUEFZIiws8I%0AaeQXa1VkbF/Ns+yppUjt9MvAC53J1U2s2E8LofkyLwunzp7hgUXa7kI67/XI%0Any924/k9TllBmY1YNrANXos3oXOvDz9bIsQ0c6MnhOR2UF69T4mCyhV8B3e2%0ArnF+SEgWfgVhRlCrvTLT02NtiEZLOgoh8h7JoUYQVNdVvNbOfcLbCGnqlWIx%0A0iQoRDK+AuEffqNBLMFoRzRYtAx2qBHa06sWUlG+VMZN/VHuei96L49ke1p9%0AjPQavFh+wItRIx4JjeYKJyakXOP66SxYkfEcxTsi6VUJyfcyQUxHQp7+vXu8%0A7M2GtnxvSQZ/wQslBDRRI6RUg0lGSJYLiepY4QU5XW8YzNUrxA2FFBlmMmAy%0AWvyrrXCOlDZ4qkHbeaT6KEp4ph8TUjpGOt7g9cC41psk5hvJxsXwIlMYpkRI%0AuGe+hcpd9Pdvgcn1Y4e20hjpL819YraDcWo8AAuI70kMTxmR1TZGFK7/Ul4W%0AFZ276W/rt5Tbv3/6zMemkPnpQ4ibDW1pznitcLj3ojFqh5hKSMShvhSl9P6A%0AhyrhOUKCK99hgOM4wyALiIZfeKqWZUFjR+dfAUrvR7nvsiCJStW6zRJEh5Jq%0AJg9k5mlY7DytKLvZTrpr6C8kFJhaXEZL1HD892cdhhIlyQlCIrCeg54r4ELM%0AJPNMb6SAc4SkPA4VkiLA9/t/gISZUXjQIbQAAAAASUVORK5CYII="><meta property="og:image" content="%0AAAAmAAAI5gEAAAMAAAABC6AAAAEBAAMAAAABD4AAAAECAAMAAAADAAAJDAEP%0AAAIAAAAHAAAJEgEQAAIAAAAJAAAJGgESAAMAAAABAAEAAAEaAAUAAAABAAAJ%0AJAEbAAUAAAABAAAJLAEoAAMAAAABAAIAAAExAAIAAAAmAAAJNAEyAAIAAAAU%0AAAAJWgITAAMAAAABAAEAAIdpAAQAAAABAAAJboglAAQAAAABAAAUmqQLAAcA%0AAAAEaXBwAOocAAcAAAgMAAAA2gAAFXYc6gAAAAgAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAFdpbmRvd3MgUGhvdG8gRWRpdG9yIDEwLjAuMTAwMTEu%0AMTYzODQAAAgACAAISFVBV0VJAABFTUwtQUwwMAAAAAAASAAAAAEAAABIAAAA%0AAVdpbmRvd3MgUGhvdG8gRWRpdG9yIDEwLjAuMTAwMTEuMTYzODQAMjAyMDox%0AMTowOSAyMTo0MDowOAAALAENAAcAAAAAAAAAAIKaAAUAAAABAAATkIKdAAUA%0AAAABAAATmIgiAAMAAAABAAIAAIgnAAMAAAABAUAAAJAAAAcAAAAEMDIxMJAD%0AAAIAAAAUAAAToJAEAAIAAAAUAAATtJEBAAcAAAAEAQIDAJECAAUAAAABAAAT%0AyJIBAAoAAAABAAAT0JICAAUAAAABAAAT2JIDAAoAAAABAAAT4JIEAAoAAAAB%0AAAAT6JIFAAUAAAABAAAT8JIHAAMAAAABAAUAAJIIAAMAAAABAAEAAJIJAAMA%0AAAABABgAAJIKAAUAAAABAAAT+JJ8AAcAAABkAAAUAJKQAAIAAAAHAAAUZJKR%0AAAIAAAAHAAAUbJKSAAIAAAAHAAAUdKAAAAcAAAAEMDEwMKABAAMAAAABAAEA%0AAKACAAQAAAABAAALoKADAAQAAAABAAAPgKAFAAQAAAABAAAUfKIXAAMAAAAB%0AAAIAAKMAAAcAAAABAwAAAKMBAAcAAAABAQAAAKQBAAMAAAABAAEAAKQCAAMA%0AAAABAAAAAKQDAAMAAAABAAAAAKQEAAUAAAABAAAUkKQFAAMAAAABABsAAKQG%0AAAMAAAABAAAAAKQHAAMAAAABAAAAAKQIAAMAAAABAAAAAKQJAAMAAAABAAAA%0AAKQKAAMAAAABAAAAAKQMAAMAAAABAAAAAOocAAcAAAgMAAALhOodAAkAAAAB%0A///0EgAAAAAc6gAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJi%0AWgA7msoAAAAAtAAAAGQyMDIwOjExOjA5IDIxOjE5OjA5ADIwMjA6MTE6MDkg%0AMjE6MTk6MDkAAAAAXwAAAGQABI/dAAAnEAAAAKkAAABkAAAAAAAAAAEAAAAA%0AAAAACgAAAKkAAABkAAAPbgAAA+gjIyMjCgAAAK7IMwEAIgAAAAAAAAAAAAAA%0AAAAAAAAAAFIBAAD/////////////////////////////////////////////%0A////////////////////////////////////////MTk4NjAxAAAxOTg2MDEA%0AADE5ODYwMQAAAAEAAgAHAAAABDAxMDAAAAAAAAAAAABkAAAAZAAAAAoAAAAB%0AAAAABAICAAAAAQACAAAAAk4AAAAAAgAFAAAAAwAAFRgAAwACAAAAAkUAAAAA%0ABAAFAAAAAwAAFTAABQABAAAAAQEAAAAABgAFAAAAAQAAFUgABwAFAAAAAwAA%0AFVAAGwACAAAABEdQUwAAHQACAAAACwAAFWgAAAAAAAAAGQAAAAEAAAAyAAAA%0AAQEOPxwAD0JAAAAAcgAAAAEAAAA2AAAAAQKU/zMAD0JAAAAAAAAAAGQAAAAN%0AAAAAAQAAABMAAAABAAAACAAAAAEyMDIwOjExOjA5AAAAAAAGAQMAAwAAAAEA%0ABgAAARoABQAAAAEAABXEARsABQAAAAEAABXMASgAAwAAAAEAAgAAAgEABAAA%0AAAEAABXUAgIABAAAAAEAAA2YAAAAAAAAAGAAAAABAAAAYAAAAAH/2P/bAEMA%0ACAYGBwYFCAcHBwkJCAoMFA0MCwsMGRITDxQdGh8eHRocHCAkLicgIiwjHBwo%0ANyksMDE0NDQfJzk9ODI8LjM0Mv/bAEMBCQkJDAsMGA0NGDIhHCEyMjIyMjIy%0AMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/A%0AABEIAGoAoAMBIQACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUG%0ABwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEU%0AMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJ%0ASlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOk%0ApaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy%0A8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1%0AEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJ%0AIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZ%0AWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqy%0As7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/%0A2gAMAwEAAhEDEQA/APY2kqBpKQyJpPeomegCut0kv3DuXAYMPukHpg96aZ18%0AzZn5iNwGevr/AE/MUgEMoHBI5qCW8EU8cbI+JMgPxtBAJwec9Ae2OKAHrMrj%0AcjBh6g5oEwLlM/MACR7HP+BoAhjv4nMoZ1Ty32Hc464Bx9eamjlc7i/97jjH%0AFACpcrIjNEQ2CR6cg4/mKZBqCSrHuIV3JAVTu6HHp/nn0NAFozBFLMwVR1JP%0AFEd7E9v56uDHtySOf5UASxTM77gW2Y4yP8mpkuozL5W9d4GcZ5pgTJOpkKA/%0AMBk8VZSTmgCm71Cz0AZZ06MMW3DkbThccfJ/8QPzNO8gxJN5TKJJRyccZ9f/%0AAK3+JouAxoE8uWEYEUgAKgdOMflgCmiFVmjk7xoUTHHBwT/6CKVwGyRRyTLK%0AwJdeh3EVHJE0k4lFxKoC7dgC4/UZ9O/agBlrAbTESOTAkSRoGbJGM/0I/KnR%0A21vFcvcxwRrM4wzqoBP4/wCelACPbJIuJJJHO4Nuzg8HI6Y6VLCGjjKu5fLM%0A2T6EkgfhnFACpFHHG0aDYrEk7TjknJ/nS+RH1UYYZ2kk4yc54z6n/OKAJ4f3%0AcSoSCQMZAxmnhE8oRbfkAAxnt6UAOhjETsV2gEAAAc8ep71ZUjdu7kYoAdsQ%0AkkDDNwT1NWoyN+7J5wOtMCqzVCzUgK8kjAqFXOTzk4wPWoY7lJ0LxkkAlTkE%0Acg4PX3oGQrexveyWoz5kaK59MMWH5/L+oqsmofPsmADNMYozGGYMQuTzjsdw%0A/wCAnpyACHxM8VsDcSFnGSzHHr7flUbX8K2qXLFvLfaBhST8xwOB7mgZN5gK%0A5z9aghvVureSSE7drMmZVIAKkgn6cf8A6qQEUd85jjimULcOjuMAqpCnGeeV%0AzleOoz7VPLc/YrEzTF5PKjyxVck4HPQUAPlvI4YFlYPtZlUDbzliAOD7kVOk%0AgZcgg4689KAILbUlunQIuxWJA8xtrNjuo/iH40+a9eGeSMBSAIscdC7lefpj%0ANMRatJ2miLMACHdeO+1iM/pVtWoAlVqnRuRQBVZxmoGcUAVpJMXMaeqMfyK/%0A41AtvBDKrxRrHgMNqKADuIJP1+UUDFwgkaQKA7AAtjkgZwP1P5moEt7WL/V2%0A8SYO4bUA59aQCRBYYEiUkqihQT1IFI6wyoI3jRlHRWXI9KAGxIsJk+YsZHLE%0AkD6Y4A6AAUrRwvC8LxI0T53IVBVs9cj3oAiFjaRxhYbeKDaCEaONQUz6ccVO%0AFQQiIgFNu3BAwR9KAFeOKYASxo4HZlBp0KLE0hDEmRtzZPfAH9BQA9YoRMZh%0AGglIwzgYJ+p71LtiLMxRNzABjgZIHQGmBIqR7kYKoKAhcDoD/wDqqdW5oETK%0A1To3IoAqN1qFqAM+d8avbqTgG3mJ/Bo/8aWG4W6j3qCvbDEZ9OxNAESXayXU%0AluEkBQZLNEwX8CRg/gapQXq39zG0X7tFMqFHkwzFWCkhRkEA9zg9Ox5Bkv2y%0ANr9rPbLvVQ27ym285/ixjt60yHUIJbqW3zskjfyyGYfM2N2Bzk8c/j7HCAfL%0AcolzHCyyFn6FY2IH1IGBUF3dndNbRMEmVFbe7bFG4kDnn0Pb2oAtSyhMZDH/%0AAHVLfypklysLwIytmZtqYHfBP4cA/lQBM86RwNMclAu7KjOfpjrUdrerdSFF%0AXYVUFkdh5i56ZUdB9aAIX1KdJZojEFkQM4DrgbAM5yCQc8emOeK1Y2LIrYIy%0AM4PUUwJU4qZTzQIlUnNToeRQBCxqFjQMzJ/+Q9aen2Wf/wBCiqyQAxYDk0gI%0AyartbxfaEn2ASIjIpHYMVJ4/4CPyoAccZzjk8ZqAwJvRk+TaclVAAbjHPFIZ%0AIcZyRyO9QT2sUyOMCNnGGdVXJHGRyDwcYoAsZpjwxSsGeNGZfusVBI+lMQ6G%0AJYovLBJGSTuOc5OT/OnQ28MBPkxrGD1CDA/LpmgBwtrfyxH5MewdF28DjH8u%0APpUyRqsryDO5wAeeOOnH40ATKalU0ATKanj6imIheoWoGZ12MXscu51CW03z%0ARruYcoeBg5PHTB+lUo9Qlt1QXKStCY5ZnneNgY1ViQrAL12+/O09cjIIl1K7%0Ams7dZIbZ7hmljQqmOAzAE8kdj/jxmory7dJEt41AklQ/McnYe2QvX+I9R936%0AkIYk0r2OlNKFa4aGHPBwXwvue+PeotQuvIFuBcRwSSyKFSQj5uRkdewz074+%0AhAJLe+iuc4+Q7yihmGWI9MH05+lD3ix6hFaFJC0iM4YIxAwR3xjv6/zoAPt0%0AH22S1LbXRVYkkAfMcDvnJIP5e4yt5fR2XlB0kdpW2qEGT9celAD1uwLQTMYs%0AklRtkyuc4+9j86qWGrSXbw7o12uwjOznDeUJC3sOcY+nNAGxUgoAkWpVoETL%0AU8fUUwKskUn2nzRK23bt8s/d6jn6/wCfXMMcTxPLzlXctksSecevTvxQBEFf%0A7XIzkFdo2AD7o75+pA/w4yWSNFKZIG2SfL88ZweDnqPQ80hiHmmMNykeoxQB%0AHwoCjoBxRSAieNWlR2zuTOMMcc+3enZGc4oAa0KP1QDPJwBzzn+dPdUlQpIi%0AurdVYZBoAdGiRoEjQKo6ADAFOWGJW3LGiseMhQPQf0H5CmAsMawxJFGMIihV%0AGc8CpwKAJVqVRQBMoqdByPrTENcVAwoGVXYrLNtQuwRCAMZ6t6kVWtHlkUG4%0AjMdyY1aRMjCk54GCfQ96BEMLXfmXZuI0VA/7na27K7R7Dvn/ADim2ss0kUa3%0AKbJjGGcAYAPcDk9D/MUhiGS4+2eX9nPk/wDPXcPT069eKgaQjUnJlkWKOIl1%0AaM7CflIIbHYZ79/bgAt8HkYINGKQBtpQKAHAU8CmA4LUoFAEgFSqKAJlFTIO%0ARTEDrULLQBQUH+07hfSGM/q9SMpoAik2xozuwVVBLMTgAetRqEcCWMqyuAQ6%0A87h259OaQw28mo2TOQRkH1oAaUOaUrzQAFTmlIoAUA08ZpgOGelSrQIlUVKt%0AAEq1Og6UwHutQMKQGbLbmW+uk3FQ8ESkjrjc+ce+KkiR0VkccKQFbOdwwOep%0APXNAFZba4hgk2zm4lPKCfaqg5JH3V+n5VT8q8tITJsTCIf3SMW3Mcc8IDyS2%0ASB749AZNfQzSIiwZDhtwbJAGPXDA4/P6VG0FydM8uYebOR820g559cKP0pAT%0AhszNHscbQDuI4Oc8D34/UU7bQAu2jZmgBwSnBOlMBwSpFSgRKEqRUpgTKhqd%0AE5FAErJUDJSApyeXFcyO7Kg8pcljgYBb/GlKggMORjPFAEEckcxIRvmABKkY%0AYZ9QeR+NRwyx3KbozkEAjI6gjIP0IoGOZKaU5pAMconLsqjpljimoYpE3pIj%0AKDjKkEUwHqoYZBzShOM0CHBKeFoAcI6kCUASBKlVKAJVSp0TmmBO6VCyUAVr%0Ai2SeJ4pASjjDAEjI/CohblPM+diHORk/d4A/pn8aQFeKwihmMwBaZl2tIeCw%0A98YB+uKjisRbIiwnCjap3c/KFwB/n1NAEcFkLU7Y87GLM3A5JOfrTGtbjzUm%0A81SyxlSiggMxxz146e/U0ATSQsyEZIyOdvB/PtUE1mxtRDGe4x2AA7cY9Ova%0AgBI7WWO1mjTeGJIiLMSRwADyfWlsop0hHnlndjnO3aAMfX/6+T6UAXBHzThH%0AQA8R81II6AJBHUqpzTAlVKnRKALDAegqFlHoPyoAjZV9B+VRsq4+6PyoAYyr%0Aj7o/KmFVx90flSGN2Lj7o/Kk2Lg/KPyoATYv90flQEX+6PyoAXYv90flRsX+%0A6PyoEOCL/dH5UoRf7o/KgBwVf7o/KnhV/uj8qAJFVf7o/Knqo9B+VMCUKPQf%0AlUqgegoA/9n/4AAQSkZJRgABAQEAYABgAAD/4TGwaHR0cDovL25zLmFkb2Jl%0ALmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49J++7vycgaWQ9J1c1TTBN%0AcENlaGlIenJlU3pOVGN6a2M5ZCc/Pg0KPHg6eG1wbWV0YSB4bWxuczp4PSJh%0AZG9iZTpuczptZXRhLyI+PHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3%0ALnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj48cmRmOkRlc2Ny%0AaXB0aW9uIHJkZjphYm91dD0idXVpZDpmYWY1YmRkNS1iYTNkLTExZGEtYWQz%0AMS1kMzNkNzUxODJmMWIiIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNv%0AbS94YXAvMS4wLyI+PHhtcDpDcmVhdG9yVG9vbD5XaW5kb3dzIFBob3RvIEVk%0AaXRvciAxMC4wLjEwMDExLjE2Mzg0PC94bXA6Q3JlYXRvclRvb2w+PC9yZGY6%0ARGVzY3JpcHRpb24+PC9yZGY6UkRGPjwveDp4bXBtZXRhPg0KICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0ACiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0ACiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0ACiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFj%0Aa2V0IGVuZD0ndyc/Pv/bAEMAAgEBAgEBAgICAgICAgIDBQMDAwMDBgQEAwUH%0ABgcHBwYHBwgJCwkICAoIBwcKDQoKCwwMDAwHCQ4PDQwOCwwMDP/bAEMBAgIC%0AAwMDBgMDBgwIBwgMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM%0ADAwMDAwMDAwMDAwMDAwMDP/AABEIARsBqgMBIgACEQEDEQH/xAAfAAABBQEB%0AAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0B%0AAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUm%0AJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOE%0AhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU%0A1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAA%0AAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEG%0AEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3%0AODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqS%0Ak5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri%0A4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/AP2nu7w72+Zup71TkvW7%0As351Fd3OZG/3jVOe5IrM0Jpb1gfvN+dVbi9Yj77fnUEtyeaqTXFAFmW8YfxN%0A+dVpL5j/ABt/30arzXGTVeW4yaALUl82377f99VWe+cD/WSf99Gq0s/H9arv%0AP70AWptQkB/1j/nVeS9kIOZH/wC+jVeSfFV5J+T39KALTaixPEkn/fVR/wBo%0ASY/1j/8AfVU5J8fjWNZ+PNH1Nr9bXVtPuG0vIvBHcI32TGc+Zg/Lja3XH3T6%0AVIG/JfSH/lpJ/wB9GoZdRkI/1kn/AH0azbHWo9W06G6h3+TcIske9CjFSMgl%0ATyMg55GaGuMnGf1oQFw6lIf+Wkn/AH0aYb9yc+ZJ/wB9GsSLxTa3Gu3Om+Zt%0AvbWNZWiYFS8bcB1z95c5UkcAjFWmu+2aLgXJNRkH/LST0+8aa1/ID/rJOP8A%0AaNUPtGT+tMNzz/nipuwL7alIf+Wkn/fRpjanIOPMk/76qj53/wBesfxp4/0r%0A4eaDJqms30djYxMF8xlLMzHoqqoLOx7KoJPpQB0janJ/z2k/76NNGoyH/lq/%0A/fRrgfhZ8ffCvxphvP8AhHtU+2Sae4jureSF7e4tyem6OQBgDzgkYOD6GuuN%0AzxRtuBebUpP+e0n/AH2aT+0JAP8AXSfgxrOM+0037RQBpnUZcf62T/vs0v8A%0AaMhP+sk4/wBo1lm53UC596ANRdRlDf65/wDvo05dRkP/AC0k/wC+jXP+IPEV%0Av4Z0ea+uPOaK3GdsSGSSQkgBVUcliSAB6muI8L/tBT6h8ToPDGteF9a8N3Wp%0AQPc6dNdvFJHeKn31/dk7HA52knj04BdmB6wNQk3f66T/AL7NMm1f7LFvluWj%0AXuzyYH86o/aPlFcf8YE8PzaTCuu29nfPcB7aztLtl8qWRxycN8uQBksegBx1%0AwUB6Gmpu44lkx6hzT0v5Cf8AWSf99GuP+HFlHofgTSbOG8GoR2dskIuQ+8S7%0ARgkHnP61ui6we9LUDVGoOP8AlpJ+LGpF1GQf8tJPX7xrFGoIZdokUyKMlc/M%0AB6kVOtyWGaNQNUao4/5ayc/7RqRdSkI+WST/AL6NeZ+Pdd8ZSteHwzDosUOn%0AoWL6kJM3TAZIQKRtA6ZJ5OfrWt8JfH0/xD+HOk6zcWv2G41CASSQZJCN0OCe%0A2Rke1OwHcLqjK2PMf/vo1MuoyA/6yT8WNYdvP5x8zO70qw1xtT+VAGtHqkmf%0A9bJ/30amXUpB/wAtJP8Avo1j28uF96c8/wA2PxoA3Ir+TH+sk/M1OmoP/wA9%0AH/76rmtB8R2+v2f2i1lWaDeyBlPBKnDD8CCPwrUS43UAayX8g/5aN/30aoeI%0APH0fhmJmmW9nWNTJJ5CNIY0HViB2/WohfAOV3DI6isHxp4pktI47WCxvrqO8%0AUia4tYfM8pO/4npVAdzpviBNRsYbqGZpIZkDowY/Mp5Bq7DqDN/G3/fVc7ob%0AJFpduscTQRqgCxNwUGOAR2q9b3GGqgNyO9b++/8A311qxHfuD95v++q5k+Jb%0AeHWYtPaT/SpojMiY6qCAT+ZFakFzzQBtRXzZ+8//AH1ViG9Y/wATfnWEdQWF%0AdzMqr0yTirMGoICF3ru64zzQBvQ3bAj5mP41ZivG/vN+dYcV01W4LncKANqK%0A9OPvN+dbkF2fIT5v4R3rkYLiuit5c28fP8I7UBocZd3H71/qapTXFNu5/wB8%0A/wDvH+dUp7mgCWa56/zqrNcc1HJcf5NVpZ/egCWWfj+lcz4o+J2l+E9ds9Nv%0AZJ473UEd7WNLeSTz9oJKqVUgt0AXqSygDkVszT4WvPfHFvdXPxq8G3a2N5NZ%0AafDe+fPHCWjgaVVWPJ9SVPTp1OMigGXG/aF8NSafDdC5uvsr3QsppPssm2xm%0AL+WEn4/dksCBux69Oat+L/ixpfg+7vLeZbq4m021+33iW0Jka1t8kea3t8rc%0ADLYGcYryXVPD2tXfwT8QafHoeqNqWoeKWv44BbENJAbtJQ/PH+rQ8E5BwDgn%0AFXPizZ634q1zxtato2tTLc6SsOhtYp5Md4XibeJ5RhvlkI/duwXaCNpY81yo%0AlM9E1f4vaTpOraJZu14zeIwP7OmS2dobglSwG/GAdozg44Iq54W8Xw+MtFi1%0AC2iuobeY5j8+IxtIvZgD1U9j0NeW+LfDF58Vfg5ofhS60jVNMkazikkvXgBO%0Any28fyFec73dduAOELdCVrtvhZ4i1bW/A9g+vaTLousQwrFdQFVWMyAY3R7S%0ARsbGQB93OO1Q9rlGF+0t491Dw14Ng03SYL5tU8SXUemW09uo/cFyPMIJOQ/l%0AiTbgH5gDxis/xZpGnX3jPwl4ZtNNj0+11C3+3ajEI1WWS1sgght5CMjb5jxg%0AjJ4QjvU3jMt4t/aD8K2Kgtb+GbSfWrgZ4Ekn7iAH3/1xHsDTfiRL/wAIr8Yf%0AB3iOVsWE0c+gXUhHy2z3DI8Dt6BpYxHn1kX1oCx3usa1Do+nTXl1II4bdDJI%0Ax7AVwPgb9omx+Il3Db6fo2ufbVvJLPUbWSKMSaKUZl3XBDlVDFeApZjk8cHH%0AR+N9avtL0VZLDRzrlw08afZvOSEAbs+YWfjCkA9z3GSMV5t8G/APizwB478U%0Aw332aTTtY1o63JqUYRVufMgRWt0jyXXbIOGb+FOu5qSs0Vd7HRfHe+/4Rh/D%0APiaH5bjS9ZtrOZgOZbW6kEEkZ9RuaN8digNd0823PSvN/jBA3jnxH4b8LxfM%0AP7Qg1vUW/wCeFtayB0z7yTBFA7hXI+6cd48+OaXQB+oXpsrOSQRyTNGjOI4+%0AXkwM4Hueg968yuP2hteB/d/Cvx9IOvzLZp/OevQNSVr21kiWV7dpEZBJGfnj%0AJGMjIxkds+lecv8AAG4Zfn+IXxEO7supxrn8RHmkrdQ16HoXhPxDceIfDlre%0AXWn3ej3FzGHezuSvnWx/uttJXP0JHvT77RLTU9Xsb6eJZbjTd5ti33YWcAFg%0AOm7aMA9QGPqapeGdJ/4Rvw/aWH2y+1D7JEIjc3kvm3E+P4nbA3MfXArj/wBo%0ADSfGfijweumeDW0m3lvH23s99cyQkQd44zGpYM/ILAgqM45IIOoWKHw30a21%0Ar4++MvHlqoh02a1i0eGZfu37QkmeYY6qGAQHuVb2qpH+0N4k1j4gax4TsfC0%0AC69HbRajppuLlktfsb8eZcvtyjhuNiBiSw9GIPA9h8VtOt5U1GP4e2VvptgY%0AtK07ShcxwSTDAQTO2SsSqDwgyS2ewBoxfA7xYnxZ/wCEmbXrHztc01LDXWXz%0AVa3CTeYq2YxhVCkx5Y7sHecniq33YvQ9oSdtvzbdxHzY6ZoNz83f8e9eaw6h%0AcR/tPXFub6+ks/8AhGY5ltGmbyI5DcspcJ03EKBu5OBjOOK7wXG6o2BnJ/GP%0A9oLw38J7WS11a81C3vJrR5ohb6bc3WBggEtFGwXkfxEevvXPfsu/tA6X8QfB%0APh/S1uNevNZ/sxJbia70y6RJGVV3sZ5EEb5J4IY57Zr0TXoJNW0G+s45jC11%0AbyQhuyllK5I9s5qp8P8AQpPBPgXSNHkuDcnTbOK2aTG0OUULkDt0p8yt5gdF%0AJL5i/Ng45GeeRXhWt614w8JftX+FbrxNZaHqGh67HPpmly2Jk8zSpNvmMzbs%0Abi4QKTjpjHfPpvxL0zX9f8IzW/hnW4PD+sb0eK7mtFuo8A5KMhPRuhI5HbB5%0ArH0DwBq2q+JNK1rxdqWm6lf6Kkn2OHTbSS2tYncbXkIkkdmYrkDkABjwTzRG%0AVkOxm/Gf4reKvAHjrw49jDaT6Tq2oHSRYyoFknlZCUmMn8KBh0A5UHuRXW2/%0AgO31vQoU8ZDRfE13DM7JcT2EaRxhmO1FQlgMAhc5ycZrjPGfwHv/AB/Zw3Gq%0AeJmk17TtSS+0u+SyVY9PVH3CMRBsNkcMxOW46YFQ/HHQLXw/8OPDtjvkuJI/%0AEWnbZZT880hulZnOOMscn+lG9kgPYLG2g0mxitbSGG3tYFCRxRoFWNRwAAOA%0ABVXxT4im8PaJNeW+m32rzR422lpt86XnHy7iq+/JHSiK53ovzfWpPO/Ws+od%0ADw/SfjdrjfHXxBNH8OfFUky6baRtbiS1WaJd0hVmzKFw2eMMehr3jR7+S/0m%0A3nkhktZJow7wyYLREj7pxxkdOK5vTvBdvpvjnVNcWaZ7nVIYYZI2xsjEQYLt%0A787jnNdAk5UVo7dCTB+Lngm++IfhS80ux1680JriNlaS3RWL5HQk87T3xXP/%0AAAA8Ra74y+ANot5JDb6hbyS6fJdoPLVoopGj81cDGSq8HpnnpxVqH4RXcfif%0AUr5fGnij7Dqjl5NOaWN4YsjBEbMpeMeykVtah8M9Pu9E0vTbea70/TdMYYtr%0AWXy47lAMeXJ/eU9SO5+pp8yDU89/Z41W68Z2morqnii9uNP8Pa9LZaeUucPe%0AbTuHmv1kGGwBnoOc167pXxK0PxHrU2m2Op2dzfW673gST94FzgsB3APGRwDX%0APaJ8H9B8L+KNQ1m3jkhbUG8+aDf/AKOr7NhkCdAxUYJ9KxPBPjbw78QPihFJ%0AYyr5mi28tpZwrburKpI8x2YgAA4AUZ9TSclcqx6zFdblFYXjXVfE1pMv9hWe%0AlXUXlkyG7uWhZT6KAprRifDE/pUsu24jKt/ECDiiL1FynnP7ON/4ubwdpvnW%0AuiDSZJpnaQXDm4ALsT8u3bndnv0r12O+B3c84zz2rB8L6Ha+FNHh0+xTybW3%0ABCLnOBnPX61d1LT4Na064tZ95huEMcm1yrYPoRyPqKbd2I8u1by7P4/wWP8A%0Aa12sOpadLJqm1zsnaM52g/w8Ht0GfWvRYPiFofgPRLOFTcR2KxqVKwvIsEZ+%0A6znB2g+pqCb4Y6FeWunwyWKuNLJNuxdty565OctnvnOaofETxXb2d2mitZ6g%0A0N9GDcz21o0qhAf9XkAjLdMnoKq6egHpNveLMiyK25WGQRTL17prKX7G0Md1%0Aj5DKpZAfcCqWnOotIVVTGoQAKR90Y6Vcil2moTA4GePxZP8AFmH/AErSFuId%0APJDeUxj2FgCMZzuyAc5r03QpbqOwT7c0L3GMSGIEIT7Z5qhFYW41L7b5a/av%0AL8nzO+zOcfnWhHPxVcwrGT8UVgu/CV75zlmWBzFEp+YydVIxzxj8KPhpeWsm%0AgWOoTSSXWoSWaPJLyzYOPlx+HStKPQ7M6o94YEa4mXYznnI9KWystP8ABeky%0AfZbUw26nJWJCxGfQU+YLGxoXiiHXBMsazRyWz+XLHKm1kOM9PpzxWqNQjhKh%0AnVSxwAT1rj/BVjLa32qS+ZNJbXMwkhaUYc5UZ98emaueLPCsfimSx3GRZLWZ%0AZUkVsbcEEj8cUw1sdhb3HHeumtZc20f+6P5Vx8MuF/rXTWjD7LH838A7e1AW%0AOFvLjMz/AO8eaozXHFOvp8Tyf7x/nVGebmgZJNMADVaWf5TTJ5siqs83vUsC%0ASWfg1Xa4wKjklzVeScjp0qQJ2uNoz+lQS3OBioTPz7VDLNQUl3JmnzWb4ksF%0A8QaJeWLTXFul7A8Blt5DHNEGUruRhyrDOQw5BwakeYkVBLcY+gGaB2MrwT4J%0AtvBcUzLc3moXlwkUc15dvvmmWJNkakgAYAz2ySzEkkk1e1ezt9bsJ7W7hiuL%0AW4QpLFIMq49DTnnz/Womnz/hUtiih8OLe3jjUsyxqFBYlmOOOT1J96bJN71C%0A8/HWoXmqSiKy0i1029vLmGFVuNQdZLiUks0pUbVBJ/hUdFHAySBkkmZ58/8A%0A1zUUlzkf/XqFp8/41VybIkaWmNcc7v7tRSyMvXcPrxUBn4pXGWfN3D/Gl8/3%0Aqn5+f9mkM2KQy59oHqPr603zsCqZmyKGnxQBRPg/TB4yfXvJk/tZ7cWhm+0S%0AbfKByF2btmAST93OTWoZMDr9KqrKSW54z2oM3z89qALXmk4oE238KqiXB+tH%0AnZNArFxLggdvantJlfr61SEh/WnGX8TQMsibaOapa1oOm+JoY49SsLO+jhcS%0ARrcRLIqOOjAEcEeo5pzy7Y2Zm2heT6VQ8M+MtJ8XwTTaTqmn6pFbyGGV7O5S%0AdYnHVGKk4Yeh5oJZtpJtCgdvTtUnnZ71R807akSQbaBloT5b8MfWpRcqKogn%0ANPWXFFwsXknz3qSKXis9JDn0qRZ/0oGaKT7x14qWNlGOF49qz45938xU0cua%0ABWLyT8VIk2fwqiJKlimLUCNBJvlqVZ8iqKTZ/wA9aljm/wA+lVcNC/HNxVmK%0Abn6VmpLg1NFPiqJNFLnJqaOfis2Kfmpkn20AakU9WI5hn1rLjmyKsRXFAGpD%0AP71ahuOP0rJimyasw3FAGtHNirMVxismGf3q1DPx1oA1o5uP5V1VnJ/okXX7%0Ag7e1cTHN/KutsnH2OH/cHf2q7geeX037+Q/7R/nVWeXFOvnzNJ/vGqcsvBqQ%0ACV6qyy4olkNVZZ8/nSAfNNmq0su2myy4NQSyYHX6UFIV59oHtXP6H8SdH8Wa%0AxeWOm3X26awYpcSQxs0ETggFDLjZvBPKg7hzxwao/GzxFc+Fvg74q1S0k8u6%0A0/R7u5hcHlHSF2Vh9CAfwpvws8PW3gz4WeH9PsYlWCy06BVVRjeTGpY/7zEk%0An3NO2lx9TopZaheTJNeGaJ8QPHuvfF/xR4Lm1jSdPezgs9b+3G3SVtIgm3br%0APZkCRsoB5jdAXbHMYHtLXkZmZFZfMChim75guSAcfUHn2NK1twuTSy/KRniq%0A/n54qOaTI9fXNfPv7Xfxi1jSPDqaba+CfGc0Nv4h0n/iZW6wfZrpFvYJCkWJ%0AvMZpMGNVKgFmweOSlFydkK9lqfQjy+9ef/Fr4u6r4NvV07w34S1LxnrRg+1z%0AW1tcxWsdpBuKq8kshwC7K4RVBLbG6AZrV+HXju98c2F1cXnhnXvC7wz+WsGq%0ArCJJRgHevlSONvJHJByDx3pPH3jfT/hrok+qXMMk00zxwQW1tGGutTuDlYbe%0AMfxOxJCgnABJJChiFs9SlqYv7P3x70/9oPwTNqtrY32k3mn3sum6lp94B59h%0AdR43xtjg8MpB44YcA5A7LUI/ttnNCks1u00bIJYiN8ZYY3LnIyM5FeX/AAl+%0AFmufDP4WapHH9jHjbxdqkusalIrCS3s7q6kUMyg48xLePAA48wxdt1cX+y94%0A58YfGvTpDr3ijTZ9J8L6zqPh68EVtA8ni949675CAFhVVZTshX5yjkkIQKco%0A9UT1Oq+A/hvw/pPxA1y/8LTQw6DeWsVtHEt4Z31S4ikk8+/+ZmZgS6R+aeZC%0AhblSjN6szAH2rl/Anw68HeA3vpPCuh+G9JklcW94+mWsMLEpnEchjGcruPyt%0A0zW875GM4zUyd2USyzhBTWnznHPrXy9+0b8dfE3/AAsD4exr8LPG3k6f4qaa%0AE+fYltUKWlygWJROcEqxf59oCqeh4r3z4d+LtS8ZeGVvtS8O6p4TunldDYah%0ALBLcKqnAYmF3TDDkfNke1OUbJMXWx0Rn2/jSGUkfz5rxD9t/4i+JfhL8KZ/F%0Ami61Fotn4ZeC8mjbyv8AickzKrWjF1OxCmeVwxJ4ICnPUeBtZuPAfh/Vte8c%0A+NtNk+1SRTzRzyQWmn6BvRdtvG5wxU5GGlYsxOeAQKnpcZ6MXxnFJ5/FVLPU%0AYdStI5reaOaCZQ6SRsGR1PIII4INUfFut3mheHLq80/S7jWry3TdDZQypFJc%0AtkfKGchR65JxU63sBrDUIzceSJE87bu2bhu2+uOuKm8zOOea+T7P40fEI/tY%0A6heL8INWkuU8MW8DWY16y8yNDcSsJC+7ZtJ3KADnKknqK+ntE1G5v9GtJrqz%0AbT7qaFHmtmcSNbuQCyFl4baeMjg44qpRcWJM8r+MXxw+JOhWmqav4J8G6Hrf%0Ah3Qw/wBpl1DUngur7yziT7PGqkYGCAzH5iMgY6998E/i5Y/G/wCFmieKtPhm%0AtrXWrYTrDNjzITyGQ44O1gRkdcVi/GLXrrVNLm8H6Ay/2/r1syF9uU0y2b5H%0AuHx6AkIvVm9gSM/xH4F/4Qv4ER+G/DusSeHdM0TTntpNRhuFjntFii+XaxBA%0AdmwWbqOe5p6NJdR67nonil9Pl8M3w1Zok00wt9qMr7UEYHzZPp6/lXm/7Puu%0A+C/GXjjxF4k8J3+hytqkFvC9rpkiExRQ7wkkyp92R9zcMM4UDnBrlf2RvE+r%0AfFT4Y+GvGXi7xctzLdaXLGdNjdI7G4ijYI1xMrDLS5XLMCFXfjGOvsHgDxN4%0AZ8VadNd+GbvQ760WUxSy6a8bosgAyrFP4gCOD2IpSVtATOjE2P8ACo9Q1q10%0AeFZbu4htY2dY1eVwilmOFXJ7kkADvTDJ81fO37V3xD8f/wBkWNhF4DtfsMvi%0AKxjtbv8At6L/AEllnVowybMoGYAZJO3uDRG70A+lkm5z7U9Zdx7GuN+GHibx%0AJ4hsbhvEnhyDw5PEwWGOLUlvhKuPvFlVdpB4xVn4kWcuq+Ebq3GpyaPatG5u%0A7yKXypYIgp5Rv4TnHPpnvR1sB1M00gUCNQxzg57VYjfH4V84/sgeI9Q8f/Dr%0Aw34k8ReL7q8ubE3lnaxJOY47qOB2iaW4B/1kmFDFjwMg8Hk+2eEviNofjlrp%0AdH1Sz1FrFxHcLBIGaBiMgMvUZHIz1FHK0wOmWXHNSJPxyccc89KpJLx6183f%0AHe3XxZ8aLi0j+JmnW7Wu1W8J6xPJY2s+VBG2VCrPng/xDsR1FVGN3YD3fxZ8%0AePCfgiRo9Q16wjuV/wCXeN/OmP0RMt+lb/gnxdD410CHUreG8t4bjOxbuBoZ%0AcA4yUbkZ6j2NeJ+C/GDfB2JY9Q+EtxplvwTqHh4RalC3qxI2y/8AjpPWvZvB%0AfjCz8b+G7TVrDzvsl4u+PzoWhkHYhkYBlOR0IzRJW2A1NVnvItPkazW3a4VS%0AUEzFUz7kAmuQ/Z0+J2pfEb4Zya1rS2sNyLy5jYQAiJEjkZBjPXhetdZqV4tt%0Ap1xIzbVjiZifTg15F+y1DJefskR/Z2ZpLqC/kjI6ktLKRj604xTV/Ml7nReF%0A/iB4g+LPg3VvEmjX8On2sEkw0qBoRItysRILSE84cqRgYwPWuz+DvxLj+Knw%0A603XI4/JN7H+8iDbvKkUlXXPswIrzL9ljV4NC/Y702eSTH2KwuftDE9HVpA+%0Affdmtr9jzQbjw3+z9okd0GWS7M15tP8AAJZGcD8iKqdkB69HLg89TU0cx/8A%0Ar1nw3CuvysGA4yDVhJuODSQi9HISasQzY5rPjkx71YjlxQI0oZdtWIpazo5e%0AasxS0AaUMpNWYZc1mwyc1ailoA0Y5cj6V19nN/ocP3fuD19K4iGTiuysZP8A%0AQoeP4F/lVcwHnd62bmTn+I1Ukk+ZvrT7+6VbqTn+I/zqlLdBe/XpUjEnlyMe%0A35VUnk5NPuJ1C9frVOS6XYfmwPegpDnlwtQSS80x7lfXp71CJ943flQM4r9p%0Ay8W0/Z18cs7bVGhXgJ9MxMM/rW2dLm1LwBDp8N5caZNLp6Qx3Vvt862YxgB1%0A3AjcOoyCK4/9r+/W1/Zj8dlj97Rp1H1ZcD+ddtZzeRpVqrcHykHH+6KOgupw%0Adv8As2aNZ+OrfxB9u1R742a2mp7pExrZWZZ1e4wuSwdQAFwNihPuDbWf4Eub%0AQ/tW/EdYfs4uP7H0YzBCN7Pm8zu7khdo55A2jpivTXnqk81vbXO4JGssv8QQ%0Abm6d+vpSbYWLEsmUrm/iH4Fs/iLpdlY30lxHDZ6jaamvksFLSW06TIpyD8pZ%0AFBHXGcYPNbVzebcKe5qBpNzc/lUX1uBO0275ux5ry34zfs2/8Lk8Z6ZrTeNv%0AGnh6fR4Xis4tGuo7eOAvkSSDKMd7rhS2fujAwC2fSDLgD+lN+0+9HNbVD3PM%0AdG/Zdj0bQJrNvHHju9ur69SfUdRudRV72/t0jaMWTSbMpbgO5xHtYM7MGDHN%0AXPhr+zd4f+E3jHVNU0mS8htdQupLy20oeWlhpUsscccrwIqggssarySFG4KB%0AubPfPcYNRyXG4ckcdqXtGFjyb9kWXT/+EZ8ZLpv2NbVfGOrhIrZl2RqLggYC%0A8AHbkdsGvWPM4B9u1VI/IsA3lxQxBsA+WgXdgcZx6dKJbkMB2HtRzNu4Ix/G%0APgSz8Z+IPDt9dSXEcnhq/bULdY2AWSRoZIcPwTjbKxwCOQO2Qd4zZFVGuVB5%0ANI10FWk7gcN8SP2cNI+LtzrjeItQ1jVLDV7JrODT5JlFrpRZNjywJt4lYfxt%0AkjJAxuOec8d2/gn9mX4U2beI7yHWJFuPLtrnxBOjNfXki+WrSEqEAVABu24R%0AF4GevrhueF5qC7hhvNvnQQzbc7fMjDbc9ev4UczSsByn7N+m6PofwU0G00PU%0ALfVNLgt9sN3bAi3mO47jFn/lnuJC442gYrti3NVoXEUQChVVegHAFKswb3pO%0A/UDPg8E2Nr8QbrxKvnf2jeWMWnuCw8sRxu7rgYzkmQ5JPp6VtJc5H6VWM2BS%0AGfBpAeO+Jv2GtD8VeOtX8RSeNvidY6lrkge6/s/xFJZxMF4RQsYACqDgDt+J%0AJ67RP2ctC0W00G0F94gurDQ0ZRaXWoyTRalIzbzNdBuZ5N3OWPU5xXbLOc9v%0A8Kd5245/Kq9pJ6Aec6N8GvBP7PXgbWbiZ7ptCiMl1Il5L50dlF5hmMUSgDCG%0AQltvOScegqv+zX4k8L+ONQ8TeI/D91Zzza7dxS3kVopEdttjCxqxwAZSoBbG%0AeT6Yr052EoIZQwPUHoajjSOHISNUX0UYo5tNQLqyc/55rL8X+DrHxxaWUV95%0ArLp99DfwiN9v72Jty59RntVtbkf4U7zsnmknYC4sm0VheJ/h5Z+Mdc02+vLj%0AUMaaWxaR3LJa3OSCPNjHEm0gEbuhrTR6kSbHrTjIDj/CXwY8IfBG11zUraOS%0A0sbqWa9uVuJmlgtA53S+Wp4jUnkgd/pWf8GIWu/i74v1e1vbHWNH1a2sntb+%0A3iEe3aJF8jK8OqDawPX5yDXohlDqQRkHgg9DT4diBdirGPRRgVTk3uGheSTB%0Aql4k8HaN43szbazpWnarbkfcurdZR/48KkjnB9asLJzQB5vN+yrpWiTmbwjr%0AniXwXN1WPT70yWYP/XvLujx9AK9I8IWN7pHh+1t9Rv8A+1L6GMJPd+UIvtDD%0A+IovCk+g4qQS7qmV6L33APEGjR+J9Kks5prqGKYFXMEhjYgjBGRz37Vn/C/4%0Aa6b8I/DcOj6L9qj023J8qGaYyiLJyQpPIGTnGa1Y5uP/AK9Sxz/IaA8jmx8D%0A9BZby3WO5h0zULg3VzpyTFbWWRiCx2ejHkgcEk8V2Bgji01oFVo4RHsAj4Kj%0AGOMfpUEc5J4//VUqSbgBTv1F5HI/AP4YzfCzRNTt3vL66h1C/e7hS6l8ySBC%0AANvt0zgcc16FHLjiqMUmDipkkyKExF6OXJqxE/8AOs+KTbVmCTHfmrBo0IJe%0AKswyYNZ8UnNWoZOKCS9DL0FW4JMGs6GXFWoJf1oA0YpcCuzsZ/8AQoeR9xf5%0AVwkT8V29g3+gw/8AXNe3tQB5fqb/AOlSDn75x+dZtxLsPcD1q5qXy3Un++ef%0ASs2VvM2nHfrWgBJKTbN+vNU5n+X6dqszFkhP9309KozknGM4xU3QxkkmN/y5%0A4/OiKbdHwCOBxUNwzIG246U7zB5Awe1ToUjzH9sebzP2Y/GSt917Hax7kF0G%0APxzXfytts8M2fKAA/AYrzD9taVk/Zk8TA5xJ9lj46nddwD+tenXSAiZf7rEG%0Aq6C6gX8+3HbjFZt3iC4Tb/DkdatSP5EHy7m9sVTuX3ure9SUMlbfOu7duY8Z%0APSpgdvf86pSzqLlXG8bR0xUwn8wN97uenaolcBzyfL1/+vVG9l3yr821eT9T%0AVjzln4DfUelNcB4wvGMdxUKVgZWiuW8l2H8OQKpy3gkhXazeax5PpXHftF6U%0ANQ8Ey3E3iLxJodlZRSkQaFN5F5qV0wC28SsAXY7shYkI3sw3ZAxV/wCGVjrW%0AmfDTQV8TXEd14jjsLcanIgAR7nYvmkbePv56DHpgVppa4vI6GWVpZdvZRzUM%0Aly0DFeW4ytOWXyrv/eFV3Yz3TKNxC+nagY4M09uG3srdSM02S4aTa3zYz1FM%0AjBmTacA9KnuI9kKjcfl9KGTZgqMki/MTu6irG/OO461BGVmXPOKV5Ao9vSsm%0AzQi1a++zRr82C52gUyO4+z7fm4bg1HfqHuY2PzL0z6Utw+VG0bjmr6El4PgU%0ArTBapythepHuDVfUHdraRYZFSYoRGW+6GxwT7ZqeUDWjlBp/mdO/evJPhNZe%0AJNF+L+tWt14p1DxRof2KKSX7XBEq2F6XbdHCyIvylNpKtnbxzya9S+04+9RY%0AB0t9skxx81NjvfM+Vuuao3U226HPfjNK0pSZWPOeB6VXKgNCa48uNmz0FJYX%0AXmRAsct/Sq1xIZHCr16mnoyxOv8AdxigDRD7FqRZOcVAg4+b8KkU8+tSAxpm%0Aabrt2/rVlLlhbs1QmFZGzjpTpZVt4+ePSmgJY55E2Nu+8elWWlYpuDfhWcgk%0AEWWwAtVPGfjrSfAHh2TVNa1C10vTYSFkuJ22opJAAq0B0FpdMThufSpzOS5C%0AmuO+HPxg8L/FG5uV8O6xa6t9iUNNJb5Mce7plsYyajtfjh4Z1TXbeyt9Xt2k%0Au52tIHwyxXEy5zGkhG1m4PAOeKfKDO4gutzkenWpIp2kk46VUtZQYW/vDqal%0AtmY4bOKQi6LkrF83yn0p63bRKv8AEW44qtI/7rtSQAmQM3TsDTshGxBLhcVZ%0AjkqhC/GasI2agCwLomQqKs2kxbrVBfkf9KtQnAFaB0NKOTGKsQS1lh2wMVYi%0AnZcdKCTVhfjPvVmGTFZ0EnHNW4n5FAF5bjYvvXcadPnT4Plb/Vr/ACrz5n3Y%0APpXdaeQdPg4/5Zr29qrlA83v0JuZOf42/maz5ImX860b9t11J/vn+dUZeTil%0AcqxXmy6bW/SqxXYe5+tWZX5z+lVpXz1Oam4yvdR5x3/CoJYi0LBTtx0qxM3+%0AfSq8j4UilzDPI/2143H7Nusq3O+80yMf7ROo2w/WvSPFE11pej6jNZ2jahdw%0ARSSQ2yuENzIASE3HhctgZPTOa87/AG0WD/Ap425E2uaJGQRnOdVtBj8eld38%0AQfD994r8OXVjp+t33h68mkQpf2ccUk0IWRWYKsqsh3KChyp4YnqKd9Cep4j8%0AIPiX8RfHnxB8TeE77U/DscngDxBHDq2qJYnbq1tNFHLHawRb/wB0wDSAysWI%0ACRjaxLke1xKrOysys0ZGQD93PPPpxjrXnnhD9lPQfAfxPvvEWn3mpLa6g1pd%0AT6bIytDPfW8Usa3jtje8hEzu24kNLiQ/MorK/Zoa1/4WV8bFt/IwvjcAiIg8%0A/wBlafuz77y2c98+9EmnsEbrc9UuLXzTlcKx718x/H79rSHT/iL8O7GHR/iR%0AptvZ+KZBqOzQLpF1OFLK8URRhQftAaXy3CDsm84C5H1A7cn29+9cf48+GUPj%0Ajxh4P1Z7qS1bwjqUuppGqgi6L2k9tsJz8oHnFsgE5XHGciIySepVrjvhj44g%0A+IvhiPV7Wx1jT7e4d0EWqWEljcjaxUkxSAMAccEjkHIrzn9rP9oTxN8AoNJ1%0ArTdFh1Hw7a6lZWerI0bNdX/2uXyUjtMMFDodrMX4YyIox85X2hmyDubnpXi/%0Ax4/ZYu/2hLLW7TXvFNxJYvNFc+HbWOySOHQZk2N5zYObiTKMAzkbFlkCgE5B%0AFq/vbA0zQuPgjdfGrRIm+Kllpkl9p99Ld6baaHqF5bx6ZG8YVVeRXQzTqDIp%0AlCqpDHaqgnPeeGfClj4Q8P2el6fC1vY6fEsEEZcvtVemWbJY9ySSSSSSTXjP%0A7UXhGbwj8ALGO61K6vtUvPGOi3N3eLI1uLqebVLYP8itgRBTtWMlgFRc7mG4%0A+6z3ALNt9eKJN2vcZyXxd+J2g/CfRYdQ16S+jt5pvJjNpYT3jl9pblYUZgMA%0A8kY/EivFf2Y/2zvC3jPxN4i0m41jXrrUL7xXdW+lw3Gi3vyW5KCJGYw7Ylzu%0AIEhUgHkCvpJJ/LLcsPXB61xvwl+G7/De28QRve/bP7c1y81kkLt8rz3DBPcg%0AAc0RkrNMdnc6XU/Lt7eW4bcohRpG2ruYgAk4Hc8dK8I0H9pDx94p+JHibwTb%0AeENITxJpZtNQtpLi6kSzt9NuACpuXALfaRh12IMEjqApJ9s8WjVZvDN4uhzW%0AFtrDR4tJb2NpLeN8jBdVIZl9gQa8g0n9lfXdF+Ndz4sj8VFv+EmsLa38Sna6%0AzXElvKZI/suDtijIYx4OSE9WJJmMujCx7XGvkxhc5P8AOm3K+aNuSvPavHdK%0A8CLp37R9rqWi65rN01qlyPEr3GpSS2szSKptrZYSTGkiY3DywCqL82TJz7Dv%0Az/jUy0H5njX7V/7VPhT4MeAPFWmyeJrfSvFdro8s9jAEZ5xKYyYio2lSS2MA%0A9a6H9n39oTwr8atBtYtF8SWWu6lb2UU14sOQyEgAsQQP4sjj9K1vjl8PJPip%0A8IfEfh20e0gutasJLRJp03IhYYyeM8V0Ph7R4dB022t4oYI2hhSIlIwudox2%0AFVzLlt1Ah8deILjwz4deWysW1HUJGENpbZ2iaVvuhmx8qjkk9gD3ryn4AftE%0A6/8AtF6DYz2/hX+yo4J7nTfEU8l2V/s25j3qVtsp+/wwU7sAAN6givRfiKvi%0Am9Fhb+HJNMtY7iUx6hc3O4y2sWOHhUDDSZ7NxXm3wG/Z08SfB6HXdFXXo4/D%0Ax1G9v9LmRjJdM10wc+cGAU7HMhGOpYenJpy+YuU7b4TfAay+Ed9cSWmt+KNS%0AW43AQ6lqTXEMJZizMq4GGJPJOeAO1ddetJJPtXKrivNfgT4WvvDvj7xS9v4i%0A1zXPC8i26Wo1S7+1Ml2u8XDROfm8o/IMfdDK2Mc59SaFXBz696QO7PPdW/aS%0A+H/h66n0/VPGXhywvrNzHLDPfRpJEw6hgTkEe9bngH4l+H/itFNL4f1zS9ci%0As2CTNZXKzLExGQG2k4J681qz+DNGu5mkm0nS5ZW5Z3tI2Zj3JJGataXodhoa%0AMLGys7NZDlhbwLEGPuFAzV3VtA5TnPip4q1DwH4WvL7TdPbWNTELva2Yk8vz%0AyilzlsHaMDGcdSB3rm/gh8frz49WGj6rpHh+4Tw3fWjPc3884ja3uhjMCxkZ%0AkCtvUuMDK8ZHNdV8RLLxJr91b6VpS2drpN9C6X2otL/pFrnjEUeCGJGfmJGM%0A9DXCfst/B3xh8JvhuvhfV761gs9GNxb6fPbv5slzHJM0iyuCMKyqwUL2wT3x%0ARzaCsezM7fZtufmqey3LHhj82a8j/Z98SX03xH+IWi319r00ej3ls1pbauoM%0A8MUkOS6SAfNE7q20HJUqw6EV64p2Acc5qXvYHHU8F+Ln7btx4A+J8vhWHwvJ%0AprRNtGta/ObLS5fdZAG3D8vrXR6Z4M8Y/GTTBcX3xJsbfT5AD5fhWFFU9f8A%0Alu5dvyA/lT/HPwR8aT6rfXnhvxzHLa3jmRtE8Q6bHf6eM/wqw2yKue24gV5P%0ArPwjuvC17Lc618KtT0W43b5Nb+HOrNFuP942+5G/DDfjW3u2uhdT6q8NeHP+%0AEd0Gx09bm6uUsolh825k8yaUKMZdu7Hua89/ad+Fnjrx6miXngzVNAgl0OSS%0A4aw1W1M1vqDlcBW7DHY9ic16F4PKt4U0zE13cA2sZEl0u24k+UcyDAw/qMda%0A5XxP8R/Gnhz4nNp9v4Hl1rwzNbq0Gp2d9EJY5e6yRuRhc9wScdjUxk07hy3P%0ACtf/AGotSvv2PfiY83h6Lwf428KONJ1S1tUCxJLKVRZoyOQrBj1yRjqRgntf%0A2ofCNv4I/YCu7azUQtoWnWVxayJ/rIZo2jKyA/3t3OfetvVf2XZfH/w4+I1n%0Aq0sNrrHxGkFxK0Z3JZMkaJAmf4guwEnuWbtSeLPBvij42fCTRfBOraPLpDSv%0AbJ4guWkVoTFCQWEBB+bzGRcZAwrHIBGKvnWhKiz1r4e6jPrvgbR726UpdX1j%0ADNMuMYdo1LfqTWvCskPycNiuc+Jfi64+Gvw31HVrDSbnWptLg3x2NucSShcA%0A4+gyfwqb4R+P1+KPw10PxF9iuNP/ALas47v7NN/rINwztP0/Wo6FHRbHZN1T%0ARBmK7uKA2BjrUivlvx6UuYViyn3fpU1u5zzVaJs1YjPPFFxkoLuat2wZOtV4%0AuRxxViNsYp8wix5e5etTQwZbrUMTZqzFVXFYuwHpUpfkVWibC/55qbZuNBJc%0AiO4H9K7nTj/xL4OT/q1/lXDQD5K7zT0zp8Hy/wDLNf5VXMB5vet/pMn++T+t%0AUZ+tW784uZf95v51SnqSyGVsVTnkwDViVye9VZgD/WpYyNj3z+VQOd1SNzn/%0AADmo2OOKkDyL9tDMnwl0uLPNx4s0BPTP/E0tj/TP4V6tNJudvTP515R+2MjX%0AXgXwvCrKv2jxtoCc/wDYQiP9M16m7/Mfrn603siepXkARmwfvHJ9u1Ubaxt7%0AKSSSC3htzIcuY0CmQ89cDnqevrVyQ4c+lV5QFGPzNQUQsePx5qGRsEn8sU+V%0Asg/XFV7mXyV/vc8VIxH681HvIaiRgsoH5UyRsHP4UBczvE3hnTfGFlHb6rp1%0AnqUMUizJHdQrKqOucOAwOGHY9RVroFHQLxinv0x6moZDjLfzoGgd/wDJ71GT%0AgUjswY9OlRtLyaBi5Un6Uhlw3X+tND5X603dz/WkBx3h/wDZ88F+F/HU3iaw%0A8PWdvr1w7yS3wZ2kd3GGY7mIyRxnGccV2LPx9KRjzSYxS8xgHUf1oMwB4qOb%0A6/8A16aKaAmL5XrUOo2Eeq6ZNazGTyrhDG5RzG2D1ww5H1FOY03eGPrTEzl/%0Ahd8EPD/wcE0egw30MdwoVlnvprlUA6BBIxCD2XFddkjJzUXm4bpml8zPajUG%0AyQFs07zM00nIpDzQJSJ1fd71W8QaQNe0W6sWuLqz+1IY/OtZPLmiz/EjdiKk%0AU7B+NSp+9IqugX7GN4L8BWfg1rmZZrq+v77Z9pvLpw80+0YXJAAGB2AA5NdD%0AG/NV1bZUqnC0w9Swr5NTRvxVaI4FTBuCfSgCZDhutSq+O9Vg3HzVIr4FKzDm%0ALUcmBj8KmD4bn61UV/mqVZeTmjlFcNV02PW7OS2m8zyZcBwrlSw9Mjt6+tWr%0AKCOwt44YY0jhhUIiKMKgHQAVDG+RUyvzVCJ1bFTRn8arA4xU8T9aALKNk1Yj%0AbDfyqrG1TxttH496ALMb81ZjbiqkbGrEZ5oEW4n4FWY24FU4zmrEPAqxNl6F%0AsgVaiORVGLpVuA/LTJLsTYWu70450+3/AOua9vauCiPyn867zTT/AMS635/5%0AZr/IUAea3xxdS/75/HmqNwcDpV+/G2eXv8zfzqjIKCypL/Lmq8zZ/Pmrcq4H%0A41VmGD6evtWYyCRtik+lV3Of73NTuNrH61CyYH4UAeRftZjfpfw9j6LJ8QND%0AB98Ts381Fdt8R/iBa/DXwtNql1b3l6d6QW1nZw+ddX87nakMSfxOx9wAAzMQ%0AqkjiP2rV/wBL+FMW3In+I2kjk/3Y7l//AGWvT9Qs7WXybi4jgkNgxniklA/0%0AdtjIXBP3fkdwTx8rMOhNN7E9Tyf4P/tT2PxV+JWqeDdS8O+IvBni3SbRdSbT%0ANYjjD3NqW2edG8bMjKGIB578ZwceluTn9K8o+G3hP/haf7R2qfFqSNrfRU0J%0APC/hjepWS/tTMbi4vyvURySEJEDy0cZkwBItcf8A8Lk+KesfH/xF8PoG8N6Z%0AqGpeHbfxTpV3c23mxeF7Vp54HguUWQG5mZkgGQyqGeZvuoqsSjd+6NeZ9ASD%0Adxn3NV2bLfy96mdlVwhZTJjJ7bh3OKrszbmG3bjo3rWQxjNg4qJz81fPX7a/%0A7Xmk/DXwHrel6feeJtN8RafqWmxG5g0a78lEa8tzLtn8sxMphMinaxJyVHzE%0ACvXvhh8ZPD/xktby68Py300NjKsUputPuLJlLDcMLMiFuO4BHbrVunJR5mHo%0AdGTkHiuf+IGnapqugNDpurxaDI0itcX5hSZ7aAZLlA/ybyBgFwVXJODjFcr+%0A1N8a9W+A3wv1DX9G0KPXJNHtpdTv0mmaGKCygAaZtwU5kIICL3+Yk4U1nw2+%0AoftUeCL6HUrPUfDPg3Wora60qe0vvJ1S+iJ3kzJsIhRsIQuSWVsMBkrS5dLl%0ALsa37Peua54i+F0F3r9w19O93dLaXjQCCS/sxM4t52jGApkjCtwACCDgZwO1%0AY4XHesrwD4ITwF4cXT11TWNY2yNIbvVLo3Nw5Y9C2BwOgAAAFWvEniLT/COh%0A3GpapeWun6fZp5k9zcSiOKJfVmPAH1qdwLDNkUN/kV4X4d/bR8H6x+0L4g0U%0A+OPCo8P6fo9jcW0jX0SK9xJJOJQJCcNhUi+UdM+9e5pKt1bLJGylZF3I685B%0A6EfzqpRa3DQ4rWv2iPAvh3xxH4XvvF/hu18RTOsaafLqEa3Bdui7Cc7j2HU8%0AV2Wdy5HT+dfNv7bv7OnhXVP2Z7zwrZaLZz+KvE15Hb6PdiBTfvfu+83PmAb8%0AoAzs2eAK9L+Jfxpsf2a/h/pcmtx6hqUdnFbx6hcwqGFrESsbXMxJ4QMcnqcA%0A8cU+VNK24XPRyu6mgbOf0rmvhx8T4fia19Naabqlvp0BT7LfXMYSHUlZd2+H%0AncVHTLAZrpWOB+pqLDGs2aRT+tEgUIWY4Veck1xlv8VTcfHibwmsdq1rDose%0AqfaBJ84d5nTYR0xhM5otcR2pXA9qarZHpTlfcny859O9cZ4z+P8A4V+H3jjT%0AvD2sakLG+1NZGhaRCIN0cfmMjSfdDbAWCk5I96ASO0xtHFOQ5NYfgHx3p/xI%0A0D+0tN+0rbedJB+/geFiyMVJ2sAcccHoRyK3IxjFBJIqZWnL8prM8XeMdL8A%0A+H7jVta1C10zTbUZmuLhwkcY9ya83sf2vNH8aRBvBmi+IvGSMSEuLGzMdo5/%0A67SbVx7jNOMZWuVZ9D2BMP8A5609Gwa4D4c+IPiB4g8SCTX9B0PQdFaJtsUd%0A81zeF8jaThQgGM5GTzivQcrEMkjavJJ6Cnrewh+3A3Hj0p5+UZr5r+O3xP8A%0AEPiD42fCePSbp7PwjqHif7M5QlZNTMcTOW/65ZGAP4gCfSuj03xbN8c/2rPF%0AXhia6uofDvw/s7dZLe3naL7ZeXALbnKkEhEUgDpls88Yrle4HuYHHvTkGK8Z%0A/Zh+IupXfxD+JXgTVLubUW8D6pF9gu5zumls7hC8aOf4mRlkXceSMZ5BJ9oX%0AlaVnsxEiv8o5pyyZNQr91u1OjOHpgW4jUqVDEcVIGoAseaQcVMjZ9feqyrvx%0A9c1ZQYX60AWIz2qZDlqrRHaOKnQ+9Ai0jZFWIGzVWDg81YT7mc9qpC6FqI1a%0AhbuKpwE8VaibIqiS1C2G/lVuE81TiPP9fSrMbfOKALkTZFd9pxP9nwf9c1/l%0AXn8fIrvtOBOn2/8A1zX+VAHnuoL/AKTL7Mf51TmiIxkEc8cVR+LN9/Z3gTxF%0AP/aCaT5NjcyLfOhZbMhGIlIHJCfewOeK8f8AgHDrngrx5cWPiTwvo+gNc6Q1%0AxDqOiXvmaXqaRvHumaNiSkuGU+Y3Lq3PQUct1crm1PZJlwDWDpnivT9c1vVt%0AOtbpZ73Q5Y4b+IKw+zvJGJUBJGDlGVuCevar3h3xNp/jTR7fUtKvrXUtNvF3%0AwXNtIJIphkjKsODggj8K8Y/Z50Gx0z4xfGLU1aeNo9fjh3SXkpjVBaRsxKs5%0AU8knJGVHAwoAByb3DmPZZDiq8jHA/LNGm6vZ69pEF9Y3VrfWV0gkhuLeVZYp%0AlPQqykgj3BpJGBfGV5OBk8VDC7PIv2o9snin4NxsA3/FwrR+exWxv2yPxAro%0Avj98Hovj38Obrwvc65rWhWF+4+2PpjRpLdRjOYWLq37tjjcABuA2n5SQeH0z%0AxGv7Ufxy0W5sYZbLw38K9RnurqO+AhvdQ1NoZLeD/RyfNihjSSZw8oXzGKbV%0AKgsfaZiI49x6CnK6sC1PHPDv7LOpeH9QlvLj4nePtduobG5t9MOpzQSw6Vcz%0AQtCLxI1jVWljR5AofKjzG4rPuP2MNLuvHth4lufEGsXWpyaZLpPiKWWOLf4p%0AgkmhmZZyqjYu6BIwqAAQ5jAA5r2ppFKe9QyncB0XAqeeW5Vjxfw7Hbn9v3xh%0AIsimZvAulGVfM3HzDf32TjPB2KnAxxtPfJ9Ylz+tMbSLODUWvks7Vb2UbGuB%0AEolYccF8ZxwO/YUsjYP9alu5XKcf8a/hsfi54E/sP7a2np/aWn37S+X5m4Wt%0A7DdbMZH3vJ257bs84xXUPK0km5mPryabdSHzFVfTJoK5BA/E0tdg9DzX44/B%0AzVPjtbat4b1DVraz8D6vpL2tza28TrfXFwwcfNLu2+R80ZKAZYoQTtYiuR1j%0AwD4m+EP7Hni6PVvEstzrmk+FZLe2u9Od7ZLZbW0ZY3jzkrIzAuzDnJAHCivd%0AX4Ydax/GOgWfi3QbnSdStY7yw1CNobiBydsyEYKnBGQehHfNNTa0D0Knw+eS%0AX4e6G0sjSTNp1szuxyzsYlyST1yec1oajZQ6lZvDcQw3EMgAeOVA6tjnkHg/%0A/Wp2nabDo2nQ2tupjt7dBHGpYttUdBk805myuRxUgeW+HP2cdJ0744+LPEVx%0AougyabrVhYWtrEbSNmjeHzfMYgrhd29enXb7CvTiPstrtSMYjXCqPl6dhThy%0AfrTPO/fbe6+lAeR81rL8etN+Jupa9cfD3wZrkkzvBpTP4jaEaXafwpt8o/O3%0A3nYdeB0UZ6H9o74b+PPjp8H/ABL4MWGx03+0NH8s6qsyM2oXBXPkLHj92m/g%0AsSeDwOte6NwM96juJNqjp1rR1NbpBujzPw1p3ja4+GcH9pX1n4RnVE84JHHc%0ANp8McYHyn7pZmG45yADitr4D6zr/AIi+FumXfiTy21aTzN8iReULiMSMIpNn%0A8JeMIxXsSRVz4m/D9fif4fXTpNU1TS4llWVnsZFRpNvIB3A5XjpWh4K8MHwj%0A4dgsWv77VGh3brm7YNNKSSckgAd8DAHGKzvpYCbxF4ftfFWhXWnahCtxY3iG%0AKaIkrvX0yMH8jXgdn+wl4Ll/aE1XUJPDs0ei/wBh28FuUvp0UzGWUygEPn7v%0Al5GcdMV9FOQ3AO38KRUb7xx+FNSa2Boi0bSodH022srdSlvaxrDEpYttVRgD%0AJ54A6mvmv9prRtY+KknhbWNP8G339k+EfGFtf6hBcW2by+VXxJLGgJ3IoCsO%0A5I6cc/TQbnp1FDS7TzSjKzuHoeXfFf4meJvAPwqbX4YdDsbqCMTfZL52AmJf%0ACwBhwjbON5yAewFen6XcNd2MMzLtMkYfHXGQDXL/ABL8Baj8QtOutNW/sYdD%0A1K0e1u4JbXzJju4LI2cA7TjkcHnNdPpFjDommW1nCNsVrEsMYz0VQAP5UDML%0A4v8Ahu98V+ALyysNN0PWLiQr/oWrZ+zXCjqCQCQfQ49a+aYtEm+Eu5ZtF+In%0AwpWE7zNos51nRH7n91htozyRsXvX18DmnKnX0rSM7KwjyH9m/wCJeteNtauI%0A5vGPhHxho8cRZJrCFrXUIJNwwssJJULgnnjntXoPxa8H33xD+HeqaLpupf2P%0Ad6hGIlu/L8zYuRuGMjqOPxq5ZeCNH0zXJNVtdKsLfUp4zFJdRQKksq5zhmAy%0AeQOtbKhgi/Wk3rdB5nyX8dfhJ8Trb4pfCGzj8XaNcSW2q3DWckejbIrIpbHl%0A0DYZSuV6jBOa7H4F+Hrj4P8A7WnxKg8Q3EazeMLSx1i3vCvlwXPlq8c4XPTa%0AzLxnODX0KhSeVflVtnQkZx9Kj1HR7PWkVby1trpVOUEsQfYfbIq1NtWYjxn9%0AlPwfdXPxR+Kfju4hkt7Txdq0UWmh+DLa2yFVlA9GZ3I9hmvVNG+J2ga74w1H%0Aw7Z6tZXGuaSgkvLFJQZrdT0LL1A962hEtrEsaKqrjAVRgAVyWh/BXSdJ+Mmp%0AeOBa20WtahZDTjJCu1mhDBiX9WYquT6KB65nmvuKyOzxmP8A2qci+tGd35VI%0ANvX+dAEsQxUyHJNQhix/rUsZ3f4UATxjI9qljG41HFw1WIk4JoAkiG4fjU0Y%0AwajiHHy1NEv86AJ4xk1Zj6VDAMGpoF4oEWIxtNWYl/8A1VBCMCrMQ3CtCCeA%0A5b19KsQjnmo4U+X0qxCvNAFiEcV32mgf2fb/APXNf5VwcQyP0rvNOb/iXwfL%0A/wAs17+1AHmmuWEOppdW9xDHcW9xvjlilQOkqnIKsp4II4IPBrC0L4faD4RF%0Awul6Ppunx3QPnJb26xrIP7pAGNvXjpzXUX0WbqT/AHz/ADqnNGAO1BWph6B4%0Ac07wfpUOm6VZ2unafaqVhtraMRxRAkkhVHA5J/Ouef4PeF7fxHq2srotn/aW%0AuoY9QlO5hdqY/LbcmdmSnykgAkdScnPZSQgGq0kW/JP5UcwjnfDPhDS/AHhS%0Ay0XRrGHTtL01PKtraLOyJck4GST1JOTzk1YkjDNz7fjWjPAD9c5qA2/GcZqX%0AIrY8Z+NS/wDCO/tP/CHVbNfKvNam1PQdQKHH2u0FjJdIr/3vLlhVlz03Nj7x%0Ar1a4G+DBHUcmvMfjXafaP2mvgjGwUr9v1uXk8/LpTj/2avVJI/kPp/OiWyFE%0AzvJVB/tY49qpXjt5h9B0Gag+JWm2d14I1Rb/AFafQtOWHzr2/iuvszW9uhDy%0A/vePLBjVlLghlViVKsARxn7Pfhe40fw/rXmXWoNpN9q0l7olnfXL3F3p2nvF%0AEscchkJkXfIk0yo5LIsyqcFSonTdlHalG2MG6Y4OelQpFvTB/hNX2t9kO0Co%0ABFsPHToakZXki2n7v0qE5VuemOKsucZ5qvcwGXGNwAPbvUgRtyOM+tQtHvOe%0A61YwEH97b61DIMbcMd3U8dqBkco+U+vpWeZzmRCrLsPDHo2a0nXcBjOKqy2y%0Aylm9elAEcK4XrnvTvK+cN0oitSsv3uAKzfE/jfRvB0kI1fVNO0z7SSIvtVyk%0APmH23EZoBGgxyf8ACmSRBj82euajMn2toZIXEkTAMCpypqdzhefWgCpcMWba%0Avyg02ORlb+9UskJZ89AKaLfa2cZpiITNuPpR9qMhx93B5qT7Mwc7f4jnmnfY%0A18rnqfajQNSMXW7OOxqZwSnPWkjtlib6Cnhhj1pBqOUfL9KamfM5pyvx9ajI%0AZmP8qBkzArjb3NODsrfjimFd6rTypUDFBJIZPm/Qe1OidmUVGY8/NjtUkCbe%0A1V0AniTYOKlXoPWmocD8KbHcsz9KNivImaPc2c96WfKqMfLngUq8gU2ZWY/L%0A271XmSCZyoqaNWkY56Z4pIYcgflU0Q2t7UASxQtuNWIYdme/9KSFcj171PjD%0AcdKAGn5Zh6dKtRdOc1X27n+gq0q7Up6CJI5MtgdqsJz0qtbAE5X8auRDcaQy%0AWIfLViFP1qGNatR8ECgRJDwatIMnioY1qzEuSKsWhPCMirEK8fpioYl4q1EO%0AKZJNEnFd9pw/4l9v93/Vr29q4WNciu801v8AiX2/P/LNf5UAefX0W65m/wB8%0A/wA6pTL81aV+mLmT/eP8zVOVM/nUyLM6VaryD8utXZ48DjtVWZOakZUlTJqK%0AWLcOvt1qxIKif7v480ahc8e+LkDH9q74LNu+VI/ERIx/05Qj+tdL8bV1uT4e%0AahHoOpQ6HdGGV5dVfyz/AGZEkTyGULIChJKKnzcKJGfnZg4XxHxJ+1v8KV2s%0AzR6T4ifg8D5LFcn88fie9dT4z+Gdj431/R7y+utUaHSHd/7PiuzHY6gzNE6/%0AaYhxMEaJWUNwDuyCCRVW2uSeQfs6apq37T3wg0PxB49vNDvtD8UeH1Sbwu1j%0AFJFcSRSRrJfSyMcndLHIfKChEWSMHLKSfUfh74C8M+BPD3k+E9L0fS9Jvn+1%0AhdNiRIbhmUL5nycNlVUZ9AK5jwx8A/Cv7Pvw18QR2bXU+mx6fdKP7SlWdLC0%0A3z3Jto/lGIVknlb5tzHcMsQqhY/2MreO2/ZB+F8MUiyfZ/C2nxSYOSki26B0%0APoyuGUg8gqQeRRLVXQzsvGHiGPwj4cvtUlttQvI7CIytBY2zXFxLjska8s3s%0AK+c9E/a+0+L9pnxTJeWPxEh0dfDelC30+Xw5es8E/wBovzLL5CoSm9PJUOR8%0A/lkDOw19PXB2LXI6T8O00T4teIfFq3csk3iDTrDT2tigCwLaNcsGDZySxuWz%0AnGAg9amLSTuM3ImF2quuQsgBG4YOCM8+nWvDfEH7SHinTfjlN4LtvClpcXWv%0AaLNqfhnzJ5Ii5gnMMpvW2nyoz8sgKgna6rgscD3TUlkkspPJZY5NhCsw3Kjd%0AiRxkA9s814Xq/wCyn4m1n4ieH/Gk3jKI+LLfT7vSNXvIrExxTWlwkahbWLeR%0AC0bJvUktl3Zj2FFPl+0Vc9f0/wC0NpVub5Io7toUNwsTFo0kwNwUnBKhs4JH%0ASnqnzbq8r+K+lXXhX48/Dm8tW1YaffarJYXdzHqTGMg2U/lWr22dpjLIrmTl%0AlZf9o161jn2WoYjmfiP4tuvA/hiTULPQ9W8RzRyKv2HTQhuHBOCw3so469en%0ArXntl+05qV3q9razfCv4kWa3UyxGaSyhaOHLBdzFZThR1JGeK9J8f+C18c6E%0AbE6pq+jt5iyC50258icY7bsHg9xiuK0z9nG+0nVbe4j+JHxEmjilWV7e4vYZ%0AY5gGB2NmLO04wcEHnrVx5bageiJHnkDG7ivMfjV8CPAXiXQvEeuePNL03WrX%0A7I5llv4RILKBU+7Hn7vrxyWOa9WCfPnvivC/jrrfxDufiXb29j8Om8TeEdPC%0AzIE1eG2N5cAgh5Ebqq/wqeM8noMTG99PzsO5c/YR8Ca18Pf2W/C+m621011H%0AFJJDHcEtNb27yO0ETE85SIopz0xivWmTK/rWF8Ldc1/xF4VS78SaRFoGoTSO%0ARpqTi4NrGCQoaRflZiBk44BOO1YHwL+Pcfxv/wCEmT+wdY0G58L6rJpNxFfx%0AhTMyqrrImOqsrqQfeh3bbJO2xzThu/4CKVQCKeg3D6dqkZGFwv1prgM30NTu%0Am5fw61Eo/nQA3Zy3ajyM4296lRcyYqUrhOlAiuY8DvTlj29vapCKXpQAwRY+%0AtPWPH+FOXg09F4+tMBoTcafGm3tTgmaeifNxTAaq7R/SnJDT0TFSpHkVIxsa%0AZ9amEfH1/SlWP5fxp6jP0q0ISOPI/GpY48yU6GPC+lTRpx/SmA6Neacibc/W%0AnRp8tSpGaAEiTJ/nUyw76WNOTUsfyrQA6GLYP1qaOMony+nFCjA6d6sxjigB%0AYU2qvNWIo+lNii5qxGuBTQh0akn8KtRLk9KjhTmrEaZqxEsKZxVmBc4qOJM1%0AaiTkf40Eksa8fpXd6f8A8eEH/XNf5VxESfLXd6cp/s+3/wCua/yoA4LUEInl%0A/wB4/wA6oSZYmta+T/SZf94/zqnNFQWZdyMnGKqSphvwrUuIt1VJ4dvT60Em%0AaY+D61Xkhz3P51oGHDc1Xlh20DPIPF8Syftl+A1zl7bwrrcoGOm6fT0r0mYE%0At6DPWuB1S18/9tTQ/vH7P4H1Bh6KXv7QZ/8AHa9FuLXA27ufaiVgiUJVyvfr%0AgVDLuVz83v0q5PZlh97b/SoXtipbryTj2rMooudys35VGIdyAn6/WrX2PYAv%0A8K9KRY9i/hxSYFKeLch9OmKriHMfU8Gr8yZX9ajFt8lSBy1p8OtD0zxbda1D%0AptumrXTeZLcAEszFdpbBOAxUAZABIGK2Xh4PappIGWTNP8vA+nY0gMm9Uq/T%0ANLbhmXkY5q5cWvnHPG2mRw+UMVTegyB48L+Peqkke+4b1FaDxj0+lVZF2yNx%0A16UREVWhJJyfxqjpHhyz8O20kdpH5bXMrTysfmeV26sx6knj8q1jH833e1E0%0AeItx+9/OqDUzzlUNOso23ct16VMbdmTGPxoiTyvmJ9vrQA6SNigC9aqMSW+h%0ArTCrs3fdqo8TBtwHvUoAhiK9adIdpqWL5xTZ0LL8o/GpArxPvk4qxEhYbj/+%0Aqo0iK9F+arEC7vb696rlAj2lT601G2/hVi6YKvzfhUaxgr7nvRYCROVoPB9O%0A9CxkhVB4qQR598VVkII+XFWIwKhdMJ0p0G532/w9qOXqMmBBHr2p8UoRM0yN%0Adp2n5jU6Qlh0HWq5QJkjyF9e/tQkhZqhWVogVbqf5VLA+5un0o5SSxHuNWkT%0AK89ahjTJqZWwmfzp8oXJAADViJN9Qr03VYgb5RnvS5QuSImAKtRKAOwFQhcA%0AY45qaI7jj2p8ork8IwKsxpkVViJUVagfcmafKFyxCnFWIk/z7VXjOw+/86tQ%0AnmiwixFHirEK/wCNQwpwKtwJkdKAJI1xXb6fKRYQfL/yzX+VcTswK7Swj/0G%0AHr/q17e1Vygcnew7ppP944/OqdxD1/WtW9T9/J/vGqU8WKkdzLljqvNDkGtG%0AZd1VpoqTHuZ0kXy/pUDw/wD1q0JIRg8VCbf/AD6VBR5G9s0v7a0fzfLB4BY7%0AcdC+prz/AOOEV32rajaaLbLNeXVrZwtIsKyXEqxKzscKuWIG5jgAdSelcXbw%0AA/tl6jKc5j8CWyHHIG7Ubg/+y1yf7cSaL4t+FviTQRG2r+J7XQbjUbPS48Fr%0AZOX+3kHhTGLd1Vs5yxRQWlAOnLdpE7LQ9b8+OW7mhWSNpoNokQMC0e4ZG4dR%0AnnGetRTRZNeU/Dv4ieEfh78DNX8fWen32oQrp9pf6zq8Ecct1rs5tlneR5CV%0AMjI05Ri2AjFkAAQhfYJYNo5G1vT+6amUbMaM94cH+QrN0zW7HW7u9htbq3uZ%0ANMn+zXiRuGa2l2K+xx/C2x0bB7MDS/EKDxH/AGF/xS76IuqCZSf7WWVrcxc7%0Ah+7O4N0x24NeIfs5S/EhvHfxCmlsvAb2Vx41kj1Zo7m6SVHjtLKKQ24KEMvl%0AqpUOVJctnAwaFHRsZ7J4s1uPwl4ZvtUuIri4SxhaUxQLullI6RovdmOFA9SK%0A8db9o/xl4F+LvhTw/wCPPBNjo2k+OLtrDTNQ07VftptbnBZILhdi4Zh3XK5D%0AEEgGvfmQAfNxjk5rynWPDUPxo+Jmg+J7144/B3ga4kutMeQ7U1TUGUwi6yeB%0AFEruqH+N3LD5VUsRt9oD0KSIc1G8H4+teL/G7x34y8F/tFeAdL0zWLOOHxtN%0Ae6X/AGXMoaC0jjhWWO84Adpfll+XIU/KvZmPpPhfxJpvhnS9E0bUvFtlrGrX%0AkWLe4uZ4YrjVcE/OqLgN6fIMcVLg1qBtNHmoJXjSeOFpI1lkBKRlhuYD0HU4%0ArSaKvO/2gPD3w71PS7Ofx5daTp/2Qs1ldz35sriAnG7ypFZXHQZCnnA9KlK7%0AsB2Rt8/h29KbJajJzXzOPifq3hqFl+FXinxX8Ro1bEem6jo0l9aPjjYuoYj2%0AD3Zn7V9BfDDXdb8U+CLG+8Q6LH4f1iYN9osEuVuVgIYgfOvByMH2ziqnTcQD%0AxZ4q0vwJoc2paxf2mm6fbqWknuJAiKPx/pUug6xa+KdCs9RsJVuLG+hW4t5Q%0AOJEYZVh9Qc1yv7WdvCv7NHjqSa3hnji0S6YCRQw/1ZrW+CGn/YPgv4TgXgQ6%0APaoB9IlFTb3bgbbRbT2pptlYcrVxoN3pR5P8qkCm9uCdw7fpTPI/WrrwYH9K%0AQQc09QKYg2nHSnmLFWjF8386BFk07AVFt9rfXrUoh2/41MIsineTmi1gKN5a%0AbgG9OaNgZQFXt1q9LFvQ/kKjSBlxxxVAQ2MQMWGqcWx3cL1p/wBl2ybl/EVY%0AiTd/X2qmBVeEk9KckAY9KsTp5aZ98fWrEUOFFHMBnrCXuMr/AA9RVg7owox9%0Afap7eEGdvWpXiw1VcllNoPOnVu2Og71YgtcJ83r1qZrXYBnj6VMkONvpT9Qu%0ARxw4TrU0cC7PbpUvkZVvb2qW1h3p1+7TuSQiH5xkdPWrMEP7ypRAMirEMI8z%0A2pXAY0e2nwrn61I8WWA9/wA6ljgw3HWqQCCPcoq1BBiP0ohg/d/j+VXILf5f%0A1pgQJEzMv97pV2GP5eaIocHFWI4sjGOtACJGzFVz1wavwptX1qGCLaV45xV6%0AKLFADUj3V22nofsEP/XNf5VyUceV6V2lhH/oMPH/ACzX+VAHJ30R89/941Tu%0AIsmtXUFCzt/tMce/NU3gLD7uKloDLliwW/pVO4Xnp1OK1pbYiqdxbYP3T+VS%0ABnzLg4FV3UqrflkVoSwYxx7VG1sEG7HSgDynSLUv+1t4lkx93wppiE+mbq9I%0A/rXfTxbTuH3ugPT3rjvC8Jk/aV8dNj/VaPo8WfbN239eld3JD8lDHE81/aC+%0AGt58QvgL4k8L6Jb2cVxq9kbOBHYQQxBmBJJAOABnoK64yvPGsjRtEzDJjYhi%0AhPUEjg46ccVqGIgfjVExZkYMOVOPrR5DsVZhxyPes7R/DVjoLXhsbOG1/tC6%0Ae9ufLXHnzvjfI3+0cDP0rZeLhvl+lRiHa3IqRowvFng+z8Z+Hb7S9QSWWx1K%0ABre4SOd4WeM8EB0IZcjjgjivOPCv7FPw78D69p+oabpOpQyaVMk9tFJrN5Nb%0Aq6/dJheUxtjggEEAgHqBXsbw4Pp/hULJzjp+FLma2YzyvXf2WfDOvWVms0+v%0AfbtP1b+2LfURqUjX0cuHURiZst5QSR0CdFB4wfmrjfjXaeA4fEWl+CrhbLS7%0Aya5069ec2skkiJbTIbeCFlBxIxQKACMK7Hktz9BtBgVC8ZPSiMpIFo7lG4Qh%0AicZ56eteafGn4d6/418R6XcaHaeB45LOGRf7T1rTGvruzYkYECZUAHGT8w5A%0A616m8XNV2g5pRbWqA8gH7Mmo+KFVfFnxC8Xa1H/HaWLppNm3tthHmY+shrv/%0AAAR4E034e+HoNJ0mBrfT7PIijaV5SMkkks5LMSSTkknmugSHH5UFOaJSk9AP%0APf2jfh/q/wAUfgz4h8M6LJp8N5r9lJZGa8ZgkIcY3YUEn6VreAtHv9F8G6Vp%0A95FbQ3Gn20ds/kSmWM7FC5BIU847gV1Dp6CmiHj7tGtrAeY+Cvid4g1v42+L%0AfDGq+Ho7HS9HhgudO1GK480XiSFhhx/A/wApO3rjnoQT6AseV+tFtoNrYyzN%0ADDDC1w5llZFAMrnjc3qcAcmphDtzRp0Ah8sF/pSNFg/yqXyM5P8Ak014jvAo%0A5RXIxCM/Wgg7+mKseQXZeMU6SEAr6Z5osMgEORSrHk1ZMG1d3YdKYgy+MfnQ%0ABD5OG/D0pwi4qXYWkwOtSrBsI70+ViuQpBx0pyQ4NSKmakjj8wUWYXI1h3eh%0AFSrHtFSxW/FSrDxSGVo4l3/7TVM0HmOoqZLfLZPbpTtvzVSAj+zK9TR24C9K%0AckW0dP8A69TRwYb1qibDIrfauMe1SxWoT0qWOPg1PDbUDI0twx6U9IMPuqeO%0AD+fWpFttz/SgghWAk1YS3wOKmigGc1YhhyelO7AhitWKY61YhjbyyB97HGam%0Ahhx+f51PHDxT3Arw27cce1W7e24qSGHJ9atQw4WqAjgtCrf55q3FHg9MinxR%0AZNWIIcnNADUjymMYrrrFMWUP+4vb2rnYrfiuwsoR9ih+79xf5UAcneW+24k9%0ANx5x71XaLf06da2LuDdK3+8apyW2PzpMDLkgyfpVSSHP/wBateaDk1Vlt+DU%0AAY89v861HJb1ozW3zfQ9qikgoA8v8DWin49/ESRc8RaTGfqIJD/JhXYX0O+P%0APft71y8sifDb4xa5f6lut9J8VwWjxXzL+4t7iBTE0MjdI9ylGUtgE7hnIxVr%0A4kfFjS/htq2m2+pR3C211PHBcXq7Rb6YZN/lGYkggOY36A4CknAxmnqNGyIT%0AtX6c+1VJ4CLhdv507wjrn/CU6M11/ZuqaWoneJYtQt/ImkVTxIEySFYHI3YP%0AqBVx7XzJs9lGOlSUZ81s20gfhmqcobsNvGTmqfxFPizT47W48K2Oh6pJGzG7%0As9RuZLZpk+Xb5Mqqyqw+bO8YORyMc8qP2hdN0K7Fv4x0fXfAlwzbfM1O383T%0A5G/2LyHfCRz1YofYUct9Rcx3Ah3Kp/lULxBW69KvabdWusafFdWVxb3drcLu%0AimglWSOQeqspIP1FeZ+KvEmoeMv2gY/BFhfXOlafpmjnV9UurUJ9pld3CQwo%0AzqwVerscZOFHAzmVG7sO53hi3r61G8GB/nmuH+AfjPUvEd34s8O65Kt5rPgj%0AV2017zYsbX9syiS3nZVAUSMjFW2gDchOBnFeiGDjdiiUbOzGncypotqfoKhF%0Apsj9/WtO6tMIrc9aje3x81SBmQMpcrjkdPei4tyyNx71ZS32TdPvVK8GVoAz%0AIoty89fSpHh2hvTpzViKDZGT680XFt5seecgZHNMnUpyW2B9elNFl2/Q1MI9%0A3zNwIxk+1YMfxk8L3AbydWjuWUlSsEMspBBwRhVPQ8UWYzWFoPOPtT/sgY/5%0A4rk7f49eHb64b7Guu6mqzGB3tNFu5kRwdrAsI8DByD6YNdyY949FocWtxlH7%0AJtNDWW9vxqhdeOdLez1qRLnzF8Pu0d9sXLQsqCRh7nawNauhX8GvaVb3lrIJ%0ALe6jWWN8EBlYAg8+oNKzQEb2p2fqKr3Fnu2q2Tk5PNbIgwMCqlxLbR6lFbyT%0ARrczqzxxFsNIo6keuMjpQBVS12YBP3RUkVqzNnt0rQWzVI/8adFD8n8+Ksmx%0An/YyrAD61LHCVG2rptyxz6UkFqBljzn2o8h2Ikh/lTo4Sfb6GpvusqgVPHB8%0AtLlAgji4p32fc9TLCyzYxwec1YjgyKLagV/svtUkaYFWhDtqSOD8aoZBDBuN%0ATrDhvwzU8UHH0qRYP0oIZDDHu6VMsODUsFt5Y471YSDFAiGO3+WpY4M1MIMD%0A6dalt49/biqsAkEGBUyQ5NTR2+cVMtv3xTsBFb2+Gq1FB/hT4bfJ/wDrVYit%0AicUwGRQcVaht+akit8VZgts0AMjhwtdVZpi0i/3B29qwY7f5K6e0gItY/wDc%0AH8qBamJd2/71/qapzQYrZuoMyN/vVUltsZoGZE1vxVWa34/zxWvNCBx1qvLb%0A4qeUDIlt85qCS29q1JLfiq7wdqkDKkt8H/69eZfGzwF4k+Iuj3lvZ2enxxaT%0Ae2t/pqG4DPqskTRviTcoEQX96oGTubaSVUHd61JBUElvQtHcDzbxrreveH9J%0A8PytJaw3Wq+Iba1uYzEJPKt5pj+6VuBuWMBS+DuOSNuRjrntflpvjDwPD4wX%0ATvPuLy3/ALLvY7+HyCnzSx52FtytkDJ4GM960Hg9sUFankv7QHjKXwcdLjh8%0AX2HhRrwy7g+kNqd3dhdn+pjB425+YlT95fx89uvD2peP4ZoW0f4seNo5kKyL%0ArOox+HNNkByP9UnluynB4KNkdff6WMG2TcPlbpkdahe24+hqlKysg5TivhN4%0AObwR8PdP0xtH0nQmtxJmx02VpbWDdIzDa7KpYnILEjlix964Kz0T/hDv2y9Y%0Avr1o4bXxh4ch+xTSNsjee2cCaEE9XEe2TGc7cnHBI9teHIqhrGgWev2TWt/Z%0A2l9bswfyrmFZUJHQ7WBGffHepTauwseP/s16I+p+LfiN4sQN/Z/ibXiunN1F%0AxBbr5fnA91Zy4HYhcjrXoum67puuR3MljqFjex2crQ3DQXCSLA45KOVJ2sAc%0AkHB5rfjs1t41VFWOOMAKFGAoHAAHtXEeBfgTovgv/hKTHp9rFH4vuWnvrOJm%0Aa32lShUBv72WZsADLnAAAqXruG2x45e6T5v7QOvaPceKNW/sHUPDZvtakt5p%0AIzcXMMzI/wBndWJiwsygrFz8irnIOfXLf4haBB4ug8Nf2kP7WdWjhjkST98Y%0A1DOiyMNjyKuCyhiwGSRWo3wc8MmbRWXRbGM+G1MemBFKLaKdpIVQQCMqpwwO%0ACoPUZrndUvU8QfFrT7G40PxBb2eiXUlxaTjTXFpc3LRMpnab7qqqu6jPLs5P%0AOADV0wVjrWsgfm2/NjtzWF49sdUufD00Ok3MOn3Mmc3jqri0QAkvtbgngDnj%0AnPao/j94DvviD8NLrStMvtU03Urh0Ntc2MvltHIDwZGyP3fdsc+mTgVc1r4c%0Af8JFBpaX2p6k8enx7bmCOUJBqZwv+vXBLAMucAjqQcgkGVbco87/AGcfF3ij%0A4qeDND8Rapeada2sltLby2kcAeS/ljcI1z5m4eWNyvhApADDJz09OtPLvIPM%0AjkSVGyAyMGU/iOK5vwb8EtB+FOjX0bXsj6SWm8qG+eNbewiml8x4lIA+RnP8%0ARJxhc4GKr/AnRG0eXxZbGDTY4l1t5oW05ibNkeKIjYv8BHRwMjfuOeacmnex%0AJ1iwKD6bulcN8X/Ht7pPhbXIPDixz6tp9nLLPcFtsGnBULfM3Qy9MJ2yGbAx%0An0XUdJTUrWSF2mjWRdpaKQxuB7MuCPqCDXL/ABM0e38LfBrXodP0/wDdR2Mq%0AR20EW7ezAj7vfJOT3PNK4zn/AIf3+i/DOw0vQfsb6PHfgNaTSP5kd7M43uGl%0A/wCezMWOGwW7Z6DrPGNzqWkeGrqfSNPOqaoqYtrbzFjDueASWIGBnJ55xWhc%0A+FLPWdBhs7+2iuoV8p/LkXI3oQyt9QwBqj8S54bXwldRTwa5NHeD7MF0iJpL%0ArLcfKV+77scACjm1DQ8R8zWNV8C3On2Nha6Xp2oSGyYXtwok1Wcyg3Vy0yBg%0AsZBMYbDZL8YAGfSNK17xNafEHStHutN0G10+4s57iQ21xJNJGIyioBlVAyW9%0AO1S+EPh7bWHgu8sbjQ7vTdL+wm2Q3l+1/feWQQQR84XaMEBXbp0AAp3w4ubH%0AxF8Q72bTb0alp+h6ZbaZHcCXzN8hzI+W7tt8vOec05C03N7xpBq0WgzS6PcW%0AVvdQq0hN1AZkdQpOAAy4JwOc149P4u1jxH8QPCd/9ukud1ldT28kXhW4+UP5%0AQ4Bck8H73AA9dwr27xhrdjpNg9tcNNJPfI0UNtbLvuZ8jB2L7Z+8cKO5FeJ2%0A/wADNe0zxxpMkmsa+xsdOkni0ddUkZVt1ZE8kzKVJkP3iVwu5VUDaM042tqF%0A2ei/CnWNQ8aaI2sT3zXFncFo4YZNO+xyRlHKMxG5jyV4rsYrbEY496z/AIb2%0Aujw+CrSLQvk02FSqRs7M0JydytuJYEHOQeRT/A/jnSfiJYXF1o10Ly1tbh7W%0ARgjLslT7ykMAe4/MGjzGXZbdRHRawbhmr/2bj/PNJDa7GoFcpyxbBnH51PDB%0A8np61ZFmG+8PwqVLbaOlAFJoMyL7VYSLJqaO15z61MbbaRQDKbwFen61Pbwb%0AO/61OtpuNTRWeDVEkaxHbwv6U5EORx07+tWkt8/nU62+0UgK0MW5uhFWI4Mi%0ApobYYqwkIPHpSAqmD5PrVi2tgEqYWvy9Kngt8pVAQCEq/tVyCDig2+7t3q5B%0ABiqArpBtcf3auRQYp8dtukH0q1Fb4xQAyKLBxViCLceKclvVq2tdooAIoMCu%0AitYiLaP/AHR/KsmC3x2roLeMi3j/AN0dqAMu6t8M31NUZocdRj+ldlPpsBB/%0AdrVOTTLf/nktAHISwZYcZ96rTRY/h/Gu0fSbdh/qVqvJo9rz+5WgDiZFUH7v%0AtUMtrx0rtX0W1P8AyxTpSNodpn/UJRYDgbi3IGRVeRfm5Fd9NodoU/1CVXbQ%0ArNjzbx/5FKwHCvb5qvNDtXNegf2BZhP+PeP/ADio5/D1kyf8e8fSoK6Hnzw5%0A5HeoJoNgr0QeHLHb/wAe8f61G/hyxDn/AEaOgVzzkx7xUb24I/x716JJ4ZsP%0Al/0WOox4bsSW/wBGj+UZHX1oHzHnctoG47VXmi8v7q/lXp3/AAjFh/z6x/rV%0AeXwxp/mf8esf60BzJnmyw7v8KSSEk+1ekr4V0/zv+PWPkZPWlbwpp2f+PWP9%0AaBPc8wePYOR+dIYOa9ObwnppH/HpF096htvCmnkt/osfB46+ppco7o8xu9Nh%0AvLdoZ4o5oZBtaORdyuPQg8EU210qHT7ZYYIY4YYxhY41CKo9ABx+VeqN4T03%0AaP8AQ4qjfwnpuP8Aj0i/WlYL6nmRtuaRbfPavTh4T07cR9ki/WlHhLTQP+PO%0ALp70WCyPL/IwOKBbfNXpZ8J6aJV/0SKpD4S00f8ALnF+tFgPMYrf5h7elUPD%0AvgvTvCovP7Os4bP7fcteTiNcebK2AzH3OB+VevHwnpo/5dI/1pV8J6bk/wCi%0ARdfenYOY8uj0mGK6kmWGNbiYBXkCDewHQE98VUHg23bxUNY/eG6W1+yAbvkC%0Ab9x49Scc+wr17/hEtN3f8ecXX3pR4T00H/jzipiPHdN+H+j6TrdzqVrptpbX%0A12SZ54o9ryk9S2Op9zWhb6ZFZReXDDFBHknaihV55PAr1L/hE9Nz/wAekX60%0Af8Inpuf+PSKgR5kLenC2ya9OXwlppX/jzi/WnDwnpoH/AB5w0AeZra4NOFvx%0A/SvTF8J6bj/j0i/Wnf8ACKad/wA+kX60Aeax2+01J9j3CvSB4U07bn7JF+tS%0AL4W08n/j1joA84itdtSpbGvRF8Lafn/j1jqRfC+n/wDPrH+tAHnsdvz0qZLb%0AJrvo/DNhgf6LHUsfhmw2/wDHrHQBwKQZPap44Mdq7pfDdjn/AI9o6lXw5Ygj%0A/R0/WnGzA4aO3yamjtNre1dvH4fs9/8Ax7x8U9dAs93/AB7x96sDjYrarEdv%0AzXYRaDZ/88EqVdDtAB+4SgDk4LXaasR2vFdXHotqD/qUqSPRrX/nilAHNQ2u%0ARzVqG056V0SaTbgf6lalGmW4P+qWgDBitvatyCH9wn+6KsQ6dB/zzWrawoFH%0Ayr09KtIm5//Z"><meta property="og:image" content="%0AAAAmAAAI5gEAAAMAAAABD4AAAAEBAAMAAAABC6AAAAECAAMAAAADAAAJDAEP%0AAAIAAAAHAAAJEgEQAAIAAAAJAAAJGgESAAMAAAABAAEAAAEaAAUAAAABAAAJ%0AJAEbAAUAAAABAAAJLAEoAAMAAAABAAIAAAExAAIAAAAmAAAJNAEyAAIAAAAU%0AAAAJWgITAAMAAAABAAEAAIdpAAQAAAABAAAJboglAAQAAAABAAAUmqQLAAcA%0AAAAEaXBwAOocAAcAAAgMAAAA2gAAFXYc6gAAAAgAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAFdpbmRvd3MgUGhvdG8gRWRpdG9yIDEwLjAuMTAwMTEu%0AMTYzODQAAAgACAAISFVBV0VJAABFTUwtQUwwMAAAAAAASAAAAAEAAABIAAAA%0AAVdpbmRvd3MgUGhvdG8gRWRpdG9yIDEwLjAuMTAwMTEuMTYzODQAMjAyMDox%0AMTowOSAyMTo0MzoxNAAALAENAAcAAAAAAAAAAIKaAAUAAAABAAATkIKdAAUA%0AAAABAAATmIgiAAMAAAABAAIAAIgnAAMAAAABAoAAAJAAAAcAAAAEMDIxMJAD%0AAAIAAAAUAAAToJAEAAIAAAAUAAATtJEBAAcAAAAEAQIDAJECAAUAAAABAAAT%0AyJIBAAoAAAABAAAT0JICAAUAAAABAAAT2JIDAAoAAAABAAAT4JIEAAoAAAAB%0AAAAT6JIFAAUAAAABAAAT8JIHAAMAAAABAAUAAJIIAAMAAAABAAEAAJIJAAMA%0AAAABAAAAAJIKAAUAAAABAAAT+JJ8AAcAAABkAAAUAJKQAAIAAAAHAAAUZJKR%0AAAIAAAAHAAAUbJKSAAIAAAAHAAAUdKAAAAcAAAAEMDEwMKABAAMAAAABAAEA%0AAKACAAQAAAABAAAPgKADAAQAAAABAAALoKAFAAQAAAABAAAUfKIXAAMAAAAB%0AAAIAAKMAAAcAAAABAwAAAKMBAAcAAAABAQAAAKQBAAMAAAABAAEAAKQCAAMA%0AAAABAAAAAKQDAAMAAAABAAAAAKQEAAUAAAABAAAUkKQFAAMAAAABABsAAKQG%0AAAMAAAABAAAAAKQHAAMAAAABAAAAAKQIAAMAAAABAAAAAKQJAAMAAAABAAAA%0AAKQKAAMAAAABAAAAAKQMAAMAAAABAAAAAOocAAcAAAgMAAALhOodAAkAAAAB%0A///0EgAAAAAc6gAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEx%0ALQA7msoAAAAAtAAAAGQyMDIwOjExOjA5IDIxOjIwOjU2ADIwMjA6MTE6MDkg%0AMjE6MjA6NTYAAAAAXwAAAGQABI/dAAAnEAAAAKkAAABkAAAAAAAAAAEAAAAA%0AAAAACgAAAKkAAABkAAAPbgAAA+gjIyMjCgAAAK7IMwEAIgAAAAAAAAAAAAAA%0AAAAAAAAAAFwBAAD/////////////////////////////////////////////%0A////////////////////////////////////////MDgxNDY5AAAwODE0NjkA%0AADA4MTQ2OQAAAAEAAgAHAAAABDAxMDAAAAAAAAAAAABkAAAAZAAAAAoAAAAB%0AAAAABAICAAAAAQACAAAAAk4AAAAAAgAFAAAAAwAAFRgAAwACAAAAAkUAAAAA%0ABAAFAAAAAwAAFTAABQABAAAAAQEAAAAABgAFAAAAAQAAFUgABwAFAAAAAwAA%0AFVAAGwACAAAABEdQUwAAHQACAAAACwAAFWgAAAAAAAAAGQAAAAEAAAAyAAAA%0AAQEQ+HwAD0JAAAAAcgAAAAEAAAA2AAAAAQKVan0AD0JAAAAAAAAAAGQAAAAN%0AAAAAAQAAABQAAAABAAAANwAAAAEyMDIwOjExOjA5AAAAAAAGAQMAAwAAAAEA%0ABgAAARoABQAAAAEAABXEARsABQAAAAEAABXMASgAAwAAAAEAAgAAAgEABAAA%0AAAEAABXUAgIABAAAAAEAAAiBAAAAAAAAAGAAAAABAAAAYAAAAAH/2P/bAEMA%0ACAYGBwYFCAcHBwkJCAoMFA0MCwsMGRITDxQdGh8eHRocHCAkLicgIiwjHBwo%0ANyksMDE0NDQfJzk9ODI8LjM0Mv/bAEMBCQkJDAsMGA0NGDIhHCEyMjIyMjIy%0AMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/A%0AABEIADMAoAMBIQACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUG%0ABwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEU%0AMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJ%0ASlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOk%0ApaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy%0A8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1%0AEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJ%0AIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZ%0AWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqy%0As7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/%0A2gAMAwEAAhEDEQA/APRWn96ha4OakZE1ycUw3JoGR/aTTXutqk8nAzgd6AIo%0A70yu3yMgRip3rjJ4wR7VG+oOIFkSGQ5YAqRyAWAJx9Dn8KVgE+3SefIhhcqN%0Au1lHBz1/LH5Y+gdHfBzgAnAyGCna3APB6HrRYBv9obWiWSGVN4YliAQmMfeI%0AyBnt9Kat7ctDA32YAuVDqXxtyMsenbp2z/MAsrcblVhkAjPIwacJz2NADhOa%0AkWcj1pgSLOalWf3oAlWepVnoEZTTEHpULTsM9PagCM3LdMVGblsZ2/SgY37Q%0ASQMdqjN0SvTqQKAGrdSPIcx4XHAPXPP/ANamteMpAEDHIJyCMD685/SlYdyp%0A/aF00EZSD94Ljy5AY2HyZ+8AfbB68c9SMGWC/eUQ7oXRnjDtkEBSR05A5/X2%0AosA/7ZJtQ+Q4LMAVbkjnr8uRTorvzFx8xYIrE7Cuc+x6dDx1HegCQTnj5acJ%0AW3YI4oAekxIJIHBqUS4zweKAJPNwM08Tc0CJllqVZaYioxNQuxwcUhkRkb0p%0ArSHPTIoAbvJ7VXnmKRghM/Og/NgKQwWaVmDMioAMFSMnPHf86hW5kaOIyxeU%0Azvgruzjr3/D9aLBcrLd3r29uRGplafZL+5Zf3eTyATxxg8n14zxViSZ1SU+W%0Aw2Y2tt3hvoFOaAKQvdTZ7wfYlRVVfs5KFtxx8wPI6PgDpkHdyBVh7y7WS3VL%0AEuskro7b8eWqtgN05yOf/wBdGgF12KRllXcR/DkDP096Lcyl5RKoUB8IdwO4%0AbQf5kj8KBi7rr7aFVFNvhcnvk7s/lhPzPXtKklyk4R4jIjs37xSAIxxjIJz7%0AcZ6ds8Ah0T3G2MGLJbBclx8ueoGBzirRLBWKgMQOBnrTEJFJI4zIDECqN1Bw%0Ax6r/AC/OpBcgOAwcBgCD5bYAJAAJx1yelACsKiIPpQBG270phB/u0AM5z0qp%0AelhAny9Zoh/4+tIYx57xbF5hZ7rjqtv5gHfGC3T3/Slgkunk/f24iQwowAYE%0Ahzncue+Pl7DvQBDc3V3BBJJHZG4K7dqxvguC+D1HBC4PPGTjPGasxMxijaVP%0ALkZQWXdnae4z3oGQ2t1JLZrNcQNbuTtMeCcHcVHOBweD0HWrQpAOFOApgSAG%0Anjg89PWgCVRUirQIkANSBaYhrRNTGjbPGKYEflvnkCozG/PFIBhjbjI+tRS2%0A/mptOQA6vnHowP8ASgYKrlN7jkj7g7UgSQyAFBs25zu5z6Yx/WpGZ0B1jdAJ%0ArWH/AI9keU7gP3uV3KOTxjcenpzV7yyzsuwhBgqc5z/9f/634MRH5sgvjB9l%0AlMQjEnnjBXOTlcdc8Dpnr24zLGofcOQykBlI4BwD+PWgY4QHdkE49DUoiOMC%0AgBwi4xzTwmB0P50CJQh4wPzqZUoAkVPapAlMQSeYpcCPOFJUYOSQen8qrO1w%0AnkhovmYkMFXPHPTn+fr7VVhDN1zul3RptC7k55Oc8f5//UGTciMiEhwSpPA+%0Ap9qVh3GoXdiDHj5yvBz07n/PpTZj5OAQSxIAAHHJA6/U0rBcjil84sPKdNv9%0A8YyMKf5MPxBqKK8tp7YzxOWQIX+6QdoJBwDyeRRYdxUnikl8uPczZIOFOBgs%0AO/ujD8qkkHlSRI6nMrbVx9Cf6UrBcR3ijYBm/iCkgEgEkAAnsSWHHv8AWlWS%0AE2wufMVYCoYSP8q4OMHJ+oosFydYgwBGCCOCO9Mt5ILkK0UgbcoYDocYB6de%0AjL+YoAseVhlBByx44p0SrIqshyGUMCO4PSgCYQ04Iv8AeHGM8+vSmImEVSLF%0A7UAWzGuRxUTou7GKoQ0xoQeKjMaZ6frQA1ok5O39aPKjx92kMa0MfXaM01re%0AFgVaMEMMEHnNIYw2lvuD+Uu4HcD74xn644z6U428TFSyAlTkE9qAEFnbg8RK%0AOc47E8HP14HNH2K2MTRtCrRnqjcrxjHHQdBQIeLWDereUu5eFOOR9KrTabZ2%0A1rEsUCqFkhUcknAdB1Psq/kKBltbOCExbEPy5UFmLHB56k+w/KkitodzW2z9%0AysCqFz2O4H9AKBCyWNrFZOiQgKsbhRzwDyamKL50gx0CfqTTAmgUMZMjOHIH%0A0qysaf3aBH//2QD/4AAQSkZJRgABAQEAYABgAAD/4TGwaHR0cDovL25zLmFk%0Ab2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49J++7vycgaWQ9J1c1%0ATTBNcENlaGlIenJlU3pOVGN6a2M5ZCc/Pg0KPHg6eG1wbWV0YSB4bWxuczp4%0APSJhZG9iZTpuczptZXRhLyI+PHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8v%0Ad3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj48cmRmOkRl%0Ac2NyaXB0aW9uIHJkZjphYm91dD0idXVpZDpmYWY1YmRkNS1iYTNkLTExZGEt%0AYWQzMS1kMzNkNzUxODJmMWIiIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2Jl%0ALmNvbS94YXAvMS4wLyI+PHhtcDpDcmVhdG9yVG9vbD5XaW5kb3dzIFBob3Rv%0AIEVkaXRvciAxMC4wLjEwMDExLjE2Mzg0PC94bXA6Q3JlYXRvclRvb2w+PC9y%0AZGY6RGVzY3JpcHRpb24+PC9yZGY6UkRGPjwveDp4bXBtZXRhPg0KICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0ACiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0ACiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0ACiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94%0AcGFja2V0IGVuZD0ndyc/Pv/bAEMAAgEBAgEBAgICAgICAgIDBQMDAwMDBgQE%0AAwUHBgcHBwYHBwgJCwkICAoIBwcKDQoKCwwMDAwHCQ4PDQwOCwwMDP/bAEMB%0AAgICAwMDBgMDBgwIBwgMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM%0ADAwMDAwMDAwMDAwMDAwMDAwMDP/AABEIAL0CSAMBIgACEQEDEQH/xAAfAAAB%0ABQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAA%0AAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZ%0AGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5%0AeoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK%0A0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEB%0AAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQF%0AITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkq%0ANTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeI%0AiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY%0A2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/AP1Bu9UdJm+dvvHv%0A71XfVZCD+8f/AL66VmXl3m4k9mNQG8xxWJoasmqSA/6x/puqGXVZAP8AWSf9%0A9VlPee9QSX2G71JRrPq0m3/WP7fMahOsyY/1j/8AfRrIlv8Ab/8ArqvLqPPt%0AQGhstq0oyfMkx/vGo31WUj/WSf8AfRrFfUMseelRyaoo/lQBuf2rKqf66T/v%0Auon1iX/ntIf+BVif2ruyMio5tT2FhQVsbn9ryn/lrJ9dxph1eYD/AFsn/fZr%0AAl1lUXqaYNVyN2e/pSYG7Jq03XzpP++jUZ1eQ9JpP++zWFJrO2Rh+lJHqv2h%0AfvfUVAG0NVmOf30n/fZ4pra1L8376THb5zWLJqIHP6elV3v97HvQB0H9szMP%0A9dL/AN9mojrEzZ/fSf8AfRrC/tlYQVz+FDa0rnhgfpQPQ3DrEz/8tpG/4Gaa%0AdYmK586TP++axXv9iZzuFMa+ww280DNltWm3f66X6bzmg6xOBxNN/wB9msQ3%0AuAaeL/nluRz9KBms2rTEcTS/99mmtqszlv30uM/3zWWb4Do2fpWF8Q/iBD8P%0AfCV5q08ck0Nmm8xp95/YZ7nNTqM646pMn3Zpv++zSf2rMrczTE/75rHtdT+1%0AW0MgjaFpFVij/eQkZ2n3HT86c12FH40rsDWfVZQT++m/BzSDVZlbPnSg/wC8%0AayPtwXv7/WqHijxbbeE9CuNSvJlhtbVC8kjHCqBSA6N9YmCn99L/AN9mmjWJ%0As/66b0++a898K/GrTfFPihtF2Xdlqv2FNTihuojEbm1Zivmx5+8AwAI6ruGR%0AzXTLqi+Zjp/jRqGhuPrUxb/XTe43nim/2zOp4nm+u815X4p/aH0/QfFU+j2+%0An6xql1abVmays3mjjZgCFLKMKcEHB6Ag13Bv9h29+hHvVcrC5uLrM5GfOm6/%0A3zzTTrNwP+W82f8AfNYV7rMOnWMlxPIsMMKGSR3IAUDqSelZngzxk3i7Q49U%0AELQWt5+8tC5+aaEgbZCMfKGzkDrjB4zgTYVzrv7Xn/5+Jvb5zQmrXBP+um5G%0Af9Yaw2vRjcpx7etPi1HIwpz+NOwzbGsTAf66b1++aF1Wdzn7RN/32eKx/tv/%0AAOunC9560gNb+1bhBzNN/wB9mkOrzhv9dNx/00NZhvgQRkc9PemPc+crqsvl%0AsVID4DbCehweuOuPagDWTV5wOZpf++zUv9tzKvzTTZ/3zXnvwz8cz68NY0vU%0AVhTW/DN0tnfeUT5coZA8UyA8hZEIIBzggjJxmtXxr47tPAfhi61S8814rbAS%0AKJd01zKxCxwxr/E7sQoHqarlewvM6ttam28zTE+7mozrUyH/AF0/zdPnNcv4%0AZ1DUm8PWLa0lrb6tMga4it2LRxSHny1Y8ttzt3cZIzgAgVo296s0QYMrDPBH%0AQ/SmK5tDW5iv+um9vnNK2t3Cn/Xzc/7Z4FYxvFQey9xSrcecDg4X+dMRs/29%0AMvBmmP8AwM06PW5mH+tl/wC+zWGJ12/LwD1NPW6y38+aB6G0dcnDYWaUn13n%0AinJrlwijdPLnoTuNYYvtxbn60gv1BwCTxnJoC6N9dbm5/fTe3zmpF1iYn/XT%0Ae3zGudF9ycduCamjveny/rQSb39tTBR++k46Deaki1ucj5ppfb5zWDJdrjbT%0A/tGBtoA3V16YgN58mPXeakXXZjx50uB/tnNYP2jJwfwzUiz7fvfd6U7lHQx6%0A1Mxz50n/AH0alGsTbP8AWS/XeawY7wY/vYqRb7B/DFPmA3k1SZx/rpfrvNSD%0AV5sczS/99msOO8yuO2fzpwvvNz3oA3k1qU/8tpP++zU0erTZ/wBdKf8AgZ5r%0AnkugPp61Kmoj1GcUXJOhTVps/wCuk+m409dYkHWaX/vs1gx348zbjp+tTR3a%0Agfy5qgN5NXlY/wCtk/76NSLqsmR+9k/76NYK3ioeeB7mpkvBtyp4zQKxvR6r%0AJ186T/vo1KusSA48yTJ/2jxWAt95annbg4qZbrI9aCToI9Vkx/rJP++jTxqs%0AoHEj4+tYSXeD1z6VMt9vUfyoEbkGpSLj95J/30easQ6q5A/eN/31WCl3nH8q%0Amhu8HFVcDoLXUX85F8x/vAfeNFZNrd/vk5x8wH60VQHMX9z/AKTJ/vHH51Uk%0AvMDbUV9cf6RJ7OaqST/z6VmOxc+1ZX69Khlusj9aqPcYG0Yx3qF5yWz/AJFB%0ARZnusfNmqs91tHTrUMzb1+bPHNQuroPvDaOlArExnXb17VXe8bH6URLtU8/l%0AUN+hkbjFF0FiSGdmuMEdu9Q3d9iRl3bgtRrkT5/hqG5tvOn35HIzQOwj3u08%0AUj3hIVRn1zUc9ouRg9fajYy7AOi0rhYdLc/vtpY5xRFeMit39xUNw+ZN3tVf%0Az2MDBl5JpDsWLnUsLjgj2NRpqBWTbwwqlJbyErjovU5qUW/lSA/njvRdASSX%0AHmytlqiWYp/vE4qC5fy1Z0X3pv758SFR8vYmncDUa42J8pyfeq8epeX+JqF5%0AS6lv61B9lkmKjPy5z7mp0AvJqu9m+bv0rivGWuTeIPibo/h9bie3s3tp727a%0AJ9rssZRVQHqMtJ1HOB710623l3m9W+RuoNcI0jXX7R0Kr/yz0G4ODzjM0I/p%0ATVgHeNviNdeHfi5YWdvfmHT7fS572+hYBtsaYCNnqCTnnvt+ubnws8Tt8U/h%0AjpV3riwzTXTrerHjaFUPvhDDuQu0n1p3i74L6N411a4vtQs/PkvrA6ZchZmV%0ALiDJbY4HXBYmtLwz4NtfBul29nYqywQIEBkcsxCgAZY9cAAfgKLroGtzoBq6%0A2yM3LMSTj1rifjf8R28FR6W0fiDRdBa8ZxnUo2dJtoHCbWXkZ59iK6B7ZimM%0A/Nn1p17NsiXdHHIO4dAwH51OlyrNnE/Cr4q3HijXruB/FXhnXkjg3NBp6Os0%0AZ3ABySx+Xkg8dSKwf26NYmj+COnOylbKTxBpkN82OFhe4VW3f7OdvNeqNaxv%0AErRwwxtjAKoAQPTIqn4z8OWPjXwve6NqlrHfabqEZhuIZB8siH+vQgjoRmqU%0Ao3uTyu1jzz4q3cl5+2T8NpIdsf2XTNZkuSP4Ym8hQD7bgce+a9TTUlYrICuD%0Azk1zuk/C3SdKa9m3Xl5d6hZfYJbu7nMk/kc/IGAG3OSSRyTz1pfBHgqx+HXh%0AWx0PTY5Bp+lwrDAsrlyFHTJP+elLmTDlZ5X8ZfAd18HrqPx94P17VItQm1uB%0A9T0ea5Mtnq6TzLG4C/wOAeGHp7V1nxC+L114H+OOoRz3+3w34b8MT63q0BRc%0A58wrDtfqCRHIcf7IxmtPwT8DPD/gpofsq39xHaytPBDd3j3EdvITncoY9R2z%0AnHbFO8Z/Ajwz461TVrrU7OS4fXbKOxv189ljuoo93l7gD1Te+Pr0NPmXUOWx%0AwHjbxRrnin9kDSP7duoxqutTaXBq7QJsEEV1cxB1I7YjkCn2J9a91195FsJo%0ArPyLeVVKwB/9VFjhc4/hHt2Fcnqfwp0fVPhnqHhWaO4bS9UtntZz5p887hgO%0AH6h1OCrdio9K0PC1tqA8Iw2PiCSC+vo0a2uZ0Xal6uNvmbf4S4JJX+EkgEjB%0AockGx4X8HP2htf8AEut/D3S7nV2lXxBdan4iu554kRl0aBiIY2wAA0hZTkYI%0ACn1zXt3wWub7/hWWjNqV5cX13Nb+a086hZZEZi0ZYKAA3llMgdDWLbfs++DL%0ATS9KtYdFgEWiq8VtmRziN1RWjc5+dCsaAo2Vwo4rsIJmX7zFtxyWPfNTKS6F%0ARizK8XeJPF9rrXlaLoOm6hY7FInuNVFsxbuNvlsePXv7Y50fA+r+Ir2C4PiD%0ATdP0t0ceQlrffavMXHJY7E2kEDjBqyJjnac1It3x9Ov1rNyRaizzz4y+IlX9%0AoH4b6aNTuNPs7ePUfEWtMlwY4VsrVEjQSDptaabOSf8AlkRUf7HnxCuviH8P%0AtQ1q/vLu5utev5dajhmz/oFpcSyC0gHYYiiDFf8Aaz3Ge31Xwjo/iTWrLUNQ%0A0uxvL/Tci2uJ4Q7wZIPBP+0AQDkAjPXmotO8O23hbw9Lp/h2y07SdgZoVS3C%0AwLI38TIuN3QcZGQMZFVzRtbqQ4u9zmfhpqcmvftTfE+8t13WUNloekM6niS6%0AijuZZF6dVS4iB9NwrT8KX/8AwtzxsviRtzeHdBllg0JO19cfcmvj6quDHF7G%0AR+cri74A8GWvgLw8unWzyXBaR7i4upgDNezyHMkz443Mew4AwBwBW1Z+TYWk%0AVvaxxwW8KLHEiKFSNQMAKBwAOAAPSq5hWPIfidrNhp37X2i3t0lxeN4Z0G41%0AQQB/3l/cXLLbW9nAvf5Y5nOOpky2ABXZQeJNF/ZX+AelHxFe2+n2Oh20VvcP%0Abxu8QmblljUAtsDFgp7KoNddKyyXCzfI0iKUViPmUHqAeuDWL478L2nxC8N3%0AejaiBLp18oiu4iinz4v4k+YHaG6EjnBOCM5puVxKLOmsNWj1Gxhuo2DQ3Eay%0AxkHcGVhkH8QakN2wXNZts626BUVUVQAFQbVUdgB2AHAqYT/L8x3fjU3LJrG6%0AbfLKZC25sgE8KPb0p7XPmykF9rY4FZ8E21Suc7f1pctJuOdrbsg0yC/eXhjg%0A/vc8471LbfvI/mz7CqBfzEC7vxp8k7CH5fvYxyKAsaDL8rDOMjH0pWu2gdV/%0AE1SiuvlGTz7VIziTjdtJ709Bk9praXhmWPrAQpPqetS219JK/oG5YelUYwqg%0A5b/69Ojl2yff6DGPagaNHz8sqr0XOT6VLcT4bGNxrPWcSyAsT6DmrCzrMOGH%0AsaQFrT7yQ7/N+UknaoOSB9ae1832tVLZ7gelVIF8zcAxYt3PanQwLDOzfN6A%0Asc//AKqZJelvN5Zt3KjoPxqRNT/dqGxzz9apRxrtZVyuepqRoFk25J9iOoph%0Acvx3XnPs3ZXrzSwXEiyR+ZHt57VWh2wJ8v15qRZFf5t3TkUhGolx+f8AOpku%0AdwX8xWXDNgbuVFOin2u3PH160hmtv/eM33uOPpU1jc7YuelZP2rI2njPvUkc%0An7vaG29iaq4Gs8yzJtzjPf0qQXZR1VcAY5NZol/de4FNjlzJuy351RPU2Eum%0AH59KsxXhJ+asiKbK7juqxbTZHXp79KANZbvLfLUwu8Ju/HHrWSJiST19jU8d%0AySMbqBmrZ3n7yPPTeOPxoqhbykyxLn+IZ/Oiq3JMC+uP9Kk/3z/OqrTZ+bNV%0Abu/UXUmf75z+dUbvVwAvLY9DU8oXNgzrgfN+NV5Z8L/9fpWLJqTJHtVjtY5x%0AUcl86r97tmiUQWprPc4bg1GLsAct29a5+6v5HYfvGG09PWpLS+kklbc3ap5e%0A5ZtPc8/L06mo5bj39vrXOajrUkTso4GcZHaoDqjuB8zbemc1XKB0xmyPfPSo%0A2uPlx1zWKNXEdp8zfN0FUJ9bn27t/Knt3osB0bS/N/LimtOcYP8A+qsOXWm2%0ALIPu9wD1qpea/IQ23cv4c1PKO50TTbRz8x64phmBbnG761zun+IGEjeYS3HB%0APek1HxD5kBEYZXzjJpcrEdC1xlcmmvd9vz9q5GXxZcJ5ezbuzznvWkdZb7Mz%0AkfL2560crC5rGcA/U/rQbrB+U/rmubPij5wu0ksM5zVix1lb0sMbWU/MTSsw%0ANg3Ow4z34NON3kcda5y68QeXJhVO1aih8YJJOowdrcAk9aOUrmOma5+X0b+l%0Aef2Uiv8AtPXHA/d+G249C1yn89tdJc69HHwvJ6815z4d8TLJ+0drU2OY9Bt1%0AYA9N1w//AMTRysLnsL3Py8Y/OomuvpiuH1j49+GPD+o3lre6tY2txp8AurqO%0ASQK0EOcGVh/cHdugzzWDf63qT/Gr7e11Pb6JYad5X2cN+6u5pWPzEf8ATNUz%0An/bFZ+zZXMj1Rp8Nw36UyYrKOvWsnT9cF6237si9RWJqfxm8P6TdTQzapYrJ%0ABkODOoKn3GanlZXMjso7jChfu7eKjkmLknr74rCg8aW+o2cVxbt50Nwu+OSM%0A7ldT0IPcfTNT3utLaxttXzGH8Occ+lHKyrmtu3J6/wAzSrKpXGM4xWS2sxw2%0AbTFvuqWCjrxXzNrf7S3irxL+zT4z+L2iX0dvF4bvLmfStMZFa31Czs5Qkqzs%0ARuUygSYKkbcKcE5FEacmTKSR9WO6leDhcnpUUk29v9nrWRoviu28VeH9P1Kz%0AMn2XVLWK7gLcMEkQOue2cEZ968d/bQ+PGpfCLQdBisZdc0uz1C4lfVdc07Sj%0AqI0i3iQEFk6ZdmUDJ6Bj2qowk3YJSSVz3iS5yPbtTftCyHHbHIryn4KePrO0%0A+DMWvXXjJ/Gmlzwy6n/bjQJDH9nC5ICKcKECtkE5yDnBq1+z5r+oeM/BUPjL%0AVFuILrxZEl9b2cj/AC6daNloIcA437CGdupZsdAKrlaRPMmz0zzFEe0H5T+l%0AEc+1W7n1rg1+PnhObTteuY/EGktb+GrmOz1OQXK7bGZ8bEkJICsc8Z75HY1s%0AeH/H+m+Km1BbG6hum0u6exvFjOTb3CY3xMOzDIyO2az5ZFKS2R0gujjkUnnn%0AZ/nms77b5gDD/dwO1H20AH9anlKNT7VhTj0qRZPl/unpXB/ET4y6L8JdGj1L%0AXbprOwknW3MwieQK7kKi/KDgsxAHbNXLP4naXqPj/V/DNteLNq2gwwT38MZ5%0AtBPuMO7sC4RyAOymrUGTzdDqlvlcfKysOhIPWj7Su39K8htdaX4X/tLW+hxy%0AKmj/ABA0u61W2t84WxvrR4vtGwdlmjnRyBwHjc/xGvRINaWW4YHbtOFX+tXy%0A2J3NkXRKjuKTed33vr61RbUlMZ6eh9jVebWFtpnj58yOMybQeWGccUK5WhsC%0AZkbb83XsacJCwHJ+U5z6Vjtq22eGP5QswJAP3uMdvxqe71ZbMLu744HU0aho%0AaobbH16jnFOcYxjjg5z7VhN4kW3ikkdc7eVQHnHrVybU3eBnVDtUbgB/EPQf%0A4UK5LSZejuGVNox7809bzzAR1yO1YY1ia40xmjWSCaRCVV1+ZSfUU3RPEElz%0AY7pI23qSrkdcimTpfQ3o7tYzgN97gmp458EccgcVmW8yvHu+4uMnPH51XtNc%0AWS1BLf6xiF460D5kbyTc+zVPC/G4jnGOa57RdWkvIZDIQzRu0eV6cf5zWhHe%0AZbjrTYzUZ0I+7nb05609W7Nhc1iWWrtcXkkYVmVDhmNXo7kFOc/4UAakU69c%0AHjuKmjuFzz2rJS7DyDHP07VIk/zEs3fsakWhqR3SnbU3n9vTpWal0mdvdqmW%0AbbxjA7mmKxeV95/H16U8TbVx+FZl3qDWQXaqtkgZJ6U4XUk8ilcbV6j1pkmw%0As244FDvtfnjdWRHq5S8VG4ZufarP2/fKys3OeMUwNKOXK/1qeOfqOxrHivN5%0A6jr2qezuWKcn5vanYRtJcdMU5JAG9M1j/af9Jxu+XGcDtU0eossyLyyt69jS%0A1EzbWbEf+HenpMvDdvWs2O5IB3fe5GacLzfK3fbzwaaJNZLjNTLJkcfrWZDc%0AiRN3tUq3GenTNUVfoatrNi4j/wB8fXrRVOyuN1zH/vj+YooHqcvfIWvJPZiO%0AfrWddx+QjfNjsBWpfP8A6XN/vN/M1TniWcYZaIyIsZM1xtIX171MgMwzuHA7%0A1ae2jYYP8JyKbLGjxlduATQ5DirGPJORcbT69fWpRdeRdZZcnFWnsoXTaV/x%0AqL7HGE6fd6VPMWZOqKZSSv8AF19qrM2zK7vm9a15tLj3A7moGmwhOV98ntVK%0AQGLPI0aJu+tU5JmYttzt9BXQ32kxXSKp+XbjBFQWulR25dl+ZXGMUc4amSJd%0AsS85Yiq00sm1Pl3CttdHjLNjv+lNt9CS3jZWYt2BPap5g1My32yyqv51Uvma%0AOdup5+tdD9ihjGB1Hc9qz7zR/Mui6vjPBFHMgsYkqrIN2CMGtCZsaL1yAM4q%0A0dIRkZc7t3tQukKqqpztHal7RFcrZz7XGEVm6L/47Wj4flDpN7nC+lTDw5HB%0AO8kTHbJwyHlfwp1roi2UDrG3zMcjPSl7RDUTAvHQXEibtq9qdaRpK3lsv3cE%0AH19quSeGnlnZiynuRmnWvh+aBvlWPk85PT9Kr2kRcrKmuz/YbiF13bGHIPTN%0Aef8AhGQal+0B4xZd0aw6Np6HPqZJzx+VepT6DLK38P0rzTwBp0kn7QHxDEIU%0AeVZ6WhUdAT9pPT8KOZMXKzll+H2qaj8WPGXm6PPDbapbW9jbXksYkt3hkDtc%0ASHPBOdq7TycAdCa9QvtNVlWPLLEqbF2n5gAMD8q6d9LY6eVb73U1Tbw5JLE0%0AnHmLzjPWj2kSuRrQq6D8sqg9cBQQOuK8c8dfBnxVfeI7u9h0X4UyxzTOyy3m%0AlStcOCeDIQpDMeMmvbdG094ZmaZfmzx3/GrWsWy3Vk237+PlOe9T7RJj9ndH%0AF/DHTLnQPCOm2d5a6TazWsZWSPS4vLtQ24klFwMA5B6dSevU8/4h+Cbavq11%0Adf8ACYeNLRbiQv5NteosUQJ+6oKEhfx9q9QstOiSyjEi7ZMAEA1SudFYOxDb%0Alxxx/n2o9orh7NmB4Z0qbwzpVvZtf3mqLauB5944aeUZz8xAAJ5x07V842Hw%0Au8SeDv2SPFnwRt9H1C41271C803Tbr7O/wBjudPupy6XZlAKqFiZlYE5DpjH%0ATP1JJpTSudy7lkwCB2rUs7FbcKpZivoTT9okHJc4PwJ4yk0rxheeB7fRNYt7%0AHwnpdmlrq86D7HqSbAmyNs53qFGQR3Ppza8RfGlvBHj6z0eTQPFV1Fd2v2qL%0AUbPTXurFmyR5DsmdrkDOGXaQRzzXRaporfaVn3OzRkhVHbPerVin2a3xJnce%0AoJqOZbjUe54T8Mf2dLzSP2RPFXgHyYtDvvGEGstbWYdWj0hr8zGGAsPlxGHR%0AWxwOccV6N+z348tfiD8HfC+oRQvZ+bpsEVzayfK9lPGgjmgcdmjkV0I45Wuk%0AewY3kp24Vj8tZ+geEbHQNS1aa1tfsz61cLd3IQnZJNjDSBeis/G4jG4qCecm%0AqdS4vZ2eh8nf8Kx8TXNys83g/VNP8N3HxNj1XXLWO0Mkz2FkrQ6fDDGMmSFP%0AIjldsYzMgGcuV+n/AIY+H7rRNEvry/gS31bWr2XVb6IFSYZJSNsZK8MUjCKS%0AMgsG7YNdNfwSkr5Tfd4UA8Cs5Ybrz2kn4dl2YQnaKHUugVOxleNvhRp/xNez%0Akv8AUfEdktmrqg0zVZrIS7iD84jI3EY4z0yfWm+BvgxpPw31O4utMvvE95Nd%0AQeQw1PWri+QLkH5UkYqrcfeAzgkd66a1t5PsCCT/AFmMHnOD/nFTWUbRQ7XU%0A5HdqnnDlPJf2mdC1bxVJ4FhstLvNY0nTPFVtqmsRWqLJKYraN5YcIxAYG4EJ%0AOSAAvPXNZn7NfhzxlofxD8cax4m0OLS5PEmt3Wo3MxmE/noqww2MUDKfmSOF%0AJGdmAG+QbBgvXstrp8hkmMyFVL+YoJ6j3qaRJftUckfyKvRegBFV7ToHJrc8%0Aoljn+Kn7VkesWe3+w/hfpF1pXnkZW+1S/aFp4l9RBb28Yb0ecDsav/tJfGzV%0Avgb8Mv8AhJtH8MSeLZjdwxS2UN0IHt4nbaZB8rF23bVVAMszqMjrXcWPhdfD%0A+nW+maTa2+n6bbqxRUJ/dsSWPHUlmJJYnJJJOSc1N/wikBuIbmZVuJLWbz4z%0AKudsgGAw9CBnB7frQ5IVjYni8iSWNzvKkgn1x6VntbxtraSKG8wRbTkfw5Pf%0A+lWGaSUZAVfm53HqKh8qZpy25V4wOOTWdyyrNYsl2iRN/pGM+bjsCPfp2q5q%0AQaV22kjahw3oTUMVjI2qRzNt2+WV4PfPpVyS38+I/LjcpGQOfSnzC5TPV2ii%0AXzdzsyjOT16Vo6U8v2ZlZSOTjPYVA9or2Pkrt3AAbscqfarluGEe35eOTnua%0AObsHKVbWza31C4bdJI0hBVS3yr9PSnW8kiXzOi5MmMqrbhx/Wn2yyR3bMuFh%0Ak5NT28AjuJG67jk4NPmDlHeRNLNHNJJ+5jH+rxwT6n1xVMab5WgRsW2m3k81%0AFHfHGPfrWhLG1xIGVvYjHUUw6aN6BpJdsfAQNhR+FCl3DlRHpEclxdSXTfLH%0AcAFk7jGcc962xtMWem3g+9UoNOEEr7WIVuoPar7QqIR3zwamUug+UpaPN597%0AdRq2I9+c461PqSeS0aKkjK3dfWnWdlDavvWPDDqwHWrqqWXbnjvVXDl7mbp0%0AebzcVuF29Nx4Nac8yiPld27nPpTEhz/u057X+H8PrRzE8ttipoLM6tJJJvk3%0AN+A4xWuLuMS7NyiTrtzz+VQW1pHEfk475qMWsaXhm6swxgjOBS5kwsy8US4I%0AJXdjpVV8C/2rnp0zTp1kmxsm8rv061G+kNdNm4maVcYI6VSZLRe09leM42/n%0AnNRfbhamRlJBzgk9qeiALwu1R6d6dbaTvaQ5+WQ5x6VakSLbXGD8rE7uc1ds%0A332vyn7x4IqCOEKpAY55yTzmnafYPBbNHv8Am52sP0/KjmAswx4nUD+7Uizb%0A28roUPU9agawkc5aVj/ujGKnhs40Ctltw79T+NDsHkXI5Q6d1JFNsZ2AkXuD%0AjPrQi7FH+cVMsYccd+DjuKLktDrZ2SL5TzTrW6kZ/mkjPrt7UIgRFC8be3rQ%0Alsqt8qgfyouC7GlZzMJoj1+YD680VBaf8fMY9XGD+IoouUZV9IGvpj/ttx+N%0AVZZcHPb2p99Lm9m/3z+PNVt+fz6UXEBmzuzkf1qFpCT/AE9KXO3/APVUUrcN%0A29akAaQgn1FNMoPHYd6py3vlvja3oMDrUL37tuPlnHtTsMtXd0sCbm4Wq8Oq%0AxSJnd26VT1SZrq13bSvc56isuFmYsv3lxkH1p8oHQC8WXlSrYGDUbXa569Ou%0AazbGd9khVflHIz3qrc3bRlgON3Jo5Rm0tx5mdvHPNEknyfrWLYXsolXp8x5G%0AKvXFxz8pznv3pco7kj3a7uvIHQ0gk804/KsyaTF4p7/yps2oYkGOe2M1MojU%0AjVL4qJ58/wBaz21jlQE+me9RyapuVh+hrP2bLUkaJclce2KHlAX/AHqzrSdj%0AESWzzmpfte9uv1pcjDmJmuPmbv8AWki1UeZtONvqTVK8bCYzz/OqL3DE7cDg%0A9KpQDmN+STd3615v8JZVm+PXxPkZmOH0uPPriKcn/wBCFdNrOs6jZ+HL6bT7%0AFdQ1C3geS3tDMIRdOBlY97cLuOBk8DPNec/s230fiDSNa8QyNJFq2uXuzVLO%0AVDG+mzwAr9mYHnKbidw4beCMjBNRp7hzao9qlmwB6Dqc9aw/Hnj/AE/4ceFt%0AQ1vUnaHT9Mge4uSi7mCIMkgdzgHgda+ePEX7ZHiLwTqXjS1vNN02abSbuysN%0AFgWRxJdXVwzBYZcZB+UbsqOAcHJr0iWwm+Mdr4s8PeJo7ZdLt9RS2gaxlYG5%0AhCRyMkm4ddxKnGQR6Gp9nbcPaX+E9H0DxNbeJtBsdSsWaS11CBLmEshRirqG%0AXKnkHBHB6VNJcAN/D361jNuWNsllXsEHyr6cVyfxg8d+JPCul2P9gaXouqXF%0Ay7LOuo6wNN8pQPlZGZH3knjGBjOc0uTXQrmstT0F7jD8DOOPrSSyN5iqudzG%0AvJfAvxO8aa1rjJr3hnR9G063iLfabPxAmoMW7KYxGpAIz82T0r0vTb24mZGn%0AG3a2OBz1pSptDjO5zvgL4rTePtZmjh8O6xbabHNPAupTtB5ErQyNG2Arlxll%0AYDI+uKueLfjd4T8C61DpuseINL0+9l8sCK4nCbPMbZHvPRA7fKpYjceBk1i/%0As53K3PwzsyTuWa/v23Z+8Gvp+fxr5s+F90nxD/Y8/aY1rX1W4m1/VPFEN9v5%0AxFZwSQWyc5wIxGpUdjk1Xs7sy9o7H2nKeSG+RgcENwQaxvG3jvR/AOmRXGsX%0A9rp8E0gt4jKf9bIQSI0HVmIUnaoJIB4rif2VvFuqeJv2Y/h3e600kuq3Hhuw%0Ae6mkJMk8nkKC7E8lmwGJPJJz3rzP9pS41rwV+2D8H/HFxpWsav4I0e01fTrp%0AtOs3vZNJvbhI/LuWijBbayoE3gfLtbpkZI09bDlLS5754Q8aaX498PW2r6Hq%0ANpqmm3QPk3VtIJIpMEhgCO4YEEHkEEHBFX/OUN/e/lXzZ+wF4pTxr8RP2hNY%0A0+3vLPwxqHjlG06G5g8iT7Stqq3p8s8qWkEZOcEknIBzXsPxS+Leg/B3TIdS%0A8RX39mWN1MLaJ/JklDyYZsYjViOFJyRjiiUbOwKWl2dj9q37mBJ5yTSSXEcF%0AvJNIyRRxqXeSRgqoAOpJ4A75Nea/Dv8Aau8DfE/xTbaJouuLdajdKzRwC1nj%0ALbQSfmdFXoM9a9Iv7Cx1PT2W+tbS8s0BklhuYFmhcL8wyrAg4IzyOMVEtHYf%0ANpcqeDPHOkfEHw3Hq2h6lZarpU+8xXltKskMgRmViHHBAKnkHHFZnw6+OvhD%0A4q6l9j0HXrHVLoWy30aREgz2xbaLiLcB5kJbjzEyueM818T3HiDUPDX/AAQW%0A8Ox2M01vJrWn22lXM0WRIlvdak0cpHrlGI9CCR3r1j/gpx4q1D4IeOPgzqfg%0A6AWOqeGX8SWem+Quxba0j0gHywP+eaGKFgvQbO2TnVUUtCfaPc+grT4/+DL/%0AAMaf8I/Dr9m2rfbX0xUCOIpLtF3PbrNt8pplXOY1YsMHjg1V8a/tA+Dfhnqt%0Axp+ta3DZXVjbxXl7mKSSPTIJWKxy3LqpWBHKttMhUHaT0Ga+UviXpR8C/wDB%0AGb4cyaSv/Ewsk8O6rp0ij94dRkvI5Q6nvI0juCepyfU1337M08PiT9nz9pbX%0ANaVZJvEXirxWupeYcjyra3e3giz/AHUhQAA9M8Yo5Fa/yDmex9RyXHlqzNNG%0AFUbi5cBAOu4nptxyTnGKyfAHju0+JXhKHWdOiuDpl8SbK4lXaL6H+GeMZz5b%0A9VJwWXDYwQT8seF9a1Lxh/wTU+Ceg6lNMr/EJtG8M6jIWIdtPldvNXI5/eWs%0APl57iTuK+tdWlu7LRpP7J09dSvlxFZ2Syi2jlckKiF8ERxjIywU7VBwpIAMy%0AjYqMrskuV3NuwG9Rimu5RjyRzzmvnT4Mftva18ULP4WWP9maJea38Stf1RIW%0AtEmij/sGxeRW1FImZnVpSEVFdiMs3XYRXr3wL8Zav8QfhrY6rrw0ttQup7ld%0A+m7xaSxx3Esccke8lijogYE9Qc8dKHFrcL32OzDbRnrj07Y//VSli33f4h+t%0AcV8R/jLZ/DLUrW1n0PxnrE1xH527R9Dn1CGIBiMO0YwrEj7pOcc074a/Gy1+%0AJmrTWdv4e8aaS9vD5zyazoc1hEV3AYV5OGY5ztHOATU8ulyuZXsdlHbsTubp%0Az0qR4yVYZB9q434+eI/FGgfDXUJPCKWa6tDaXV413eQ+fDaJBA8uDEGUu0jK%0AkYAOBuZjnbg5H7Pnxc1T9oPRdC8TWNxp9j4cXS4DfwC3Ms1/qE0KSyIku/EU%0AdtuVOjNI7yAlRGCxyu1w5lex0/gz4iw+JfFGteH5rWbTdZ0Vkaa1mIbzYpAT%0AHPEw+9G2084BBUggEV0z2/l7dpxk15T8VZ20P9rj4Sy2p3XWvafr2n3iLyXt%0AoY7WdN3rtlb5c9N7etevOnK56N6U/QI6hC7Ln/Zqyrb0/vfzNcD49+K2peDf%0AEH2Oz+H/AI48SQrGrm90qG2a2yf4cyTodw78Y96ufDn4l6p481CeG88EeLPC%0A0FvGsizauLZVuSSRsTypXOVxk7gOCME9nbqGhZ+Kfxf074UaRYTXVvfXt7rF%0A7HpumafZqrXOoXL9I03MqjAyzMzBVUEk034f/F6Dxb4u1bw3fadd6D4k0NIp%0AruwuXikzFLnZLG8bMjoSrDIPBGCBkZ8u/aBhmu/21/gf52P7Njh1VoQ4+X7V%0A5a9Pfb5f51bvXk1j/gptaxWb7l0/wE39oFOQA90nlKT6kkED2PpT5dL/ADJ5%0Az36JVU849vauD+Kfx8f4eeI4NG0fwf4o8baobcXV1DoqQ7dNjZisRmeWRADI%0AVfaoySEY8DGe8wsfy7uV6+1eO/HL9i/Q/iVqmo+LNO1bxB4a8ZeUZodTs9Sk%0ARdyJ8odM4MeBjHTGeD0KjbqOV7aHqnw81/UPFHg+z1LVtFuPDt9dAu2mXE6z%0AT2q54EhX5Q5HJUEgZxk1usNyZ6ntXzD4q+OXjjVP2GvD3izS9Uh0nxJrFvHb%0AxTRQq017dSyrFbhFYFVjfLOx5OAoHBJG3P8AGbXvFvxB+JGm6Xr0ljo/w90B%0ALN7u3t0kkvNak3H5N3XZsCbc43TDPIp+zZPOj27xr400/wCHvhS81rVJHjs7%0ANAzbE3SSEkBY0Xjc7MQqr3JA96i8G3uranpENxrFlBp99cZke1ikMgtgT8sZ%0Af+NgMZYAAnOBivPPjVpt1deIfhHpupyfaIZtZa4vzj5Zp4LbdHkcdZC7D3X2%0Ar1vUEurqwuI9Pa1W+dCLc3G7yQ5+7v287R1IGCemR1qLbWGmx6JtXdu+uacD%0AuX5f0PSvl+y/aJ8UJ4JgtrTXv7Q1Txr4vk0zQLqe2j8yKwikVZptigLgYbHB%0AxvA5xmvdvhxPqE/iXxQ11eyXVhHqQhskaNV8hViTzI+PvASFuTz1rTla1ZPN%0AfRHXJ+6+96VYgn2pxWP4w1q58NaI13baPqWvSKyqLWx8vziD3/eMq4H+9XI2%0Anxp8QTSKG+FvjqPcwGTJZEJkgEnE5OB7ChRuS3Y9MQc/KcduakhXH58mq9pN%0A5q7m/IGvI7/426t4Ys/iXqkl4t9p/hmUWWmq1uil7gJ86nbjcA8iKM8/Kc5N%0AVHUnY9e17UbnR9IkuLWza/mjG7yEcK0gHXaSOWx0Hc8UnhLxJZ+LtEt9QspB%0AJb3SB0buM9iPUdKg8DPqL+HrH+1ZI5dS8lDdGFNiebtG4KOcDOcVy/wY8uw8%0ATeM9NgO6z0/WpBEFOQm9VdlHsGLUeYG94/8AEmveE7d760ttFn0u3CGUTzyp%0AcNuYKdoVSvfjJ/KuqtiXiUtkbucVy3xibd8NdQXoZPKQfUyoP61t32t23h7R%0AJ726mWGzs4jLLI38CAcn3+ncnHehaoWzLV/rdrpl/aWssyx3N8XFvH/FMVAL%0AY9hkZPuKtK+Pu9/51xfgayur+W78T6laXC317FttrP70lnbLlliA4HmN1b3I%0AGeKb4G+I2ueL/FN1pd54Xk0kaeP9KuTqEdxEjn7sa7V+Z8ZJHG3jPJp2A76w%0A+a6i6/fA/Wiiyyl5Dt5+cdvcUUhGLqJP22Ydf3jfhzVaRChyfu1PfHF9Nj/n%0Ao3P41XPyn26dKAI3XB/zxUUo449OtSMfw565qFzzj72KCiJzwP8AaNQE7gSO%0A3SrDrx1zUEg/TrQBUu0yuPzqkLR2OANoPTitTZuPv24pPlQAdqfMBmC3kiiK%0AjHTiqktk3lBm+YZ7Vtsu5v8AHtUZVVTbx8xzj+9T5gMSNGgbcqsOfyqWSY5X%0Aj3rQaMH5cYqJrVfM/wARS5gKHll5vlqC80xinDKG689q1Ciq2SPcCo5V3rz+%0AVQ56lqNzKmRg6heo65p0dh8zNJ/EO1XWs1k+ZvvZzSy22Pl/LNHMHKyitn5C%0Ana3DetSW0D79zLjsferMSqU+nalkHH941HOXyoztUjZpF4+buPSoLeNHjYPn%0A0JPatSSMA/41Glt5gbcBj+dLnDlKtlD5cDsWz2J9a8n/AGfbKS48Z/Ei5xtk%0AXxAo6cD/AEaP/AflXssECrhR8q9PpXmX7O6B9V+IVwpx5niiZWH+7BCBVRlu%0AEo6o5rXP2MPDniPVr6+kvtYi1S416PxHbXKSqW0+6TaAUBXDKQpXawOAxAxX%0ApWgeGrfw5am2t2ml8sl5JXO55nY5Z2Pqfy7dq6OWINNuHT6daY0a/MPU1PtL%0AhGOphBnhib5t3Jrn/il8IvDPxd0+1h8TeH9J8QJYMZLUX9qs6wMwAYrnoSAA%0ASK7R7NAg+XaPX0p32NZIl/ug0Ko9ynC6PLfAH7OHgf4R6/NqHhzwpoGj3zW5%0Ahe4sbNYJGiJBKkjqDgHB9K9C018eWxYkbgTz90cVebT1ydq/eHJ7mmnTo41w%0AqqMc5xVe07i9npZHln7OHiAHwda6HNp+sWOp2bXMlxHd2M0CAm6lOVdl2tnc%0AGGCcg55rA8VfsgW+qWfjPRbHxJe6R4V+It+dS17SY7VXkeV1RLjyJ948pLgI%0AvmKVfksVI3GvcpE2L/s9QD2qNrESOvy5PcnrU+0tsL2fc4TTfAWo6H8WG1a1%0A8RXcfhddFh0e18LJbItnZvGw23Cyff3bAE2njGeelTfEfwn4i8ZWUdjoviY+%0AF4ZVdLu6gsRcXyg4wbeR32RMBu+Zo3OdpGMV2r6eg46e9O8lNm3C470OoHLo%0Ac18K/hfofwX+H2n+GvDlithpenqwRN5kkkdjueSRz80kjsSzOxJYkmtk3DW2%0A5lZlOeCp6VMymY4+6uOOc5qPyVQll+b1Pbip5myuUGunb70kjbv4dxIP4VR8%0AV6ff6/4b1Cw0+/h0u7vIHhS7e1+0iEMpUt5e9MkA5GWwDjIIyDbRw4Ur68mr%0AMCeQjf3s8k1PUfKzyTwl+x9o+m/sg/8ACmNd1KXxD4YXTjpSXCWws7kQ7i6N%0AwzqZUc7g4ABwMr1zueHfgRcar8UNG8X+Otej8aah4c0m50fTIP7MWxtYY7oK%0At3PIgdzJcTokaswKIqrhUGc16CAM8fe9TUm7bxtDN1qvaSYKmjx/wl+xhZ6F%0AoPgvwzfeJ77VvAPw71QaroWiT2SLMHiZmtI7m53EzR27OWVQiElULFtuDN40%0A/Y9t9dt/Hel6X4m1Lw/4V+Jl2b7xDpdraRNJLK6Klybedjm389VAf5XOSSu0%0Ak164riOTtzwMnpSG6ZR8wxuHc0KpIfs4nBfGj4NQ+MPg0nh3w6NP0G90M2d3%0A4bUKVtdPubJke1QgZIizGsbYyQjN1PXptPv5vih8NrhZLbVvC1xrFjPaSxSq%0Aq3emSvG0bEdVYoxyrD5WwCODWhM4lC9iD2PWrEUrLH0+6OKXMHKjwnw/+wTp%0APgt/CN1pvivX7HU/C2iSeG2vYIoUmutPeKKPyU4/0dlEZKyR/MGmlbO5sj2r%0AT7C10extbGxtbexsbCFLe2t4ECRwRIAqRoBwFVQAB2Aqw8cQuZJEhhW4mwXZ%0AVAZ8cAk45IHAz0FOjXfkN8zew6U+ZvcXIlsEMrRH+JVbGKnifBUkfL29/wDO%0AabnepVvmPahQqA0hHI/Fv4lQ6Gi+HLXT77UvEHiKzuE023S1la1k4EZM8yrs%0AijUyBmLEEqG2gnAOr8FPhdp/wS+Fnh/wjpe1rHQLOO0jkI2mZh9+Vv8Aadyz%0AH3b2reWRtpXJ2t1Hr+FOSUqv+779R70dLBbW5wfgTwVfeJ/i9qXxC8QQNazG%0AxGh+G9OkH7zTbAOZJppRnAmuZNrFRykccak5LgehfavMkI/hAwSahEpK4K9K%0AkE+T8vy8Y6092UloTmVoVJTr1oC+YS24HP6VEgUx89PepIFUA7fzxVdCbGP8%0ARPhlpfxQsLGHUvPiuNLuVvLC7tpPLubGcAjfG2D1BwQQQRwRVHw98CdC0PSP%0AE8PmapcX3jKMxavqs10W1C7UI0aL5oA2JGrsERAFXe3GWbPXIcj8PypxYKFO%0AeaOZj5EZfwx+GWl/CTwJpfhvRluIdN0eEQW4llMsm0En5mPX/wDUOlc6f2Xd%0ABk1jWp5dW8YTaf4imaXUNLfXZvsNxkksmzO5Y2yQUVgGBwciu9SU7d3zfL2p%0ABK0gw33fQGkm+g7Ix/H/AMItI+Jeh6TYXH2qwh0K6jvLH+zJRam1aNSibNow%0AoCnAAA29sYFZHh79m3wj4U8UtqOnWdxZxySQznT47hvsDTQp5cUrRfxuqgYL%0AEjPzYLc120LEg8kL3A70kZ/eegxmmpOwuVXuZPxX8BN4/wDDEUdpMlrq2n3U%0Ad9p9xJkrFPH93djnYyllbHZj1rS8M6jcavocL39jJY3FxEVntWlDtESCCu5e%0AD7EdQQauRS7P93GKlyv/AAL1FUhdTzjTv2SvCej6JpdnYyavaXGiyrLZagl3%0Am9tQisqxo5UgIA7/AChcZYt94kn0Twt4WsPCGjwafp8Xk2luu2NSxdj3JZmJ%0ALMTkliSSSSTmpBIsTBefm7VPHIFI+vTNDb2DlS2JZJM8buO9IqZ+UKOKgVsy%0Ak/w9verUT5Tr35pxM2SxZjG4cnqcivNr/wDZW03WNOmtJtc177M2o/2rDCHj%0A8uKfzfN3MNv735gBiTIA6Y616VGMj+XNTBsMMemMU+axNrmGIF+Ffg3ytPtb%0AzVbhGPlx7t017O7ElnfGF3MSWbgAZ44AqP4P+An8D+HmW5mjuNT1CeS+1CdB%0AhZbiQ7n2j+6Puj2ArpF+UHPJ9KkjO1x1ocugWVzjfjR4vsYNAuNHZ52v7iW3%0ACRJbyPvzMndVI9zz9cVu+IvBQ8WTaWtxcf8AEtsZPtE1ns/4+5R/q9xzwqH5%0AtuOTj0reSdkjwrMFx0HSm27ZUfoaXMHL3KnizTb/AFTQLi20u/j0u9mXal00%0APm+TnqwXIy3pzXM/BrwR4m8G3F0muatpN1YrHHDaW2nwPGqkFi8sm/ku+4Z5%0APIzmuyaTD7eufXtUwbB6U+bQlrU5bwJ4r17Vvix4g07Ubaxj03TZYDZS27lm%0AZX3ErJ6NgKcDGN3ToaK6+whS3uY1SOOPdKGIVQuSTknjueue9FVzJiszLvxm%0A7mzj/WMMfjVSQnP9Kv6iuL2b18xu3vVWSLJoAqS/MT3NVp5vJPI/xq8yHPp+%0AHSqdzbySdFz160IZC1yqhTULShlyv1FSixYJ8yhmU9D2pGsWCsxUbvSq0ArW%0A26Rm+XjOKV5FQfMPp71JaxMjtnkNz9KbeW7Sc/jz2qWBDO48v9frUCXSTqNx%0A74p4iYId26qaxMY2G3a3QDHWqSQFoSK5xu/OmS3Cx4+Ye/NVlgJfHZuCaieD%0AbO24bsD8DU8qY0TzTrGd38PtUiSxyQ7hwG9qzrqJ2iB529cetWIxILVdy49R%0AUuFy43sSkrJGP4hj06VC/wAw46d6AnO5NyjHTFNhbfBuX8c9qmxVxsNyqy8g%0Ar2/H/JqRsY+70Pes1mdp9vv0rSI2RYbriplAZFIf3n44pjTfZ1JPHt2qrNNs%0ADNuO7Pr0qOZWa3+ZmQ49etHK9w5rGgJlkVWHfBz3rzf9mdVbTfG02fv+Kr08%0ADsFjH+Ndss8iNH/dUjJHevL/AIEapH4d+DPizVpPtUkdvrupzSLAhmkcK4GA%0Ao5Y4HAHXgU1HQXNd3PWI/EFnexM0F1BcfeGIpFYkr1Xg9R6da439ni68Ta38%0AOW1LxVP5l7ql7cXdnCYBC1nZM58iJwOrBBkk8/NXh/7IUfgfxV8Z9c8QaT4J%0A1bQvEkkLT3k13pUln9jYyFSs2/Ba6cEsXAI2ZAbOa+nHu5N7Kp+7zmiVNLRB%0AGdyy8W7hVJPYDnikNuwXLIw4zkDj61yHxj0i61/4YalYxaPN4jkuIlUabFqh%0A0t7sbgSouFIMRGM5z2x3rw7wD8IdQ0zxzpNxJ8HfGmkxwXsTtep8T5LyG1Ab%0AmR4Gm/eKO6YORkYPSlGndB7SzsfTTXkZlVPMXrjA68185z/tp6sfg1a/F7+z%0A9H/4Vdca4untFmX+0l05p/s41MPnyyBJhvJ2ZMWTvDYU+3a/4fPiHTr+xSVL%0Af+0LaW3E7AnyDIjKH9flyDxzxXxTcxL4y/4Ja+GfgxAqt8Qry4t/B95oZcC8%0AsLmG8zcM6feESRKJN5G3aVbJBGap001qKUmfe91bG1kaOT5njYpgdiD7fSvG%0Av2jP2l7v4V+PvDvg3wxD4R1Pxhr1rNqK2Wv+IU0aCO1jZYxtkKsXmkkfCRgc%0AiOU5G3nuPA3xg8PfEDxZ4q0nQ9Xj1O68HXw0/VYQjBrOZlLIrZABJUE/KSMg%0AjtXnv7QmjfAn4+Nr/hv4jN4HvL7Q9OEupPdmGPWNFt2UskschHnKOSwCkqSc%0AFTuwZjFJ+8OUm46Ho2heI9U8N/DOTWviBHovhm8061mvdXjt7tp7TTo49zNm%0AVgC+1BksAM84AqD4SeKdS8eeB7XXtUs30pdcAvrCwlTE9paOoMIm/wCmzLh2%0AA4Qvs52kn508caV4qH/BI61t/GUmpSa1a+G7B/EaXmWu2skuYmuFkz8xcWgb%0Afk5G1snOTX1lrOn3OrX15bw3kdjdXDSwpeBAyWjHI8wAjBC/ewRjC0Sikr+Y%0ARlqD27J1Xb3xTQBHHhsrnoPWvi34DfHPVNT1z4U6WnirXbXQfFXiDxB4+1K/%0A1TVZphbaJZqHs7GSeRy2145IbmWMnaqvGMbZNo+pPgLpF74f+EWkw38mtSz3%0ADT3qjVrh7i+ginnkmihmeQly8cUiIQxyCu3tRUp8u5UaikdYIVjIbHJGDgd6%0AaQS3zHb657VxvxHm+JyeJAvg+2+Gc2kiJPm1y91GK8Mn8eRBC8e3pjnJGc1a%0A+HFx40fTb5fGlv4PhvI5E+xDw7dXdxE8e07jKbiKMq27oF3DBOTmocdLlc3Q%0A6yM5XheAcEjrUdzbyT2c0UNwtrPJG4inMfmCBiuFfZkBtrc7cjOMZGc14v8A%0AGrxJGP2p/hjp7eINQ0HSdB0zVvGPi2ZNQlgsotKtljt4PtEYYRsj3M8hywyT%0AbqBnIFS/sJeP9T+JvwWbxBrWo6hf6t4mvZvEP2S5lMn9j2d7LJJY2iHooW2S%0ANtg6CRWI/eDL9m1HmI5/esdl8FvilcfEbS9Xt9UsYNL8SeFtSl0fWbSBy8In%0ARVdJYifm8maJ45UDfMFfaclST2lxJjj1x1ryL4MTf2n+118dLyFv9Djh8NaY%0A5H3WvYrS7kmGP7yxTWuT1wyeleqXevafpmsWVjdX2n21/qgkNnaTXKJPeBAC%0A5jQnc4UEbioIXIzjIolGzshxldXZYWMSzg/dXHJ9amacR/d6dyaYW8w+ntik%0AeNpFxj86RoIi7hu9OuO9TKmF46Z64xTRGI1Gcn6d6ljYlu2B60AQwIweRiu3%0Ac3Y/eA6ZqZTj5Tt+bt2oaPzf4jwc49aBEFHP6UiBzZif1bGfanOcEnn1zUa9%0ARjj3HepFXC/3vftVWK2GszDb3FOh+cBux9R1p0aBlZWUNu6/SpxFt+WPa3Y9%0AttUK4jlQuP8AJqROGH04FIkWw/N8zd+KeyBSx6fTpRIUR4fZt7/TvTlLM/H4%0A+9JEpC5bpTkXaMn8Kksmjyq4U+ooWFgDyOaajsZNqrjjgmrCxsg+vp2poQQS%0AqZWX723g+1TRWxU/3vSqMV1JHfPH9mkVeu/A2n8c1Jo9+k8reZKrM/3RnrTS%0AJuXigXttzTUkYSYAx71ORjr82P5U+O3BBzRYQiRbhwPm65p6syttPPqakUKF%0AGKkQb2HGcd/WgCKNtwyOoqSKPkgZFSqgB+7zmpEX72evpTM7hGm1F+b/AOvU%0AyKfT6U2JGHUY+lSpyV9hxTAUKE3YPXrUkeT83f3o2Ek+vaplj3Dn2/CnoS2N%0AwCvX6AU+MYQdvwpRGExn1xipo1wv8XXOPSmK5DIjBtwG3H61NEnP9KlRA3yn%0A9KfGFBxjt0qRDrPi6h5z+8X8eRRUlrAz3sI6bXX+dFAamXqMeLybnA3n+dV5%0AEC81Y1d2W8l7nzDj25qFpNsG79BW3KTzEBiyW6cVHJBtI2/SlM5BYr19KEuF%0AmO3I8zHOKVmO5DLGQ3Hr1psq4U46e1WjHwQ3rULJ/EaQyq0HP5kVG1tg4NWI%0AXWaVgM5XtRcAQoWP6d6QFNoA3HXjmq8lrvbpirdvMLstx+HtQ1vgf0o2GUPJ%0Aynv0NNSxVl3YH8xV3y87v0qKWQQ/e/SgRTktlJ2tgUiwhVH8qmuJo12g4w3Q%0AUMVjTt+fWlqUVJYMdajjg2E7cfNzirE08YIZmwuKEXzE/HpU6lXKRtlSYNtG%0A/wBh1p00ZdfoKndfL+bauQeR7UxbpJX2gNmgLoofZ1I5j+Y8Cnw2ysf3gzt/%0AKrMo29OOfwosU5O38aG3uVZFa602Fo1XbjnFeb/soQrL8J7uRoztuNb1GXA9%0AftLjr+FeqSRZDduv415t+yHbbvgZYuHz519fuDnO4G7l/wAKnW1w62O+ktI3%0Abbjcvp2FV5LCMjCqeRitMQbBtA3FiScVjaN4z0jxD4k1jSbHULW81LQTENRt%0AYnzJZ+aC0e8dtwUkfSp1NOVIdLaKGU44UcYot7ff2xzV54DITt5GOuaY0Rwd%0AuB7ii4+UpLZqp3Ffl9MU260yCS5a5Frbm4ZPLMoiXzSg6KXxuI9icVe8shSf%0AXnmmyJmX19BSuLlRi6do1rZvcGG1ht2uG8yZo4grTsAAC5AG44AGTzgY6VX1%0ADwBoeqa5Dq1xoui3GqW2PJvZ9Phku4tucBZSu9QMnGCMZNdA0Sy9vmFR+SUZ%0Ad38RKrnpnvRzMmxn32gw65ZXVveQ295a3Ubw3EE6b4riN1KujqeGVlJBB4IO%0AKx/hp8Ppvhn4Ks9Bj1K41Cz0lRBYzXBJuo7ZcCKOSQkmRkUBPMOGYKu7LZZu%0Auis5JUEgjcxk7S207QfTPSmm23K+Fb5T8xA6UrsGjjh8H/CVvpulWKeE/Cse%0An6HcfbNNtV0e3FvptwSf30CbNsUhy3zoA3J5re3s5LfMd2eeuan1hpLLT5JI%0AYmmmiQlId2PNbHAyemTxntTo23ghlj86M4kRWyI2wCVPfPPfBwRRvuBTdNm7%0AO1Y+7e/0qjNqm2OSRYnEMLhCwPMnqQPStYTJcRyGM7tpIOw5ww9fp6VjtIU0%0ABi4bLfLyvJbPQD+lVEJaFTVfhJ4V8V+JNP17VPDGgazrWhoYrHULywjuLi0Q%0Atv2ozqTjd8wB4VskYJJpPC3w1sfhd4Dl0nwPo/h/QY7dXaws1tTDp8MrDhpE%0AiwzLkDcAQzBQNy5yOq0yJobKNHXy8KARn5u2c/lWfeMBIR513GuQMIh78f48%0A/WjXYXKtzD+EHwis/hH4U/su3uLrUrq6uZtR1PVLsL9q1W8mbfNcybflBZuA%0Aq/KiqqLworD+Jv7MmifFH49+BPHN5b2i33gMTyWlyhk+1zu6sqwschFgXcz4%0Awzs5AzGobzPRtJkeay8x/MUE/wDLRdjceoqysG4/KG+XnAHSi7vcfKrGU+Dc%0AGGDnyxh2bnb7VNEG29QMdevNO0q2VkuAAys0zbtw+99Pb/PFN1e4+x+SPNCp%0ALJsZi3C9M4/Pv60W1K5h8pKx5X5mUZ9jTID5w3YKgngEdKvQW5gQBsbh949M%0A1m6dZfajfNHIyqLg7W9DgbseozmjQOYsRw/vAWxu9BUzLxnqvX61RiupNQvW%0AVPljjAVt3r3/ACqOy1xm8QXOnuCzxIrxkjqCP8cVXKTzdTRWLzE/urxSiPb/%0AALPHX1qLQpjdafG0v+uAwQD375pusSy2kfywSNypUqQB9KCvMu2qMU+Yru65%0AFWUhKg+vQUlrGxX5k27hkVZ+dE7n3oAofa2bURBHH93mRyeB6Aep/pVqbaF4%0AyG9xVbw4PMt5mP3vNfPPvTdV86CdVjkG2c4XKcqfz5/+tR6kl2FCR6tU1s6S%0Aj5Tlh8p4wRU2nQlovmxnHUDrUIgaG/lRAPmUHPoaEkF2TeXs7CpEU/xfxVRu%0AtRkS7ito9rTMpJ3cZxVqCW4YL5kaqwHI35/z+FHKFyw42Ju9OSawbCFV065j%0AXc0jFtjnG4HPaujWFsfMvOOBnNPiV3/1kIA6Y3ZxRGVnYCrpME0NqvmFtxA3%0AZq9EgyufShWklfb5XyqeG3dasIoLbQO351fQBhtyGJBGD6VNFFtXp/k09I9q%0A9Pm9BUiREfepEyBYvk/vU6OFs8D7tOjXnnG36VYEeG/X60EkflYPq386dHBg%0Af73NTRxbh83HPepBbYNAmQxxc/1qaOMtk/w+tSeVg/yqaGIN/hQTbUbHBntn%0A6iniDCVLHDmpkTdnmgZVjiGOrA5qxBHgdKla3Cj680kSbXoJJbTBuoux3r/M%0AUVPZLuuof4TvB/UUVXKUjm9TiaW9mxk7Xb+dVxbMYf610F7pK/a5Ox3n+dVZ%0A9PbthvWtjNaGG9vxwuMUWlkDK0n8XTFah08CT5v5c0R6UImyPTJBpcwzKvFK%0AOOapTzPIdvP1rensFkPzVG+lxsPuj1pcwzmVfyJpNoOTRdedJFtz8vQ10K6L%0AGysdv51E+iqx59MDmjmQGCm6DaFboOTRJdTNGpX16nmta40TecKSOxqNdCCf%0ALuO360aAUbNmnByFO39arahgyMu0njjFbUOn/ZPu855qpd6b5sjMuAKWhRhw%0A2+WHmbmUdD6U66h8u3wfmrWTTjFGq9SOtMfSm+z+vc0+ZEnPzxAxDb970NWd%0ALVlhbjDevatCTRdoyF+bvTbe1kiLDy8AenepumBn3DfKw+bPXHpUNvpvnLuD%0AbWU5FaSae7TFj8oxyKj+zPavtCs245z2FGgFW6gP596rxFoXZx+WeK0pI2kz%0AtU7h1NVbm08vCDLNx071JXM+hJZyfaE8wjg+ozXB+BvAmofAix1q3t7iLVvC%0Avnz6jY2qxP8A2hYvIxkeBcApLGXJKn5WXOMNxj0aK02wKq5BArN8beL9L+Hn%0Ah+bVtZvFsNPtyoluGVise5goyFBPUgfjWfN0RpbqeYfDX9pDUviI81gPC8dv%0A4k03W5tJ1TT01NZI7WKHy2e480oM4SVDs28sdoJ4J634cfCq3+HVzr1xFN9q%0AvvEWqSalfXJj2PKThY0PJJVEAUZ9WPGTVD4GfCez8L+JfGPiuO2mhvPG+pC+%0AImXa8UKRqiDHbft3HPJ+XPQV6H9nyDnGevFErXtHYcb7yMvUpTY2U0sdvNct%0ADGzrDEB5kxAJ2Lkgbm6DJAyRyK8tn/aU1LyNx+EPxkj2jOz+xrRj9PluiM16%0Axrmhw69o11YzNMkV5C8EjQytDKoZSpKOuGVgCSGUgg4IIIryqX9jLw75RjXx%0Ah8ZIVYbcR/EPVs/+PTH9RSjy9Ry5uh6bNtS2MjMvlKPMLP8AKAMZJOemMc56%0AVzdt8YPBt8/7rxh4TkX7wZdatTn8fMrtJoo7iNlZQyy5BVhkHPWuLn/Zt+Hd%0Awgjl+HngCdWUpsfw1YkEdMY8rHtUJrqVK/Q6m2VSqlPmVuQfWvCv2b9GkT9t%0A748afJqWr3lja2/hdIRf30l19m8yG+kk8sMSI1JOdqALwOOK98S2+yQpHCiR%0ArGAioq4VFAwAB0wABgDjivLfgV8L/Fvgr9pT4meMNb0/Q103xzLpUlktrqjX%0AE1qtjDNFtmjaCMfP5oIKMwGCDng1UJKzM5XZ81xeKtS8d/8ABOzxR+0It3cW%0AfxEle58U6NfrO4bTbaG7EdvpwAYA2xhXZLF92QuzEFsEehfDib/hsu6+NHiS%0A6vtd06302/m8P+EDa6pPZt4bFvYpObuBomX/AEl7ib5pCCSluicKWU2Ln9jn%0AxRb/ALMeofAmzWzj8G3WpvGniJr9DLHoj3P2k232fHmm9HMIIHlEfvfMB/dV%0A1F58G/GfwrT4t6P4I0Wzv7P4l30+q6JfPqUNra+Gru6tltrhbpHPmmGMos8R%0At45i+XRljIBbfmX4/hoZ8sr6mL4S/aW1/wAb/sJfD/xpZvaw+OviLbabo9nN%0ALbKbaHUrqQW7XZiHylE2yzmMDHybcY4r2fQ/Dui/CbwIlvbyNZ6PokLzTXd9%0AMZZpQMvLcTynmSV2LO7nlmY+wrz/AOIXwVh+C37Mfgmx0OO81K3+EN1pmqCK%0AKItcX9vaEreMka5JkaGS4lEa5y2FBJxXrstnY+LtIh/489W0++WK7t5ECzwX%0AK5WWKVDyGUkI6sP9kjtWUrbra5cb7Pc8+8F/GjwfrnhfR77S9Qlex1nU5dHs%0Ax9hnW4N5G8iyxSxld8bRtE4dpAoXaMkZFdkmjq8yyCFWlJ4YDJH+c15h+yl8%0AJ7/wjrfxC1q+u/tFlq3izWJtBQZ22lpPc+bcsp9ZrlPm7bbaEDGDn1XxJ4Wh%0A8U+H7vS7tryKzvoWgla0upLScKe6SxlZI2GOGUhh2NE7X0Lg243Y+O1aPOV3%0ANj8qWSJVheR2jjWNS7SMwVY1AyWLEgAAckkgAc15tD+xt4VgdfJ8Q/FtOQ2P%0A+Fj62ynGOzXJGOOmK9Q1fR7PxBY3VrqVlb6lp10jpd2DopjvYiPnhZW+Uq4+%0AUg/LhsHjIpaFanG+FPjl4J8beGrXVtM8TaPeabeaumgQT79ok1B2CpajcAfM%0AYkYGOQQRxzTp4PDn7RHw3mjsdYa50fUHktY9U0mcpcWNxDKUMsMnVJoZoyQT%0AxuTBBUkH5d+FPgP4g6W/wV8ReKfBHii+s9P1TXfFPiDTba0H9oXnie9QyJM6%0AOQsUKtNJBFJIVVGWd2IRo2P1r8P9Bj+FHwxMniDUNNt2s4bnWPEOoglLGGV3%0Ae5u5VLAHyU3OFLAMURSRnirlFRejM4yclqcn+zN441L4hfDSG91p4X8RaTeX%0AWgeIVhTbBJf2crW8ksS/wpIU8wA9BIB257s6BHcyeZNGsmBtCsNy49CO9eff%0AsW+GtStPg1ca9q1rPp99471zUfFf2KdNk1nDeTmS3icdnEHl7h6mt/TPj9oe%0ArftBan8NVs/EFv4h0rThqjT3VkI9PvYcxhhBLuLOU81N2UVcnAZiCBMvidiq%0Afwq50xtmt4WjhVFKj5Q33c+9FhZJaxKFLPnLMzHlye/41qC3VR9KPs+5t2MY%0AqSjJnshaXDzLCJFnIVipwye/0rOi8FKt/JdR3d4twVVBIZNxRVOcDIxzXQvA%0Ac5YdR0FSRRFz8ynHbA+lGoWRzvhjR20e4urWKGZLaNlMbSEkuCPU/StpLLzE%0AXeF+TqKvLHI6DgYXkVIbfa+FG3I7DpTsBUSPBxgj6VIIFZfmz+HarJjYMpVc%0AL3pUt23DjjvxzR1DmM21037LdOwI8mQ52g9DUtxocd1qEcztJ+5yRHn92T0y%0AR3PT8q1haq6Ae3JoFuAxBO76cUySrDbtaxNtMkncAnk5ptlZSJEWkx50hJbb%0A0x2/KtIwZiXqD+tAg8v7q/j60AUfskcMvnEFvLHLAdKjvC0728sLqsLA+YCC%0AGbOMHn05rVSAL8x+X2A60pg84DcoZV9acQI4LbEa/eZsYqPUr7+zY1YxszOQ%0AoA6U64aS1ZSrfLkJtI+7mjW4t1vbrIPmaUAHHSmoiLkS5VW6buuO1SbPl/lm%0AoYt0GoeSzM/mJuyBgLWglow5PzYotZCuVb2UWNjLK3PlqWGfXt/Sqvg65uNV%0A0cTXS7ZC7A8YGO2K1vsi3C7JFVlz91hxVlLcKuF4X0HtUtO9wRAsWw9OetWI%0A0BPt0oCHPFTLAdx4qiRqRZP8IA596k2bV44B9qd9mw4+nSpIosCgBkaDPT2z%0AipUi2D096kS3yOBU0cGCKaVwIUTH+NSxR/3ccVKsfPTnNTRwlRnv7U+UljFh%0AYr2/OljttxIqSKJiRVlYg3PQ00iCK1iC3MIH99ev1oq1axE3cfH8Yz+dFMZV%0AvLbNzN/vkfrVdoMGtm8gUXsikqGZ22gnk1nXV9a21/DbyTQpPcEiNGbDORyQ%0AK0JuZ81nnkdqR7bNaslpt68VmnV7Nyyi6tcoSCBIuVPcHnrU2GV5LTLcfTkV%0AEbbdxjpVuG6huZGjikhkdRkqrgkD1I9KjvryHTbVpriRIY1GWZ2AUfU0rMVy%0Aq0G0ng81HJbc+o+laCoZVZlX5euc5qGVkgiLNxt4zSaYyj9k59+OtRz2/HSr%0A32hXK4/i6YHBpjyKDt24Hfipsyoszja7D9OcVHNa5xgD2zWq9uFOaiZRnOM4%0A7+tHKyrozWs8A7vqPeoZbfd0754rQd1Tk/gMdKjlkXH3c0cocyKq2mF5+vWo%0AWgWb5sYq5GvmdSATTjEuMjkVNh81zNa16H7tRvbhv7px6VcXMjH07HNKIgjd%0AvbFDiBnfY1Hyjp6+tK1ov90VeZEy3zL7YqC5kZJVVV9xSHcqpanPA+tDWOVJ%0Ab+LuautEuR/ePNJIjSNtpco7lH7Jt+mecVCbbhutaT24BzTZIsp16cVPKykz%0ANa0x/td6aLTAP8WRzxWg1tgr8uQe3pUckaon+7xQojuUTb/u+gP4dKGgy49e%0A1WkXJ4C+hzTmtlA/HNOWwrlOO3+bLfM1DL84+XjvVxIdwPYUkkWVPUelRylF%0AIJg7ce1BiDcjd6EVZksmdMdO2cc/hSi3xwOmO9VbUCtFG1tt2swYHcGHBU1z%0AfiL4V6P4g8Mw6PsvtJsbe5W7iXRb6fSXhdXMnySWzRuqsxYsFIDbjmuraBjy%0AemeppgjKfdwOTzQGhStNOi0rT4LWzt7WztLSNYbe2t4lht7eNAFVERQFRFAA%0ACqAABgdqkePdH7c/jVvy1DYx/wDXpfs2Of1oJuUhAR6Y9aU2mGPGN3AJ71de%0A1x0HOeo70qwZbj6jHanoO5UEYwPl49QKzPGHgjTfHGlR6fq9v9u09Z0ne0Zi%0AIbpkO5FlUcSRhgG2NlSVGQQMVuLaZDMPm759KEtHLHIHPBBo9BkLq0rsWLFy%0ASTn+dZtp4PsrLxRd64qyz6leW6WhmlkMnkQKSwhiB4jjLkuwXG9sFi2xNu8I%0APm+p+tAt2xn/APWaTAqpbZHp+HQ0xLHA/wA81eEOw4/ADrT1t/k9Mj0oApJb%0AKuCF685FPW1X/wCviriQ7vz608QEL0zzSu0BUVVH8OfbFO8ncvp6dqtJbc8b%0Afqe1P8jaeed3PWrEVFh+YhhxTmi3Htj+dXFi+T6+vemi1YJgDbg+vWgRDFbA%0AfK3H9acYBtwByepq19h3n0bpnPWpBZ7T2A9+1MCulu3T255oFuqD6VfW2wuP%0Af8qY0OZPl9eSe9ICvHZNJjI96c1gYl9farywbQOPm+lEto0mfl59u1MCidOh%0AuGUyD7p3YyetOOjrImAzeXncM9jWglv5SqAo+btipI7diG4+72piKkGkKsnm%0AHLyYxk1YW32k+hHXNWVUucDj2qRbRj/jjtQToU47fLc/rUwtdy/3VzVz7Lx9%0A3oacLfnnFAimkBLf54qeK3JDY5q0tnkZp8cGxvwp2Ah+y7144alW2z2/Sraw%0AY/P0qwkG6nYCmlttqwsQYfXvUy2uWqaK3yT8v6VRNyq1tlxj19KkWDavy9e2%0AasLbkNUsVru7fWgVypHaYH171PHAy9qtxWvHTvwamS3OegoEQWdv+/i9N4B/%0AOirtrAv2iPj+Mc0UAcn8WHsYrZlvG1CD95uSa2hLtE24YII6fjXOa34d1W9+%0AJ2numpW8jWsE0257XGwYUDI3c5z1PPH4V2vxL06+1mRrKzsTM+7zTLIQsKgN%0AnBPUk46AHrXManr/APYFveXCx3i61cKA32rT5miVRz5YKZ4/2geeuOMV0JGJ%0Aa8D3eo6voF5JqE0NxIk7xRlIfLwo46ZNeO+LdIlsnkhmsb77Tdam80QS1ikM%0AiK4JOD8+AB9PfFez+BmhufA7D7RcQyKWkuJ1tnjVXY5YLvXnH0qj4a8DLba1%0AqGqxw3kccsAh868ZmmujnJbnkKBgAYA9Bxmi6QHOfCjwo9v4v1S/WzaG3lt4%0AkhlEMUccnLFseWSD254NVPjlpSazZraX181laKfMVIv3k15KPuIqDkqDyR3O%0AB6mum+Fvwq0+00Gx1OOXVLe4m3STJHdyJFMdx+8mcH+dZuv6ZHBrkl1pqz6f%0AYxE/b74s/IH8KYyzN1zztUD8KN2M4T4Z+MI5vFEN54k1y/0GZFCW2mXV4/kT%0ANjDMWPye2w8jHNdJ8cvFcdn4ehsrabzJtbcW0LwvnG4gM2R0wD+ZFZvh/wAJ%0AxjwJZ3WpQ3uraHJcyzSCN1ZlzIcPtK/OuOo4P16V1vxU8LaciaQsdvBD5t9b%0Awp5Y2BVDhgFHQDjPHoPSh2uM8y+JVvrNnpV9Z6dZu2g2JtrG223Cxs0iyAsx%0AP3j2XqMnOa9Vs31KG2um1TSTp6wt+5WKcXLSJ7heh9uaxfjH8PLWy0a1jhuN%0AUjWW8ij2fa2KfNIM5BrttM8NR+Hp7mb7ZqFy02N5urlpVGOhAPA/Cs5S00KW%0A54X8WfFOsRafqVm02qLa3rwJp8yW8sc8Ts+GTIA4AAIPXJxXoVl8RdJt9csd%0AIZtR+13n7uEz2kq72UdWZgOTUfibTW+KfiGForiWz0rRZDNJeB9itMB8qq2f%0A4T8xI6YFV/B63mvfEKy+3XtrqVzpNlK7T25BjbzGCoeOA20EnHHNNbE6pnU3%0A0cVp80jxxqeMuwUZ/GoJrVbeJn+VlC7jznaMVzf7RVqsmhWcE1vJJFc3Uccj%0AiEuIl3DLHA4wAee1ZvwqlbxNq3ie6W1vIZJysEXmxGPyoUXI4PQMzcd+KVtL%0AlX6F7wrq114ovb6/Ba30mzkMMSAfPcOPvEn0Xp7kn055O8+N2rR6Lq3iC103%0AT5vDekXBt5EdnW6nCEeY6n7q7cng5yR27998JdH8z4XpaJgTwyTwyjHIk3se%0AfrkH8a8m8ldE+A2teE5pA2vvezW6Wgb99N5j5VgOpBBznpwaLBdnofjvxJN4%0Ac8PW+uWKi602MiW6Gz5jAQDvXvkdcd8Yrft/Lv4IZoWEsMqh1kXo4IyCPY1T%0A8b6bb+C/glPaXS+attpwt3H/AD0YIFP5mtb4e+HJND+H+i2cyqs1tZRI6424%0AYKOPwqOha3M6WxUD5eGzwcVNbWBExbu3TPevOPi3f3Gm+NLtY9S+M1lGFUhd%0AE0eK6sOn8DFGJ98966v4dtdan8N5riPUfEUtxmTZc+IdPFrdR4A+9Gqp8vfO%0AOcmjl0uPm1sa9/AqSARq24cEj9ayLDxjHf8AjKbRrGNbg6fGJdRuGcqlqW/1%0AaDj5nbrjoFGSeQDyPwNuvEPiW18OXF9rmpXn265vNQaOcITJYn5IfM+XgFtr%0ALjHXHIBrof2bNGLeEtauLnab681++e6PfcspRAfoiqB7UnFBdmV46/aB0fwl%0Ad64v9n61qNn4XSOTW76ygjkt9JDgsPMy6u5CDcwiVyq8kDIzreMvHFv4K8HS%0AeIHhk1DSbcLNczW7Bjb2x5a4A/jRRhmC87ckZxg+U+AdMGifAb44Sak4juP7%0AY1o3fmddphAi3d/uFQPbFesfs7+G5LL9nXwfY6vDvki0O3huY5O6mMAg/wDA%0AcCnypC5mzak2Twbo5FeN13K6HKsCMgg+hGDVeS3JbOdwYcA84/z/AIVzP7Kc%0AMmofs0eDGZmkjXThFA7ksXgVmWE5PP8AqwlQ/Frxxq/g3xJBZ6Xrnwp06FrY%0ASyW/ibVp7O8LFmG5VjVgYyAME4OQ3oKXLrZD5tLnYW1sAeu7PbHSpLiFUHvW%0AD8HPEer+L7S+k1e8+H14sMsaQyeFdUm1BACGLCbzI02NwpUDORu6YGfN9d/a%0AN8QaY/jDztD0r7Tputab4f0KyE0m66vbrLNBPIMgtGhid2jGBuYDcF3E9ndg%0A6mh68sTSJhSy9jk1T8M+ILTxZcXkdjI11/Zt01lJIqN5bTLw6I2MOVPyttzh%0Asr1BA434vfEHxF4Z+DHxN1CxS2sdW0e5l0nQbu2md8PKIY4bhtyjZJHJOSQA%0AQDGME1J+0haL+zr+xv4sj8JmWyHhfw+1np8iswkixti83d97zPmZ92c7zuzn%0Amp5FsHMzqNB+IPhzxXq11p+l69o+pahYlvPt7a7WR02naxwD8wVuCVyFPBIP%0AFWpNZ09vEjaR9qjXVUtvtq2r5WSSDcEMiZGHVWwrFc7S65xuXPjfxa8G2vwo%0A8M/s3xaHD9lk0TxFp2jWzIoVjbXGnyJcxnH8L7EkYdC0anqBXdftLD+wtE8N%0A+KIYf9O8M+IbIRyKMSeRdzx2l1ED3V4pMlehaOMnlRhcibK52dlOmDjHzdsV%0AHJHs7H1ra/s3a/I+ZSVOa4DXPjSNC1W6tpfAnxMlNpM8H2iDw+JrebaSN6Ms%0ApLI2NwOBkEHA6UopsHI6VrTYMbgo+vFTC3ZQu5GVWGQcfeFN8J6mnjLw9Bfp%0AZ6rp63StiC/tWtbuLkr80bcqe4z6g15X+x3oq2Ov/GKNJr6aOPx7dQI95ezX%0Ak22O0tEwZZmaRuh+8xxnA4FVy6CvqesC2WQd1HbinR2JPP5VpLZbeOOnTFcL%0A44/aO8GfDjxW+h6pqV5HqiiILFb6Vd3KzSyHCW8ckcTRtOeP3QbeNy5AyKlR%0Ab0RfN3Omlhjto5JZGWOOJS8juwVY1AySSeAAOpPAAqwbVhuH3W79jXEeKUk+%0AJn7QX/CHttPh/wAG6fBrGvRryuoXdzJILC2b1jRbeedhyGYQg8A5zfibr194%0A3/an8M/D2HUNU0/R7XRbjxNrbadfzWN1f/vBBb23nwukscYbMjhHUvuQE4BB%0AIwE5Ho5sWBIxwetDwmMbVXawOCH7VwP7OGv6ivjT4i+D9Q1LUNW/4QTWIVsL%0Ay9nae6azuYjLFHJM2WlaJkkXe5LFQm4kgk3fhcj+A/il4i8Aszf2baWVtr/h%0A5HZm+zWU0kkM1quc4jgmjUIucLHOqgBUApcg+e6OtW2wgBLn03HOakFrg45z%0A7d60pYo7WCSaWSG3gRS7vM4REA6kscAD6nFV7XXdIuHxHrGjyY+9tv4mx+Tf%0Azo5R8xHHZ7Bnn1o+yl2z8oHQjFaa2+B654z605bPA+bH5UuUZnR2WTwPu9c1%0AMtpuTvx2rQjshtzj8RXnvx58fa98N9U8Grptto8mn+INftdIuZJ2la6QSb2Y%0AooAQABMZLE/NnAxyRi3sKUklqdittlmUfNu9eMVJHaMuPXoeK5j4pfEG88P+%0ANvC3g/QorVvEHippphNcxGSHT7OBd0szKGUuxJ2oucZDE/dAZ3wx8e6hq3xI%0A8UeDNaW1bWPDYt7qK6tozHFqFpOCUk2FmKSKylXXJHKkH5iBXK7XFzK9jqo7%0Abd2+bvxQYC7L061qR2eDznn8acumlzuX9KkdzNFr3IBHf3pwtcDhRjjrWsun%0A72w2D7Vztx4mn1T4iLoWlpG0elIk+s3LjKw7wfKt4x3lbG9icBE29S4ALMXM%0AaJt8fw/jjrUsUGf4evpWP8YfiND8HfAd7r1xpWp6tDYxNM8VmqfKBgZdnYBV%0AyQOMnrhTg11GlxC9tIZdjR+ciuUznbkZx+tPlYmUWtg3b5hUkFlk8henSs/w%0Ax4lmvvEOpaLqFvDb6ppu2UeST5V1buT5cyZ57FWBztZSMkYJ6VLPPZc9RjtV%0AcoigNOAXK9z0qZLUqv8As1fW2yvanraH+hppAUUsywbqrfzoWywOR9K0ktMi%0Apls8jcdqheSTwAPX2oFcz47HaMdacbRW/nnFM8O65D4stGurNZjZsxWGZwAL%0AhRxvUddp7E9RzjpU0XiTSpNfGkpqFnLqXltKbdHDOiqQGJxnGCQOeeaYuYPs%0A4zwpX2NSLB0X9cVLr2oW/h/Tzd3W5bZSA8ipuEQP8Tei+p7VahgWUZXDL7d6%0AQrlWODI/CpEhJHPPGavR2fPSnJbfNx+dUiSmLfnmpY7bHbpV5bT6HPfrT0sy%0AAP8ACgVyrHD/APWqTyMrx/KrUdt7fSp0tMUFFWztv9Ij/wB8fjzRWlaW2Joz%0A/tCigCO9tt08n+8e9Q3ETLH8p5+tdU/h6BxvzJ8xyeabN4Ytyg+Z66DG5xxD%0Ad8+1PSHzEYMvH866WTwvbhM7pOPepo/C1usA+aT86TKOMng/ehcD8qZNaCZN%0ArKrLjoRkGuquPC1uZWJaQ/jXOmWMeNY9L8tvKeBpS+7nI6dvalYDPmtltY1V%0AEjRV4VVGFX8O1QTaJb3yRvPbwyNE29N6BtjDoR6H3rX0C3h13UNQhdXX7DKI%0AwQ33srn0q1qWj2+mxx/61vOfZ94DHX2osBy+peHrXVgn2m3im8txIgkXcFcH%0AIP1BqPU9Bh1O28q4iWSNuoJ6/wBa6uTw9bkt80vGf4vT8KlsPDdtd2e8+aPm%0AK43DnBx6VPKVdHEtplulotssEK26jaIlQKiD0A6D8KyfDHgLR/BEVxFpOnWu%0AnrdSebN5KbfMbn9Bk4AwBn3rvrLw7a6pHLJ+8j2ytHjcDnHfpUkvgy1UZ3SZ%0A9cj/AAp2C5yUsW3/AOt3qvIVWT5h/wDXrsbzwjbq6jdLjHrUMngm1kiZt0vH%0AuKVg5lc4nS/C0OlaldXVuWjW8wZYxjYzDo2PXHHvxU8tjFbz+f5Mfm4xvAG4%0AD69a7lfB9q9orbpfmHTI4/Sq1x4JtWdfmmxn1pD6Hm+v+EofF93a/aW3Wtq/%0Amm3K5WVxgru9QOuO9bEhj2/d5x0PeuzT4f2KEOGm3Y/vVHc+ALMrnzJvzFHk%0ANHFpH54yvTsaSSx+0xMki+YrcYPQj3rr18D2sUQ2yTdcYyP8KuDwFatg+ZN+%0AYqCjzLwr8P8ASPAtk1to+m2em25AXZCmMKM7VHUhRk4UcDJwBVLQfA0nhfxf%0Aql3aNF/ZutEXM8BBDQXIAVnTttdQNwPOVB7mvWv+EFs2/im646j/AAo/4QG0%0ALf6ybr6ikOx4v4h+A/hrxXqV3dahp8kx1BomvoFupYrXUGj/ANWbiFWCSleg%0ALgnHByOKm+J/hbU/F3hebR9OmWx/tcNa3V6G2yWcDDDmNccyFcqvQKTuzwAf%0AXz4Dswp+eb16j/CkPgCzA/1k35j/AApXDQ820Xw3Z+G9Fs9NsLWGzsbGFLe2%0At4xhYY0UKqgewFUte+HuieLLpZtU0XRtSdV8tWvLCK4YDty6n1r0zVPBFrbI%0ANsk3LAdR7e1Efw/s2j3eZNkjPUf4UvMZ5j4Y8CaH4UNx/Y2j6PpKzuDciwsI%0ArUTsoOC+xRuwCQCc4ya86vP2QdOudUOorrGpLqlt4ifxJYTyxRTLY3DvmQbC%0AAJAy7Uy5yEjQAjBz9LnwBZAfem/Mf4UD4f2h/wCWk/J9R/hTUmhcqZ4r4n+C%0AVh4o+EereD5Li6ht9YtZbeS9OJLhZXO77Sc4DSCXEnYZAAwMYbbaZJ8W/hje%0AaX4v0jybvULSXTddsVYrFJKU2ymCTjMbkl434wCpIDAge0S+ArNBnfMe3Uf4%0AVHJ4FtAB+8n54+8P8KXMHKj558Pfs83w13wZceJvEEfiC2+HkLx6NFHp32Zp%0A5jEsC3N03mOJJUiXC7FjXLuxBJAFj4meGZvij4x0Xw3bwyDSdF1G317XJ2Ui%0AI+QwktLRD0eSSYCR8cJHD83MiA++x+ArN2wWm64+8P8AClPgO0z/AKybb2GR%0Ax+ntT5tbhtocC1oTHhh75Ned6n+zTFqer3V5H49+Lli11M8zRW3i+5WCPexY%0ArHGchEGcKg4AwBwBXvv/AAgNnOPmkuPm/wBod/wp6/D2zK/6yfA7ZH+FJNrY%0AbXc8z8O+F5fC/hmGwS+1PWJrWNglzq12Zrm5OSR5su0k8nG7acADg4xXC/s7%0A/CzxJ8N7nxl/wkFposLeJvEd3r0D6dqMl4qLNsAifzIITuUJ94Agj+7X0R/w%0Ar6zO4+ZNwemRz+lEfw+sw23zJuT1yP8ACnfSwW1ueE6x8Qda0T9obw94T/4R%0AzzdA1/Tbm6XWEuAzQywYLq0Q5EY3RKWPVpVAJPFc3aWnxL1T40Wl9qXgrTRp%0AsN8Dp95/bcN1b6RZEFZmaEbW+3SYX96PMCqTGgCtI7fTEPwy0u3v5rqOER3V%0AxGsc0yoglmVCdis2Msq7mwCSBuOOpp48B2bkjfMMn+8P8KObsTy3PAtI0lfA%0A37UGuyXAUQ/EbRbGSxm6r9r0z7Qk9u3ozQ3UUiD+JY5cfcNV/HHgC88J/tK6%0AL8QrPTbzVdMutBn8O6zFYwG4urP96s8FysS/NJGSpR9gLLhCFYElffNR+FOj%0A67bwx3kBult547iLeeYpUOUkUjlWBzyCOCR0JBtnwNZ5PzTf99D/AApKQz56%0A/Zy+HGqaNf8AjfxXrllJpuoePNZ+3xWEu0z2NlEnlW0cu0kCQgvIyhiFMhGc%0Agkr4R0yTxl+1F4o16JV/svwzosPhWKU/8vN205u7nHtEPJQn+8xHVTj6Dn+H%0A1rNayRrcXcLMpUSROFkjyMZU44I7HsRVfw98HtF8I6Jb6bpsLWdjaqViiRs4%0A5JLMxyzsxJLMxLMxJJJJJrm3FY8/8YaJNqvhLU7W2s9H1C4uLZ44rTVlLWFw%0AxGAk4CsTGf4gFbjsa8Rvf2a9ee3O74Mfst3G5SGEdrJHu46EnT+lfXknw+s1%0Awd8x3e4/wpw+H1mVH7yfp/eH+FKMrbBy3PO7PThbWsUaRrDGiKojT7qYH3R7%0ADoPYVg+NfA/iLXb+O40bxdP4dhWII9sul292jsCx35k+YZBAwDj5a9jX4dWR%0AP+sn/Mf4U5vhzZYH7yb061JR4/4D8G+JdD1GaXWvFg8QW7RbY4RpMVmYnyDu%0A3Ix3cAjGO+c1w37V2q2EPiz4VafNfWFvcP4uhuPLluEVlVIXwxBPC7mAyeOl%0AfTa/D6zV8eZPx7j/AApLj4X6PdD/AEi1iuuMHzoo5Mj/AIEpqlLW4NX0PnP4%0Ag6Cuhfth/D/Xrj5bHUtKvdFSfI8tbjJlRCe29WOP720jtUnw30hvFf7X/jzx%0ABa7ZNN0nS7TQvPU7kmuMiSRAe/l7FDdcFx36fRV78KtE17SjYX9jbX9jKoD2%0A11BHNA4HQGNlKnHbjipNM+GOj+GdOjs9Ps4NPs4RiO3tIUt4Y/oiKFH4Cjm0%0AsTbU8X8K6br0vxu8SSXHirRdQ8OrawrbaJDGv27TZDjLykAEKQGxlm3ZHC7e%0AfNviJ4+vPhT8RPiF4j/tjWL218O6KtlDZPO5tZb+4LTLsh3eWvkRIu4gZIbJ%0APzGvdvAv7Pfh+1+PPirxhaxzWt5NGmnSxK5ZZXO2SSY57tiNQoAC7CeS3HU6%0Ah+zv4Q1G61a5uNFs559ciMGoPIm43SFQpBz0yFUErgnYuSdoxSkk9QadtDyX%0A4XeGNX03xFodtqWt6xqV5o3h+KHWftN00sc95LIrqxDfekUJLlichHjHepP2%0Ae9MZtP8AE9xcBWv7jxJfm6PcFZdqD8IwgHtivYvC/wAH9D8Haetnplu9pbKS%0A20SNIzk9SzuSzHjqxJ6elYE/w9svBHxit/szTNbeNElmuIchRBc2yoDMpxz5%0AiOoZfWMHPUUaO4K55t+2FZ4/Zm8XAgHdZ4Gf94V6Rpmm+VZxr91VUKPwGK3P%0AH/wG0P4maDJpesSanJYSn95DBdtAs3+/t+8B1welbGlfDe10qzW3F3qFyIxg%0ASXMokkP1bAzSdrWH1PFfHlsLb46eB2hVluLm1v4pyo+9ABEw3evz/qTXfR2P%0AzDhlHqBzR4A+H9n4s8cax4kunla4tZX0azj4ItYYnJcg92kf5icDoB2ye6Tw%0APaoR+8m9uelMR4JqPirxUurXEdn4i+FTW6Ssqx3VzPHMgB4DbWI3AcHjGa63%0AwFdatq+nO2r3HhmeXzdiPotzJNCFwPvFwMNk9u2K7O9/Zw8E6ldNNc+FvDNx%0ANIzFpJNGtXZj6kmPOec5q/4d+DugeEIWg0nT7PS4JH8xorK2jt42bGMlUUDO%0AO+KcmrE63PIbn4mal4c+IUNnqthDBpOoWc1xaRoD9rDRPtCtk7SzqQQBjBIB%0APU074lnWZvhza2OpCxt7nXtQisZxZM5jigdiWXcwBJKrtJ6Emu+8a/B7SfFH%0AxM8MzXHnFtLhubuMZGGbdCoB+mSa0fiz8O7S8+H2ozrJNHNpijUIG4OJIjuH%0A4HBB9jRpcWpnaXpq29tGkarGqqFUD+Edq4ObSEH7S25I41ZdD5IUDOZl/wDr%0A17ZoXha11CwgmzMnnIsm3dnGe3T3rz3/AIRjb8af7UaVGWaAaf5QQgqud27d%0AuPOR6U1sxSNyTTUuYmhlRJYZFKOjDKup4IP1BrmvhKZBotxZSNv/ALLupbNW%0APVkRiF/8dx+VeqXXhi1sLKaf96/kxtJt3Y3bQTjp7Vznwb8BWsXgm1uHklkn%0A1HdeSseMvIdx/nj8KlLQOYjFrt//AFU6O1zzirl54emzqF5HfSJDYz+WtuYl%0AZXUFQcnrk5PI6ehro4fCFu6bt8nIB61XKLU5hLT5fx71ILPI6ZxXVR+ELfcP%0Amk596mj8H2+PvydfWgaZycdl93ipha7j0rql8H24T78lSHwlbqPvScU7BzHM%0A21l+9j4P3hRXWR+F4IiG3SHbz1opgf/Z"><meta property="og:image" content="%0Ac//+AB1NQVRMQUIsIFRoZSBNYXRoV29ya3MsIEluYy7/2wBDAAgGBgcGBQgH%0ABwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0%0AHyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIy%0AMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAINArwD%0AASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QA%0AtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0Kx%0AwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZ%0AWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKz%0AtLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6%0A/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQD%0ABAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLR%0AChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hp%0AanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6%0AwsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIR%0AAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACiiigAooooAKKKKAOf0zXL698U3+mXFh9lt4LaOeEuwMkgZ5F3HB%0AIAOzgde564F6/wDEOi6Vci21HV7GznKCQR3FwkZKkkAgMRkZB/KmRaZMni26%0A1UtH5EtjDbKoJ3BkkkYkjGMYcd/Wub1oPZeOLvXoQxOnadaGdV532zyXPmjH%0AqNquP+ueO9aUoKpLk77evT79hN2N7/hMvC3/AEMmj/8AgdF/8VR/wmXhb/oZ%0ANH/8Dov/AIqtpWV0V0YMrDIIOQRS1mMxP+Ey8Lf9DJo//gdF/wDFUf8ACZeF%0Av+hk0f8A8Dov/iq26KAMT/hMvC3/AEMmj/8AgdF/8VR/wmXhb/oZNH/8Dov/%0AAIqtuigDE/4TLwt/0Mmj/wDgdF/8VR/wmXhb/oZNH/8AA6L/AOKrbooAxP8A%0AhMvC3/QyaP8A+B0X/wAVR/wmXhb/AKGTR/8AwOi/+KrbooAxP+Ey8Lf9DJo/%0A/gdF/wDFUf8ACZeFv+hk0f8A8Dov/iq26KAMT/hMvC3/AEMmj/8AgdF/8VR/%0AwmXhb/oZNH/8Dov/AIqtuigDE/4TLwt/0Mmj/wDgdF/8VR/wmXhb/oZNH/8A%0AA6L/AOKrWtraGztIbW3jWOCFFjjReiqBgAfQCpaAMT/hMvC3/QyaP/4HRf8A%0AxVH/AAmXhb/oZNH/APA6L/4qtiWWOCJ5ZXWONFLO7nAUDkknsKx/+Ey8Lf8A%0AQyaP/wCB0X/xVAB/wmXhb/oZNH/8Dov/AIqj/hMvC3/QyaP/AOB0X/xVH/CZ%0AeFv+hk0f/wADov8A4qj/AITLwt/0Mmj/APgdF/8AFUAH/CZeFv8AoZNH/wDA%0A6L/4qj/hMvC3/QyaP/4HRf8AxVH/AAmXhb/oZNH/APA6L/4qj/hMvC3/AEMm%0Aj/8AgdF/8VQAf8Jl4W/6GTR//A6L/wCKo/4TLwt/0Mmj/wDgdF/8VR/wmXhb%0A/oZNH/8AA6L/AOKo/wCEy8Lf9DJo/wD4HRf/ABVAB/wmXhb/AKGTR/8AwOi/%0A+Ko/4TLwt/0Mmj/+B0X/AMVR/wAJl4W/6GTR/wDwOi/+Ko/4TLwt/wBDJo//%0AAIHRf/FUAH/CZeFv+hk0f/wOi/8AiqP+Ey8Lf9DJo/8A4HRf/FUf8Jl4W/6G%0ATR//AAOi/wDiq0rHUbHVLf7Rp97b3cIYr5lvKsi5HbIJGeaAILDXtH1WVotO%0A1axvJEXcyW9wkhA6ZIUnitCsS6/5HnSv+wbe/wDo21rboAKKKKACiiigAooo%0AoAKZLLHBE8srrHGilndzgKByST2FPrE8Zf8AIjeIP+wbc/8AopqAD/hMvC3/%0AAEMmj/8AgdF/8VR/wmXhb/oZNH/8Dov/AIqtuigDE/4TLwt/0Mmj/wDgdF/8%0AVR/wmXhb/oZNH/8AA6L/AOKrbooAxP8AhMvC3/QyaP8A+B0X/wAVR/wmXhb/%0AAKGTR/8AwOi/+KrbooAxP+Ey8Lf9DJo//gdF/wDFUf8ACZeFv+hk0f8A8Dov%0A/iq26KAMT/hMvC3/AEMmj/8AgdF/8VR/wmXhb/oZNH/8Dov/AIqtuigDE/4T%0ALwt/0Mmj/wDgdF/8VR/wmXhb/oZNH/8AA6L/AOKrbooAxP8AhMvC3/QyaP8A%0A+B0X/wAVR/wmXhb/AKGTR/8AwOi/+KrbooAxP+Ey8Lf9DJo//gdF/wDFUf8A%0ACZeFv+hk0f8A8Dov/iq1mtoWu47po1M8aNGj9wrFSw/Eov5VLQBif8Jl4W/6%0AGTR//A6L/wCKo/4TLwt/0Mmj/wDgdF/8VW3VLUNY0zSVjbUtRtLISEhDczrH%0Aux1xuIz1oAo/8Jl4W/6GTR//AAOi/wDiqP8AhMvC3/QyaP8A+B0X/wAVR/wm%0AXhb/AKGTR/8AwOi/+Ko/4TLwt/0Mmj/+B0X/AMVQAf8ACZeFv+hk0f8A8Dov%0A/iqP+Ey8Lf8AQyaP/wCB0X/xVH/CZeFv+hk0f/wOi/8AiqP+Ey8Lf9DJo/8A%0A4HRf/FUAH/CZeFv+hk0f/wADov8A4qj/AITLwt/0Mmj/APgdF/8AFUf8Jl4W%0A/wChk0f/AMDov/iqP+Ey8Lf9DJo//gdF/wDFUAH/AAmXhb/oZNH/APA6L/4q%0Aj/hMvC3/AEMmj/8AgdF/8VR/wmXhb/oZNH/8Dov/AIqj/hMvC3/QyaP/AOB0%0AX/xVAB/wmXhb/oZNH/8AA6L/AOKo/wCEy8Lf9DJo/wD4HRf/ABVH/CZeFv8A%0AoZNH/wDA6L/4qqN78QfDkEqW1pq2n3d1J9xUvI1Qe7SE4H0GT6A0m0tyoQc3%0AaJe/4TLwv/0Mmj/+B0X/AMVWraXltf2y3NncRXEDZ2yROGU4ODgjjrWZHo89%0A9+81ydbgHBFnECtun1HWT/gXH+yKj8JIseizIihVXUb8BQMAD7XLxSTbLnGE%0AVZO7/D/g/wBbm7RRRVGQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF%0AFABWHbqG8b6srAFTplmCD3/eXVblYlr/AMjzqv8A2DbL/wBG3VADPDxbTZZ/%0AD0u7FmA9m7fx2xPyge6H5D7BT/FW9WN4gsZ5Eg1Owj36jYEvEgOPOQ8PEfZh%0A09GCntWjYX1vqVhBe2sm+CZA6N0/AjsR0I7Guit76VVdd/X/AIO/39hLTQsU%0AUUVzjCiiigAooooAKKKKACiiigAooooAKKKKAMTxl/yI3iD/ALBtz/6Katus%0ATxl/yI3iD/sG3P8A6Kar+oWVxexotvql3YFTktbLExb2PmI4/LFVFJuzdgLl%0AFYf9g6j/ANDbrP8A36s//jFH9g6j/wBDbrP/AH6s/wD4xWvsYf8APxf+Tf5C%0Av5G5RWH/AGDqP/Q26z/36s//AIxR/YOo/wDQ26z/AN+rP/4xR7GH/Pxf+Tf5%0ABfyNyisP+wdR/wCht1n/AL9Wf/xipbbR76C5jlk8SapcopyYZY7UK/sdsIP5%0AEUnSgl8a/wDJv8gv5GvUEt7awyvHLcRo0cRmcMwGxB/EfQcHk+h9K4bxV4if%0ARb7xZDPqf2V30SOXTI2k2s02LgN5Q7tkR5xz92qt0JdQ8KfEJ7jzGuvsvlJt%0AY7jELJHQAjkgu8hx6lhWIz0RLq3kuDAkyNKI1l2g87GJAb6HBrK0P/kMeJv+%0Awkn/AKSW9Y8UsB1XwZLp84njlt54zKsvmb4fKDE7udw3rHznvWxof/IY8Tf9%0AhJP/AEkt6AC6/wCR50r/ALBt7/6Nta26xLr/AJHnSv8AsG3v/o21rboAKKKK%0AACiiigAooooAKxPGX/IjeIP+wbc/+imq1rerxaJpct5IjSsPlihT70rnoo/x%0A7AEngVl+ILz+0Phlqt7s8v7Ro80uzOdu6EnGe/WgDpaKitrm3vLaO4tZ4p4J%0ABlJYnDKw9QRwaloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsS6/5H%0AnSv+wbe/+jbWtusS6/5HnSv+wbe/+jbWgDborNn0y7mneRNd1CBWORHGluVX%0A2G6In8yaj/si+/6GPVP+/dt/8ZqeZ9vyNlSg18a/8m/yNaisn+yL7/oY9U/7%0A923/AMZo/si+/wChj1T/AL923/xmjmfb8v8AMfsYf8/F/wCTf5GtRWT/AGRf%0Af9DHqn/fu2/+M0f2Rff9DHqn/fu2/wDjNHM+35f5h7GH/Pxf+Tf5GtRVKCwm%0AjtZoJtSvLkyggSSeWrpkY+Uoi/1rz1tY1698M+IZvOnW50LSJ7KQjK+degNu%0AkA74VI2X/rqaaMpJJ2Tuehrq2ntA863kLRpEZ2YODiMZ+f8A3flPPTis/wAY%0AMG8Ca+ykFTplwQQeCPKasTTbbT7T4mPDDLtjfQLVbaIzHa6LJKDtTOCAuzoO%0AN2e/MNu7N8FNQBJKJpl5HCSc5iUSLH/44Fpkne1ieFP+QPP/ANhK/wD/AErm%0ArZd0jjaSRlVFBLMxwAB3JrC8HTRXOgPPBKksMmoXzpIjBldTdSkEEdQR3oA3%0A6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDl9YtLfVvGmnabqMEd%0AzYrYXFwIJVDI8geJQSp4JAY49N1T+ErjZ4UVppWeO2muYldsk+VHNIqdeT8q%0AitLUtHstVMLXSSeZCSY5IZnhdMjBAdCGwe4zg4FOg0ixtks44IPLjs0KQojs%0AFAIwcjOG/HPrQB5/4UtprPUfDd7NZx26X0Uyi9jfM1+zIZENwP4TtVm6vyMZ%0AFdbAtwfiDqDJLEsA0y08xGjJZj5lztw24AY5zwc5HTHNmx8M6Tp11FcW1vIr%0AwhhCr3EjpCG6+WjMVTjj5QOOOlR2v/I86r/2DbL/ANG3VAG3XOM3/CNa2WOR%0ApGpS8ntbXDcZ9kkOPo3+9x0dQXlpBf2c1pdRLLBMhR0YZBBrWlUUXaXwvf8A%0Aruv60E0T0Vg6Rd3Nhe/2FqcjyyKpazu3/wCXmMdQx/56L39R83rjepVKbhK3%0A3PugTuFFFFZjCiiigAooooAKKKKACiiigAooooAz9esJNV8O6np0Tqkl3aSw%0AIz9AXQqCfbmqn2rxT/0B9H/8Gsv/AMj1t0UAYn2rxT/0B9H/APBrL/8AI9H2%0ArxT/ANAfR/8Away//I9bdFAGJ9q8U/8AQH0f/wAGsv8A8j0favFP/QH0f/wa%0Ay/8AyPW3RQBifavFP/QH0f8A8Gsv/wAj0favFP8A0B9H/wDBrL/8j1t0UAYn%0A2rxR/wBAbR//AAay/wDyPVVIfEUepy6gmjaSs80SxSY1aXDhSSpI+zdRubn3%0A9hjpaKAOa8nxEdVGoto2ktcLB5CZ1aXCKW3NgfZuMkLn/dX0q9odlfW0mp3O%0AoJbxzX12J/Lt5WlVAIY48biqkn93np3rXooA5+dbgfEHT2eWJoDpl35aLGQy%0AnzLbdltxBzxjgYweueOgrEuv+R50r/sG3v8A6Nta26ACiiigAooooAKKKKAO%0Ac8ReH77VLpbyz1MwPDbSRRwmBZFLMOSCTwSMLnsM+pqnf2d3p/wjv7S+k8y5%0Ah0WZHO0DBELfLxxx0z3xmuvrE8Zf8iN4g/7Btz/6KagDbooooAKKKKACiiig%0AAooooAKKKKACiiigAooooAKKKKACsXVbPU/7bsdT02G0nMFvPbvFc3DQ/wCs%0AaJgwKo+ceVjGB161tUUAYn2rxT/0B9H/APBrL/8AI9H2rxT/ANAfR/8Away/%0A/I9bdUb3VrSwdYZHaS5cZS3hUvI30Uc49zge9JtLcqEJTdoq7KX2rxT/ANAf%0AR/8Away//I9Ub7xBr1gwifSNJluWGUtodTleVh7KLfp7nA9TWj5Wral/r5P7%0AMtj/AMs4WDzsPd+VT6Lk/wC0KvWWnWmnIyWsCx7zl25LOfVmPLH3JNTdvY25%0AKcPjd32X+f8Alf1RlQX3iuWFZH0HSoWYZMcmrOWX67YCPyNSfavFP/QH0f8A%0A8Gsv/wAj1t0VZg9WYn2rxT/0B9H/APBrL/8AI9I1x4ndSraLozKRgg6rKQR/%0A4D1uUUCOWgtfEdtoy6XBpemxwJCYI2GsS741xgYP2bqBgAn0HWo77T/EN14Z%0AudCg0jRrS2ls2s4ympSsIkKFBhfIGcDtkdOtdbRQAVieFP8AkDz/APYSv/8A%0A0rmrbrE8Kf8AIHn/AOwlf/8ApXNQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAFFFFABRWZqmspps9vbJaXN7d3Ado7e2Cbiq43MS7KoA3KOT1IxVnT%0AtRt9U06G+tmPkygkbxtKkHBBHYggg+4oAtViWv8AyPOq/wDYNsv/AEbdUad4%0Amg1O5gSKxvkt7pWa1u5I18qcDnIwxYAjkbguR0otf+R51X/sG2X/AKNuqANu%0AiiigCjqulwatZ+RMXR1O+KaM4eFx0dT2I/8ArHiqel6pcLd/2Tq21NQVS0cq%0AjCXSD+NfQj+Je30raqjqulW+r2fkTF0ZWDxTRHbJC46Op7EfkehyDW9OomvZ%0A1Nvy/rqhNdUXqKw7HV57W8TS9bCxXTYFvdD5Yrv6f3ZOuU9ORkZA3KipTlTd%0An/w4J3CiiisxhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRRQBiXX/I86V/2Db3/ANG2tbdYl1/yPOlf9g29/wDRtrW3QAUUUUAFFFFA%0ABRRRQAVieMv+RG8Qf9g25/8ARTU7xBYyXMST+ZqMkMCsTZ6fMYZJ3OADvDKc%0AKM8ZAOec4ArCkvJr74OahPc3Hn3B0m5WVyCDvVHUq2QPmBBB46g0AdtRUVtK%0A89tHLJby27sMmKUqWT2O0kfkTUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRWdea1a2s/2VBJdXmM/ZrZd7j0z2UcdWIFJtLcuFOU3aKuaNUL7WbOxl8h%0AnaW6I3LawL5krD12joPc4HvVM2msapg3lyNOtj/y72bZlYcfelxx9FH/AAI1%0Ao2Om2emxGOzt0iDHc5HLOfVmPLH3JJqbyexryUqfxu77L9X/AJX9Sj5Wr6n/%0AAK+T+zLY/wDLOFg87D3f7qfRcn/aFXrLTrTTkZLWBY95y7clnPqzHlj7kmrV%0AFNRS1InWlJcq0XZf1r87hRRRVGQUUUUAFFFFABRRRQAVieFP+QPP/wBhK/8A%0A/Suatl2KxswRnIBIVcZPsM8VheDpGl0B5HieFn1C+YxuQWQm6l4O0kZHTgke%0A5oA36KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDm9WL6d4tsNXkt%0A7ma0+xTWrm2geZo3LxupKoC2CEYZA4OM9aZoUM8HhuKwuLaeC4v3u5gvlHbC%0AJJHkAcjhThwMHuCK6eigDz3wvYz2lx4eggttWhvLeJotWNwJRCVWIrgFvkb9%0A5s27M4UHoK6KC2t5PiDqFw8ETTw6ZaCOVkBZA0lzuAPUZwM+uBXQViWv/I86%0Ar/2DbL/0bdUAbdFFFABRRRQBBe2VtqNq9tdwpNC+CUccZByD7EEAg9qw/tF/%0A4ZVUuzcajpQ4F19+e3HAHmAcyL1+YfMMcg8tXR0VrTq8q5ZK8e3+XZ/07iaI%0Ara6t722jubWaOeCQZSSNgysPYipawp9Aktbxr7Q7lbKd2LTW7KWt7gk5JZc/%0AK3+0uDzzu6U+z8QxPcrY6nA2m37NsSKU5SY+sUmAHz6cN6qKuVFSXNSd1+K/%0AruvnYL9zaooornGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU%0AUUAc/PbW8fxB0+4SCJZ5tMuxJKqAM4WS22gnqcZOPTJroKxLr/kedK/7Bt7/%0AAOjbWtugAooooAKKKKACiiigDN1LRxf3UF3FfXdldQqyLLbFMlGxlSHVlIyo%0APTIxxWVr2mW+kfDXW7K23mOPTbo7pG3M7MjszE9yWJJ+tdPWJ4y/5EbxB/2D%0Abn/0U1AG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFZD+IbeWVoNMhl1KZSVb7Pj%0Ay0P+1IflH0BJ9qTkluaU6U6nwrb8PV9DXrJuvEFpFdNZ2qS396pw0FqAxjP+%0A2xIVP+BEGk/sy8v+dVusRn/l0tGKJ9Gfhn/8dHqDWlbWtvZ26W9rDHDCgwsc%0AahVH0Aqfee2holSp/F7z8tvv6/L7zMWz1PUcHULgWkJ62tm5yfZpcA/98hfq%0Aa0bSytrCAQWkEcMeSdqLjJPUn1J7nqanopqKWpE60pLl2XZbf15vUKKKKoyC%0AiiigAooooAKKKKACiiigAooooAKxPCn/ACB5/wDsJX//AKVzVt1ieFP+QPP/%0AANhK/wD/AErmoA26KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAor%0Am9WD6j4rsNHe4uYbT7FNdSC2neFpGV40UFkIbA3scA8nGelT+GdQkk8Mi4v7%0AkObaS4hkuHI+ZYpXTeT9EBJoA3axLX/kedV/7Btl/wCjbqsPQvED6t4zWY6i%0An2S6sXa2sllHygOu1mXP+sYbmx1AwOxrXgldfiDqEQt5XR9MtC0qldseJLnA%0AOTnnPGAehzjjIB0FFFFABRRRQAUUUUAFQ3Vrb3ts9vdQRzwOMNHIoZWHuDU1%0AFNNp3QGB/ZGp6Sd2i3vnW4/5cL92ZAOOI5eXTp0O8egFSweJbQTx2upRy6Ze%0ASHCxXQAVz/sSDKN9Ac+oFbVRz28F1C0NxDHNEwwySKGU/UGt/bRn/FV/NaP/%0AAIPz18xW7ElFYP8Awjb2LB9D1KfTwOlqw862Pt5Z5UeyMtDaxqunMF1TR3ki%0A73WnEzKB6tGQHH0UP9aPYKX8OV/LZ/16Nhfub1FUdP1nTdVB+w3kMzKMvGGw%0A6f7ynlfxAq9WMoyg7SVmMKKKKkAooooAKKKKACiiigAooooAKKKKACiiigDE%0Auv8AkedK/wCwbe/+jbWtuufnldviDp8Rt5URNMuysrFdsmZLbIGDnjHOQOox%0AnnHQUAFFFFABRRRQAUUUUAVb/U7DS4RNqF9bWkTHaHuJVjUn0ySKy/Fssc/g%0AHXZYpFkjfTLhldDkMDE2CD3pviC+sNNvrO5NqLrWHSSGxh37eG2lySeFXhct%0AjOOBnODnXumf2R8JtWsjPHMyabdu7xjCbmV2YL6KCxA9gKAOxoqK2W4W2jW6%0AlilnA+d4ozGpPspZiPzNS0AFFFFABRRRQAUVFcXMFpA09zNHDEnLPIwUD8TW%0AU2qahfgjR7EbP+fq93Rx/VUxuf8A8dBzwalySNadGc1dbd3ov6/E2HdI0Z5G%0AVUUZLMcACsj+3mvG2aNZSX3T/SGPlW4B77yPm/4AG/Cnx6GkziXVZ21CUHcF%0AkULChzkbY+nHq248da1gABgcCl7z8i/3NP8AvP7l/m/wMj+xXvhnWbj7UD/y%0A7RgpAPYrnL/8CJHsK1Y40ijWONFRFGFVRgAegFOoqlFIznVnPRvTt0+4KKKK%0AZmFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWJ4U/wCQPP8A9hK//wDS%0Auatlw5jYRsqvg7SwyAfcZGfzrC8HCVdAcTujzDUL4O6IVVm+1S5IBJwM9sn6%0AmgDfooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMzU9GTUbm3u47y%0A5sru3V0Se2KbtjY3KQ6spBKqeR1AxS2miW9jaWlpBLMLa3V1aJiGE+7qZMjJ%0AOSTxjkmtKigDKh8OaVbaxHqlvZwwzxwtCojiVVAJBJ4Gc8YznoTUNr/yPOq/%0A9g2y/wDRt1W3WJa/8jzqv/YNsv8A0bdUAbdFFFABRRRQAUUUUAFFFFABRRRQ%0AAUUUUAUNQ0XTdU2m9soZnX7shXDr9GHI/A1QGg6hZMX0zXrxR2gvwLqP8ziT%0A/wAfreoraNepFct9Oz1X3MVkYX9pa7ZnF7oqXUY/5a6fOCT7+XJtx9AzGnRe%0ALdGLCO6um0+UnaI9Qja2LH0XzAA34E1t010SRCkiqyMMFWGQaftKUvih9zt+%0Ad/wsFmKrK6K6MGVhkEHIIpaw38I6J5nmW1obCXJbfYStbEn1IjIDde4NJ/ZO%0AtW2DZeIZHA6R6hapMuPqnlt+JJ/Gj2dJ/DO3qv8AK/6Bdm7RWF9s8S2xxPpF%0AldoP47S7KOf+AOoA/wC+6X/hJ4Yf+P7TNWsvd7NpVH1aLeo/E0fVqj+HX0af%0A4LULo3KKyrXxNoV7J5dtrFjJLnBjE67x/wABzmtWs505wdpq3qO9woooqACi%0AiigAooooAxLr/kedK/7Bt7/6Nta26xLr/kedK/7Bt7/6Nta26ACiiigAoooo%0AAKKKKAKGoaHpGrSJJqWlWN46DajXNukhUegLA4rM8T2Vrp/w8121sraG2t00%0A252RQxhEXMbE4A4HJJ/GuirE8Zf8iN4g/wCwbc/+imoA26KKKACiqV7q1pYO%0AsUjs9w/KW8Kl5G9wo5x79B3NUwdb1I8qmlWx9cS3BH6on/j9S5LZG0aEmuaW%0Ai7v9Or+SL2oapZaXCJb25SFWOEB5Zz6Ko5Y+wFU/tWqaiMWVv9hgP/Lxdply%0AP9mLII+rEY/umrNlpFlYSNLFFuuHGHuJSXlf2LHnHt0HYCr1K0nuVz0ofArv%0Au/8AL/Nv0Mq10C0guFurl5b+8U5W4u2Dsh/2BgKn/AQK1aKKpJLYynUnUd5O%0A4UUUUyAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArE8Kf%0A8gef/sJX/wD6VzVt1ieFP+QPP/2Er/8A9K5qANuiiigAooooAKKKKACiiigA%0AooooAKKKKACiiigAooooAKKKKACsS1/5HnVf+wbZf+jbqtus+/0HR9VlWXUd%0AJsbyRF2q9xbpIQOuAWB4oA0KKxP+EN8Lf9C3o/8A4Axf/E0f8Ib4W/6FvR//%0AAABi/wDiaANuisT/AIQ3wt/0Lej/APgDF/8AE0f8Ib4W/wChb0f/AMAYv/ia%0AANuisT/hDfC3/Qt6P/4Axf8AxNH/AAhvhb/oW9H/APAGL/4mgDborE/4Q3wt%0A/wBC3o//AIAxf/E0f8Ib4W/6FvR//AGL/wCJoA26KxP+EN8Lf9C3o/8A4Axf%0A/E0f8Ib4W/6FvR//AABi/wDiaANuisT/AIQ3wt/0Lej/APgDF/8AE0f8Ib4W%0A/wChb0f/AMAYv/iaANuisT/hDfC3/Qt6P/4Axf8AxNH/AAhvhb/oW9H/APAG%0AL/4mgDWtrmG8tIbq3kWSCZFkjdejKRkEfUGpaxP+EN8Lf9C3o/8A4Axf/E0f%0A8Ib4W/6FvR//AABi/wDiaANuisT/AIQ3wt/0Lej/APgDF/8AE0f8Ib4W/wCh%0Ab0f/AMAYv/iaANuisT/hDfC3/Qt6P/4Axf8AxNH/AAhvhb/oW9H/APAGL/4m%0AgDUurG0vo9l3awXCf3ZYw4/Wso+ENEUk21o1k3rYzPb4/wC/ZH+TS/8ACG+F%0Av+hb0f8A8AYv/iaP+EN8Lf8AQt6P/wCAMX/xNaQrVIK0ZNfMVkxP7AvIf+PT%0AxHqkQ/uSmKZT+LoW/JqT7P4pg+5qOlXS54Etm8TfiyyEf+O96d/whvhb/oW9%0AH/8AAGL/AOJo/wCEN8Lf9C3o/wD4Axf/ABNX9Yn1SfyX52uFhBqHiKIgT6Fb%0ASj+9a3+7Pvh0TH0zQfEbxE/atB1mADv9nWb/ANFM5pf+EN8Lf9C3o/8A4Axf%0A/E0f8Ib4W/6FvR//AABi/wDiaPa03vBfJv8AzYWfcT/hMNDX/X3j2v8A1+W8%0Atvj/AL+KKu2uu6RfHFpqtjcH/plcI/8AI1T/AOEN8Lf9C3o//gDF/wDE0n/C%0AGeFj/wAy1o3/AIAxf/E0XoPo180/0Qai3X/I86V/2Db3/wBG2tbdZWneGdD0%0Ai+e803SbOzuHTy2e3hWPK5BxgcdQPyrVrKain7ruvu/VjCiiipAKKKKACiii%0AgDM17X9P8OaXJf6jLsjRSVRRl5CAThR3OAfoOTgDNVPFsgm8A67KoID6XcMM%0A+8TVL4ttnuvB+txQwtNO+n3CRIi7mZjGwAUDkk9MCryWsdzpC2l1EHikgEcs%0AbjqCuCDQC8yvc67ZxXDWsBa8vF4NvagOyn/aPRP+BEVA1lq2p/8AH5efYLc/%0A8sLJsyHn+KUjj6KB/vGhvB/hhjlvDmkMfVrKMn/0Gk/4Q3wt/wBC3o//AIAx%0Af/E1HK38R0e1jD+Evm9X/kvxfmaNlp1ppyMlrAse85duSzn1Zjyx9yTVqsT/%0AAIQ3wt/0Lej/APgDF/8AE0f8Ib4W/wChb0f/AMAYv/iapJLRGMpSk7yd2bdF%0AYn/CG+Fv+hb0f/wBi/8AiaP+EN8Lf9C3o/8A4Axf/E0yTborE/4Q3wt/0Lej%0A/wDgDF/8TR/whvhb/oW9H/8AAGL/AOJoA26KxP8AhDfC3/Qt6P8A+AMX/wAT%0AR/whvhb/AKFvR/8AwBi/+JoA26KxP+EN8Lf9C3o//gDF/wDE0f8ACG+Fv+hb%0A0f8A8AYv/iaANuisT/hDfC3/AELej/8AgDF/8TR/whvhb/oW9H/8AYv/AImg%0ADWa5hW7jtWkUTyI0iJ3KqVDH8C6/nUtYn/CG+Fv+hb0f/wAAYv8A4mj/AIQ3%0Awt/0Lej/APgDF/8AE0AbdFYn/CG+Fv8AoW9H/wDAGL/4mj/hDfC3/Qt6P/4A%0Axf8AxNAG3RWJ/wAIb4W/6FvR/wDwBi/+Jo/4Q3wt/wBC3o//AIAxf/E0AbdF%0AYn/CG+Fv+hb0f/wBi/8AiaP+EN8Lf9C3o/8A4Axf/E0AbdFYn/CG+Fv+hb0f%0A/wAAYv8A4mj/AIQ3wt/0Lej/APgDF/8AE0AbdFYn/CG+Fv8AoW9H/wDAGL/4%0Amj/hDfC3/Qt6P/4Axf8AxNAG3RWJ/wAIb4W/6FvR/wDwBi/+Jo/4Q3wt/wBC%0A3o//AIAxf/E0AbdYnhT/AJA8/wD2Er//ANK5qP8AhDfC3/Qt6P8A+AMX/wAT%0AWra2ltY2yW1nbxW9vGMJFCgRV78AcCgCaiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKAI55Rb28szAlY0LkD2Ga5HR9T1cHw5e3l8biLXFPm%0AW5iRUt2MLTLsIAYgBSp3Fs9eK7B0WRGRwCrDBB7iuc0vwvcWU+mLc6klxZ6S%0AjJYxLb7HGV2AyNuIYhCV4C9cmgDpaKKKACiiigAooooAKKKKACiiigAooooA%0AzPEepvovhvUdSjQPJbW7yIrdCwHGfbOKoafLqWn+I4dKvtRk1CO5snuVlkiR%0ACjxuisBsA+U+YCM5Ix1Na+q6dDq+k3enXO7ybqJonKnkBhjI96zLPRNRS+fU%0AL7U4bi+W0NrbyR2vlrGCQSzLvO5iVUnBA+XgCgDL8TapqcGvC3t7nVLWyhsx%0APLLY2KT5YuRyWU9ApOBzz0NdVYTR3On208Vx9pjkiV1nwB5gIBDccc9ay7zS%0A9akm82z1xITJbrDMstqZFDDP7yMbxsY56HcOB6c6OmafBpOlWmnWwPkWsKwp%0AuOThRgZ9+KALdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc3rmo6vZ+INEhg8i%0ALTbm8EErZ3SSkxSNjGMKo2DnOT7Ac9JWdqmlf2lc6XN53l/YbsXWNud/7t02%0A9ePv5zz0rRoAKKKKACiiigAooooAK5/Vrm9ufEVlotnfSWKvay3U08SIzkKy%0AKqjerKMlyTx2966CsjVNIubnUrXU9OvIrW9gjkhzNAZUeNypIKhlOQUUgg+v%0ArQAvhu/uNS0OOa72m5SWa3lKjAZopGjLY7Z2Zx71rVQ0bS00bSYbFJWlKFme%0ARhgu7MWZsDplmJx71foAKKKKACiiigAooooAKKKKACiiigArn9Wub258RWWi%0A2d9JYq9rLdTTxIjOQrIqqN6soyXJPHb3roKyNU0i5udStdT068itb2COSHM0%0ABlR43KkgqGU5BRSCD6+tAC+G9QuNR0OOe82/aY5ZoJWUYDNFI0ZbHbOzOPeu%0Ac8L61f3d9ZNq2o6nFJeq7w2lzYxxRP1OxW2BsqvPJ5wTyK6PTNGl0qwtLKG8%0AzDH5jXBaP55ncliwIPyfMzHoeuKp2vh7UPtenPqmrrewaaxe3X7PskdyhQNK%0A24hiFZugXJOaAOiooooAKKKKACiiigAooooAKKKKACiiigBrlgjFV3MBwucZ%0APpXP+GdQ1W81DXINWMAktbqNI44OUjVoUfaGIBb73U9T2A4roqztP0r7Dqer%0AXvnb/wC0J0m2bceXtiSPGc8/cz260AaNFFFABRRRQAUUUUAFFFFABRRRQAUU%0AUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU%0AUUAFFFFABRRTJZFhieVzhEUsx9hQA+se7114NSlsbXSL+/lhRHkNu0KqobO3%0A/WSLn7p6elZmk+INVnl0W4vo7T7HrSFreOFGD258syqHYsQ+UU5wFwR3q7a3%0AFvF411KB541uJ7W3McTOAzhTJkqOpxkZ9MionJpxS6v9GZzk1KKXV/o2P/tz%0AUf8AoVNY/wC/tp/8fo/tzUf+hU1j/v7af/H626Ks0MT+3NR/6FTWP+/tp/8A%0AH6P7c1H/AKFTWP8Av7af/H626KAMT+3NR/6FTWP+/tp/8fo/tzUf+hU1j/v7%0Aaf8Ax+tuigDE/tzUf+hU1j/v7af/AB+j+3NR/wChU1j/AL+2n/x+tuigDE/t%0AzUf+hU1j/v7af/H6P7c1H/oVNY/7+2n/AMfrbooAxP7c1H/oVNY/7+2n/wAf%0Ao/tzUf8AoVNY/wC/tp/8frbooAxP7c1H/oVNY/7+2n/x+j+3NR/6FTWP+/tp%0A/wDH626KAOftvEt5eWkNzD4V1oxTIsiFntVJUjIyDOCOD0PNS/25qP8A0Kms%0Af9/bT/4/W3RQBif25qP/AEKmsf8Af20/+P0f25qP/Qqax/39tP8A4/VjU9ZO%0An3ltZxadd31zcRySrHbGMYRCgYkyOo6yL3zzVf8AtzUf+hU1j/v7af8Ax+gA%0A/tzUf+hU1j/v7af/AB+j+3NR/wChU1j/AL+2n/x+j+3NR/6FTWP+/tp/8fo/%0AtzUf+hU1j/v7af8Ax+gA/tzUf+hU1j/v7af/AB+j+3NR/wChU1j/AL+2n/x+%0Aj+3NR/6FTWP+/tp/8fo/tzUf+hU1j/v7af8Ax+gA/tzUf+hU1j/v7af/AB+j%0A+3NR/wChU1j/AL+2n/x+j+3NR/6FTWP+/tp/8fo/tzUf+hU1j/v7af8Ax+gA%0A/tzUf+hU1j/v7af/AB+j+3NR/wChU1j/AL+2n/x+j+3NR/6FTWP+/tp/8fo/%0AtzUf+hU1j/v7af8Ax+gA/tzUf+hU1j/v7af/AB+j+3NR/wChU1j/AL+2n/x+%0Aj+3NR/6FTWP+/tp/8fq3pWqjVFugbS4tJrWbyJobjYWVtiuOUZlI2up4NAEF%0Alrj3OqJp9zpN9YTSQvPH9oaFg6oyK2DHI2CDIvXHWteufnubeT4g6fbpPE08%0AOmXZkiVwWQNJbbSR1GcHHrg10FABRRRQAUUUUAFQXl5bafaSXd5OkFvEMvJI%0AcKo9zU9FAHD6tri63rGm2ekyXN/ZS201ww0668kyMrKgzKGUhRk8A8kr2zWx%0ApOrwW3go6pPNdzRWcMzTGdR5w8osHVsHBYbSuc84znmrupaMmoXVvdx3dzZX%0AlurolxbFN2xsblIdWUglVPI6gYrL1/TYNJ+G2t2VuXMaabdEtI25nZkdmZj3%0AJYkn60AXP7c1H/oVNY/7+2n/AMfo/tzUf+hU1j/v7af/AB+pb7xRoGmXbWt9%0ArWn2twuN0c1yiFcjIzk8Z7Z9RWhbXdteR+Za3EU6f3onDD8xQBlf25qP/Qqa%0Ax/39tP8A4/R/bmo/9CprH/f20/8Aj9bdFAGJ/bmo/wDQqax/39tP/j9H9uaj%0A/wBCprH/AH9tP/j9bdFAGJ/bmo/9CprH/f20/wDj9H9uaj/0Kmsf9/bT/wCP%0A1t0UAYn9uaj/ANCprH/f20/+P0f25qP/AEKmsf8Af20/+P1t0UAYn9uaj/0K%0Amsf9/bT/AOP0f25qP/Qqax/39tP/AI/W3RQBif25qP8A0Kmsf9/bT/4/R/bm%0Ao/8AQqax/wB/bT/4/W3RQBz7eJbxbuO2PhXWvNkRpFG+1xtUqDz5+By68Hk9%0AuhqX+3NR/wChU1j/AL+2n/x+tuigDE/tzUf+hU1j/v7af/H6P7c1H/oVNY/7%0A+2n/AMfrbrM1PWTp95bWcWnXd9c3Eckqx2xjGEQoGJMjqOsi9880AV/7c1H/%0AAKFTWP8Av7af/H6P7c1H/oVNY/7+2n/x+j+3NR/6FTWP+/tp/wDH6P7c1H/o%0AVNY/7+2n/wAfoAP7c1H/AKFTWP8Av7af/H6P7c1H/oVNY/7+2n/x+j+3NR/6%0AFTWP+/tp/wDH6P7c1H/oVNY/7+2n/wAfoAP7c1H/AKFTWP8Av7af/H6P7c1H%0A/oVNY/7+2n/x+j+3NR/6FTWP+/tp/wDH6P7c1H/oVNY/7+2n/wAfoAP7c1H/%0AAKFTWP8Av7af/H6P7c1H/oVNY/7+2n/x+j+3NR/6FTWP+/tp/wDH6P7c1H/o%0AVNY/7+2n/wAfoAP7c1H/AKFTWP8Av7af/H6P7c1H/oVNY/7+2n/x+j+3NR/6%0AFTWP+/tp/wDH6hu/E9zYWc95d+GdXitreNpZZC9qdiKMk4ExJwAegJoAm/tz%0AUf8AoVNY/wC/tp/8fq9pWpJq1gLuOGWH95JE0U23cjxuyMDtJHDKehIq7WJ4%0AU/5A8/8A2Er/AP8ASuagDbooooAKKKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACmSxrNC8TjKOpVvoafRQBymlaBq0Emh2989n9j0VCIZIZGZ7giMxIWUq%0AAmEZicFuT2rVtFI8U6o3Y21t/OWtasy2BHiTUT2Ntb4/76lrKp8UfX9GY1fi%0Ah6/ozTooorU2CiiigAooooAKKKKACiiigAooooAKKKKACiiigDEuv+R50r/s%0AG3v/AKNta26xLr/kedK/7Bt7/wCjbWtCTS9PmkaSWxtndjks0Kkn8cVMnL7K%0AJm5Je6r/ADt+jLdFUv7H0v8A6Btn/wB+F/wo/sfS/wDoG2f/AH4X/CovV7L7%0A/wDgGfNW/lX3v/Iu0VS/sfS/+gbZ/wDfhf8ACj+x9L/6Btn/AN+F/wAKL1ey%0A+/8A4Ac1b+Vfe/8AIu02SRIYnlldUjRSzOxwFA6knsKqf2Ppf/QNs/8Avwv+%0AFSDTrJbaW3S1hSGZSsiIgUMCMHOPaqi531S+/wD4BUXUv7yVvX/gIc97aR+Z%0AvuoV8uLznzIBtj5+c+i8HnpwayNW8XaZo0lz9rciK28hZZQRgPM+1F5IycfM%0AfRcHvXC2/gnxEz2xuoVYyuNKvGMynOnR+VhzzyW8qTjqPPORwa1tV029uP8A%0AhLLC3t2ub2TU7HUoowyq0sK+RwCxAyDbygZI6D1qzQ7S21SG41O6sACs0CRy%0AjJBEkbg4dfbKsPw9xVLQ/wDkMeJv+wkn/pJb1WhDXXxBadEZUtdKEc4OOHkk%0ADKpx3ARjwf4h6irOh/8AIY8Tf9hJP/SS3oALr/kedK/7Bt7/AOjbWtusS6/5%0AHnSv+wbe/wDo21rboAKKKKACiiigAooooAKxPGX/ACI3iD/sG3P/AKKatusT%0Axl/yI3iD/sG3P/opqAIPByLPoMl5Iqlr+8uLlu+Q0rbPrhAg/Cp7nwf4cu5v%0AOl0SxE/aaOERyD/ga4Pc9+9ReBefAPh9+8mnwSH3LIGP866CgDnz4UWDB07W%0A9asSOgF4bhfptnEgx7Dp2xSfYvFVqB5Gs2F6o6reWZRj/wADjYAf98GuhooA%0A58ar4itgPtfhtJxnBOnXySHHriUR/XAJ/Gj/AITCwhO3ULTU9Pb1ubKTZ/38%0AQMn/AI9XQUUAZ+n67pGrEjT9Us7th1WCdXI+oByK0KztQ0DR9WBGoaXZ3We8%0A0CsfzIqh/wAIhYw/8g+91PT/AEW2vX2D6I5ZP0oA6CiufGm+JrX/AI9vEFvd%0Aj+7qFiM/99RFAP8Avk0v9q+IbXi88OC5A6tpt6j56c7ZfLx3OMnHqaAN+iuf%0APjPSYONQW905u/220kjUf8Dxs/8AHq17HUrHU4fOsL23u4v78EqyL+YNAFmi%0AiigAooooAKxLr/kedK/7Bt7/AOjbWtusS6/5HnSv+wbe/wDo21oA26Kxbrwf%0A4Yv7qS6vPDmkXFxKd0ks1jG7ufUkrk1D/wAIJ4P/AOhU0P8A8F0P/wATQB0F%0AFc//AMIJ4P8A+hU0P/wXQ/8AxNH/AAgng/8A6FTQ/wDwXQ//ABNAHQUVz/8A%0Awgng/wD6FTQ//BdD/wDE0f8ACCeD/wDoVND/APBdD/8AE0AbzukcbSSMqIoJ%0AZmOAAO5NQyX1pDGJJLmFUMbSglxyigEsPUAEc+4qvYaJpGj280OnaXY2UMvM%0AqW9ukavxj5goAPHrXnen6Ffap4V8T28MizfZLG40TSXR9wkiG45z6nMUZ94j%0AQB2ln4usr64azgikOoCwW/W0ZlDsj7ti9eGO0Eg9NwzTPEd9b6n8NtYvrV99%0AvcaTPLG2MZUxMRx2+lVtPZpfFX/CQx25/se80SALc70CxFHkchgSGHyyDoCO%0ADnFUI4JYPgvqPmoyGXTbydUYYKJIJHVSOxCsBj2oA7usTwp/yB5/+wlf/wDp%0AXNW3WJ4U/wCQPP8A9hK//wDSuagDbooooAKKKKACiiigAooooAKKKKACiiig%0AAooooAKKKKACiiigArPgBGv3p7G2gx/31LWhVCJv+J/dLj/l1hOf+BS1lU+K%0APr+jMavxQ9f0ZfooorU2CiiigAooooAKKKKACiiigAooooAKKKKACiiigDM1%0APRjqF5bXkWo3djc28ckSyWwjOUcoWBEiMOsa9s8VX/sPUf8Aoa9Y/wC/Vp/8%0AYrbooAxP7D1H/oa9Y/79Wn/xij+w9R/6GvWP+/Vp/wDGK26KAMT+w9R/6GvW%0AP+/Vp/8AGKP7D1H/AKGvWP8Av1af/GK26KAMT+w9R/6GvWP+/Vp/8Yo/sPUf%0A+hr1j/v1af8AxituigDE/sPUf+hr1j/v1af/ABim/wDCPXplEv8AwlGreYAV%0ADeTZ5A9M+R04FbtFAGEvh69RnZPFGrKztuciGzG44Ayf3HJwAPwFXdK0oaWt%0A0Td3F3NdTefNNcbAzNsVBwiqoG1FHArQooAxLr/kedK/7Bt7/wCjbWtusS6/%0A5HnSv+wbe/8Ao21rboAKKKKACiiigAooooAKw/Gpx4E8Qn/qGXP/AKKatysH%0Axvx4B8R/9gu5/wDRTUAT+FI/K8HaJH/c0+BePaNa16oaEnl+H9NTGNtrEMen%0AyCr9ABRRRQAUUUUAFFFFABRRRQAVkXfhbQb6f7RcaRZtc5yLhYQsoPqHGGH4%0AGteigDnx4XltsDTNf1ezUDAjeYXKf+Rg7fkRxR/xVliDj+y9VUDjO+0k/wDa%0Ain/x2ugooA55fFE0B26n4e1ezA6yRwi6j6Z48ks2PcqKu2HiXRNTl8mz1W0l%0AnHDQCUCVT6Mh+YH6itSqeoaTp2rRCLUbC1vIx0W4hVwPzFAFyszU9GOoXlte%0ARajd2NzbxyRLJbCM5RyhYESIw6xr2zxVL/hEre350vUdT0w9lguTJGPpHLvQ%0AfgBThH4psVO2403VVH3VlRrWQ/V13qe/RB/WgB/9h6j/ANDXrH/fq0/+MUf2%0AHqP/AENesf8Afq0/+MVE3ik2smzU9F1WyAHMwg+0Rf8AfURYgfUCtLT9a0vV%0Atw0/ULa5ZRlkilDMv1HUdR1oApf2HqP/AENesf8Afq0/+MUf2HqP/Q16x/36%0AtP8A4xW3RQBif2HqP/Q16x/36tP/AIxR/Yeo/wDQ16x/36tP/jFbdFAGGdB1%0ABgQfFWsEHggxWn/ximQeG7q1gSC38S6pDCgwsccFmqqPYCDit+igDnz4aujA%0A0B8S6p5Lgho/Is9rA9cjyMc5OfrSXfhi5v7Oezu/E2ry21xG0UsZS1G9GGCM%0AiEEZBPQg10NFABWJ4U/5A8//AGEr/wD9K5q26xPCn/IHn/7CV/8A+lc1AG3R%0ARRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWXE3/ABVd0mf+%0AXGE4/wCBy1Jb67pF3emyttVsZrsEgwR3CM4I6/KDniqcUg/4Tq6jzz/ZkLY/%0A7ay1lU+y/MxrfZfmblFFFamwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU%0AAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYl1/wAjzpX/AGDb3/0ba1t1iXX/%0AACPOlf8AYNvf/RtrW3QAUUUUAFFFFABRRUF5eW2n2kl3eTpBbxDLySHCqPc0%0AAT1geOP+Sf8AiT/sF3X/AKKasjXNZh1a90ddLuLvUbKZLiSWDSbkxySbdoD7%0Awy4VWJBG4ZLDrjFR3l1Pd/BTVprq4M9x/ZF2kjtncGVHUq2QPmXG08dQaAOx%0A01Qml2iDosKAZ/3RVmq2nSNLp1u728luxjGYpCpZOOh2kj8ias0AFFFFABRR%0ARQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVm6p4f0jWtp1HTba5dPuSPGN6%0Af7rdR+BrSooA5/8A4Ru6tDnSdf1C1UdILhhdRH0z5mXA9lcfpQb7xNYkC50i%0A11GMD5pbCfy3P0ik4/8AIhroKKAMGPxjovmRw3lw+m3DkAQ6hG1uST2BYBW/%0A4CTW6rK6hlIKkZBB4Ips0MVxEYpokljbqrqGB/A1iN4R06As+lPcaRITu/0C%0ATYmfUxHMZ/FaAN6iueY+KtNX5RYazEuAAc2s59ST8yMfwQUxPG2mwEJrEN5o%0AsvGRqMWyPk4H75SYuv8AtZoA6SimxyxzRLLE6yRsMqynII9QadQAVieFP+QP%0AP/2Er/8A9K5q2XYrGzBGcgEhVxk+wzxWF4OkaXQHkeJ4WfUL5jG5BZCbqXg7%0ASRkdOCR7mgDfooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs2bUb%0A2LVBbDSLh7TGWvRLHsXjP3d2/wBuFrSooA4Hw8JtEbw5FFqNnqlrqQdN0VsE%0AcfI0nmqc5IyMNu7sOnStdCx+KFwokZVGkQkgAYb97NweM+/GOlbVro+l2N1J%0AdWmm2dvcS58yWKBUd8nJyQMnmsNz5fxGnmJAQWFpGxPbc91j9QB+NZVvhv5r%0A80Y1/hT81+aOpooorU2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo%0AoAKKKKACiiigAooooAKKKKACiiigDn54nX4g6fKbiV0fTLsLEwXbHiS2yRgZ%0A5zzknoMY5z0FYl1/yPOlf9g29/8ARtrW3QAUUUUAFFFFABRRRQBl6joqX97B%0AexXl1ZXkCNGs9tsyUYglSHVlIyoPTIxWP4n02DSPhZ4is7cyMiaXeMXkbc7s%0A0bszMe5LEk/WusrnfH5K/DvxIR/0DLgfnG1AHRAAAADAHQCiiigAooooAKKK%0AKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkdFkQo6hl%0APUEZBpaKAMBvB+mwyvNpTXGkTudzNYP5aMfVoyDG34qaYX8U6WGLx2etQKMg%0Ax/6Ncfkco5/FK6KigDFt/FWlyypb3Uj6ddudq29+vkux9FJ+V/8AgJPWk8Kf%0A8gef/sJX/wD6VzVrXNrb3tu9vdQRTwOMPHKgZWHoQeDWJ4LtoLPw81rbRLFB%0AFqF8kcajAVRdSgAe1AHQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF%0AFABRRRQAVgwxRzeNdXjlRXRtMsgVYZB/e3Vb1Ylr/wAjzqv/AGDbL/0bdUNX%0A0Ymk1Zl7+yLEfdtwn/XNiv8AI0f2Xbj7sl0v0upP/iqu0Vl7Gn/KvuMvq9H+%0AVfcil/Z5H3b27X/toD/MGgWVyv3dTuT/ALyRn/2UVdoo9jDp+bD2EOl182v1%0AKX2e/X7t+h/66QA/yIo2amB/r7Rz/wBcWX/2Y1doo9ku7+9h7CPRv73/AJlL%0Afqa/8sLR/wDtsy/+ymj7Rfr96wQ/7k4P8wKu0Uezf8z/AA/yD2Uuk3+H+RS+%0A23A+9ptyPdWjP/s1H9pKPv2t4n/bAt/LNXaKOSa2l+X/AAA9nNbT+9L9LFL+%0A1bX+IzJ/v28i/wA1pRq2nH/l+tx/vSAfzq5QQCMEZotU7r7v+CHLW/mX3P8A%0AzIY7u2l/1dxE/wDuuDU1QPZWsn37aFv96MGof7I0/wDhs4k/65rs/lii9RdF%0A9/8AwGF6y6J/Nr9GXaKpf2Vbj7r3Kf7tzIP/AGagaeyj5L+8U+u8N/6EDRzV%0AFvH7n/wwc9Vbx+5/5pF2iqX2W9X7uosf+ukKn+WKNmpqOJ7R/TMLLn8dxo9p%0AL+V/h/mHtZdYP8P8y7RVLzdSXra2z+6zkfoV/rR9rul+/p0x9fLkQ/zIo9rH%0As/uf+Qe3j2f3P/Iu0VTGoqB+8tbuP/tiW/8AQc0n9rWIGXmMf/XVGT/0ICj2%0A1PrJB9YpdZJF2iq8V9aTnEV1BIfRJAasda0UlLVM0jKMleLuFFFFMoKKKKAM%0AS6/5HnSv+wbe/wDo21rbrEuv+R50r/sG3v8A6Nta26ACiiigAooooAKKKKAC%0Aua+Ibbfhz4jOM506YfmhFdLXMfEX/knHiL/rwl/9BNAHT0UUUAFFFFABRRRQ%0AAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB%0AWJ4U/wCQPP8A9hK//wDSuatusTwp/wAgef8A7CV//wClc1AG3RRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWJa/wDI86r/ANg2y/8ARt1W%0A3WJa/wDI86r/ANg2y/8ARt1QBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU%0AUUAFFFFABRRRQAUUUUAFFFFAEMlrbzf62CJ/95Aag/sjT+q2scZ9YxsP6Yq7%0ARUOlCW6RnKjTlrKKfyKX9mxg5juLtPpcM3/oRNH2S6U/JqMpGOkkaN/IA1do%0AqfYw6ael1+RPsKfRW9G1+RS26mn/AC1tJfrGyfrk/wAqXz75R89ijf8AXKfP%0A8wKuUU/Z22k/z/O4eya+GTX4/nc59pXn8aaa7wSQFdOvBtlK5bMltyNpPHH6%0AiugrEuv+R50r/sG3v/o21rbq4ppau5pFNKzdwoooplBRRRQAUUUUAFcr8S/+%0ASbeIP+vN66quU+JhC/DXxAT/AM+jD88UAdXRRRQAUUUUAFFFFABRRRQAUUUU%0AAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYnhT/kDz/9%0AhK//APSuatusTwp/yB5/+wlf/wDpXNQBt0UUUAFFFFABRRRQAUUUUAFFFFAB%0ARRRQAUUUUAFFFFAEZnhEoiMqCQ9E3DP5Vzdlq+rL4q1a21IQpawWEdzBBCdx%0AUF5VJZiBliEHHQdOeSdt9H0yTUl1F9OtGvl+7cmBTKOMcNjPTjrUI0dT4hut%0AUeUMtxZR2hhKdAryNnOe/mYxjt70AYGj6nq4Phy9vL43EWuKfMtzEipbsYWm%0AXYQAxAClTuLZ68Vo3LX+n+Kbu+h0e7v7e5sreENbSQja0bzEgiSRe0i4xnvT%0ANL8L3FlPpi3OpLc2mkoyWUQt9jrldgLvuO4hCV4C9cmtm21XTry7mtLW/tZ7%0AmD/WwxTKzx9vmAOR+NAGf/bmo/8AQqax/wB/bT/4/R/bmo/9CprH/f20/wDj%0A9bdFAGJ/bmo/9CprH/f20/8Aj9H9uaj/ANCprH/f20/+P1t0UAYn9uaj/wBC%0AprH/AH9tP/j9H9uaj/0Kmsf9/bT/AOP1t0UAYn9uaj/0Kmsf9/bT/wCP0f25%0AqP8A0Kmsf9/bT/4/W3RQBif25qP/AEKmsf8Af20/+P0f25qP/Qqax/39tP8A%0A4/W3RQBif25qP/Qqax/39tP/AI/R/bmo/wDQqax/39tP/j9bdFAGJ/bmo/8A%0AQqax/wB/bT/4/R/bmo/9CprH/f20/wDj9bZOBk9KqWOqafqiyNp9/a3Yjba5%0At5lk2n0OCcGgDKttd1g2kJu/CWqLc7F80RTWpQPjnaTOCRnOMipf7c1H/oVN%0AY/7+2n/x+r1/rOl6WyLqOpWdm0gJQXE6xlgOuMkZq3HIk0SSxOrxuAyspyGB%0A6EHuKAMb+3NR/wChU1j/AL+2n/x+j+3NR/6FTWP+/tp/8frbooAxP7c1H/oV%0ANY/7+2n/AMfo/tzUf+hU1j/v7af/AB+tuigDE/tzUf8AoVNY/wC/tp/8fo/t%0AzUf+hU1j/v7af/H626KAMT+3NR/6FTWP+/tp/wDH6P7c1H/oVNY/7+2n/wAf%0ArbooAxP7c1H/AKFTWP8Av7af/H6P7c1H/oVNY/7+2n/x+tuigDE/tzUf+hU1%0Aj/v7af8Ax+j+3NR/6FTWP+/tp/8AH626KAOetmv9Q8U2l9No93YW9tZXEJa5%0AkhO5pHhIAEcjdo2znHauhqOW4hhaJZZY42lbZGGYAu2CcD1OATj2qSgAoooo%0AAKKKKAGu6xoXdgqjqScAVgeLtS1Ky8K399ojWxkht5ZTPI2RGEQtlQAdzcYA%0APHc5xg7lza297bPbXUEU8Egw8UqBlYe4PBrPvdBtJvDV9oljFBYQXVvLAogh%0AAWPepBYKMA9c9s0AZ95eX99q+maTbX0ll5tlJeT3EUaM52lFCjerKMlyTx2w%0AMZrM1ePVPFfwr1K0jhWfVJFmtdqlUEkkcxjJ5OBnYT171u3uiXL3VjfafexW%0A17aQPb75rcypJG20kFQynOUUgg+vXNPtF07wnoUEF7qMEMSsxa4upFiEkjsX%0AY8nAyxY4oAZ/bmo/9CprH/f20/8Aj9H9uaj/ANCprH/f20/+P1so6SxrJGyu%0AjAMrKcgg9CDTqAMT+3NR/wChU1j/AL+2n/x+j+3NR/6FTWP+/tp/8frbooAx%0AP7c1H/oVNY/7+2n/AMfo/tzUf+hU1j/v7af/AB+tuigDE/tzUf8AoVNY/wC/%0Atp/8fo/tzUf+hU1j/v7af/H626KAMT+3NR/6FTWP+/tp/wDH6P7c1H/oVNY/%0A7+2n/wAfrbooAxP7c1H/AKFTWP8Av7af/H6P7c1H/oVNY/7+2n/x+tuigDE/%0AtzUf+hU1j/v7af8Ax+j+3NR/6FTWP+/tp/8AH626q32pWOlwCfUL23tISdok%0AuJVjXPpkkc0AZLa7rH2uML4S1T7NsbeTNa7w+V24Hn4xjfnn098S/wBuaj/0%0AKmsf9/bT/wCP1so6SxrJGyujAMrKcgg9CDVG313SLu9NlbarYzXYJBgjuEZw%0AR1+UHPFAFT+3NR/6FTWP+/tp/wDH6P7c1H/oVNY/7+2n/wAfrbooAxP7c1H/%0AAKFTWP8Av7af/H6P7c1H/oVNY/7+2n/x+tuigDE/tzUf+hU1j/v7af8Ax+j+%0A3NR/6FTWP+/tp/8AH626KAMT+3NR/wChU1j/AL+2n/x+j+3NR/6FTWP+/tp/%0A8frbooAxP7c1H/oVNY/7+2n/AMfo/tzUf+hU1j/v7af/AB+tuigDE/tzUf8A%0AoVNY/wC/tp/8fo/tzUf+hU1j/v7af/H626KAMT+3NR/6FTWP+/tp/wDH6k8N%0AW1za6OVu7dreaW7up/KdlZkWSeSRQSpIztYZwTWvUcdxDLJLHHLG8kTBZFVg%0AShIBAI7HBB/GgCSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK%0AKAIrrzPsk3k/63y22Y/vY4rhdGFuLL4em22+cYW8zbjJT7M3mbu/+s2Z/wBr%0ArzXf1TttI02yu5ru10+1guZs+bNFCqu+Tk5IGTzzQBcooooAKKKKACiiigAo%0AoooAKKKKACiiigDB8bGYeB9bMG7zPsUv3euNpzj8M1WQ2sfjmyNmY1hGjSGQ%0Ax42BBJF5XTtjzMe2a6cgEEEZB7VRtNF0qwhnhs9Ms7eKfiZIoFVZO3zADnqe%0AtAHO6zZm78SXV5ba1ZW8ttpqHyZ7YSBVLu28knGw4wcc/L1FdBoV8+p+H9Ov%0A5IPs73NtHK0X9wsoOPpzRdaFpF8IBd6XZTi3G2ES26t5Y9FyOBwOnpWgBgYF%0AABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHJeJtPgHiXwzqJ8xrg6kIQWkJVE%0A8iYkKvQZIGTjJwPQV1tRy28M7RNNDHI0L+ZGXUEo2CNwz0OCRn0JqSgAoooo%0AAKKKKACiiigArnL3afiFpQn2+X/Z10Yd3TzN8Wce+3P4Z966Oqt/plhqkAh1%0ACyt7uINuCTxK6g+uCOtAGR4J2/8ACLQ+X/qPtFyIP+uXnyeXj227ce2K6Gmx%0AxpDEkUSKkaAKqqMBQOgA7CnUAFFFFABRRRQAUUUUAFFFFABRRRQAVzl7tPxC%0A0oT7fL/s66MO7p5m+LOPfbn8M+9dHVW/0yw1SAQ6hZW93EG3BJ4ldQfXBHWg%0ADF8GSxR+FoQrgRefdfZwT1iE8mzAHUbNuMdsVi+HhNojeHIotRs9UtdSDpui%0Atgjj5Gk81TnJGRht3dh06V24srUNbsLaENbqVgIjGYgRghfQY44qC10bS7G6%0AlurTTbS3uJc+ZLFAqu+Tk5IGTzzQBeooooAKKKKACiiigAooooAKKKKACiii%0AgBrrvRlyVyMZU4I+lct4RsYNN1rxRaWysIkvYiN7l2JNtESSxJJJJJJPrXV1%0AHHbwxSyyxwxpJMwaV1UAuQAAWPc4AHPYCgCSiiigAooooAKKKKACiiigAooo%0AoAKKKKACiiigAooooAKKKKACisew8T6Vqd79ks5p5JMsN32WVUJXOcOVC9j3%0ArYoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRyVRiASQM4H%0AU0tFAHnnhy4trS80Gz0LWru/Rw6X1ncMpaCMIx3OoH7pw+1cd9x69a6S6a/v%0AvEWoafbalLZJDY28qPFGjEM7zBj84I6Rr+tb9Ylr/wAjzqv/AGDbL/0bdU07%0AETgpqz/O35FT+ztThGLvxNrMf/TRYrRk/PyMj8atLot+6hl8WauQehEdnz/5%0AArcqsbKNWLwM0Dk5JTofqvQ1XuvyMrVobe8vuf8Ak/w9TN/sPUf+hr1j/v1a%0Af/GKP7D1H/oa9Y/79Wn/AMYrQ+0TwHE8BZf+ekIyPxXqPwzViKWOZN8Tq6+o%0ANJxa1LhWhN8uz7PR/wBeexj/ANh6j/0Nesf9+rT/AOMUf2HqP/Q16x/36tP/%0AAIxW3RUmpif2HqP/AENesf8Afq0/+MUf2HqP/Q16x/36tP8A4xW3RQBif2Hq%0AP/Q16x/36tP/AIxR/Yeo/wDQ16x/36tP/jFbdFAGJ/Yeo/8AQ16x/wB+rT/4%0AxR/Yeo/9DXrH/fq0/wDjFbdFAGJ/Yeo/9DXrH/fq0/8AjFH9h6j/ANDXrH/f%0Aq0/+MVt0UAc/baFrAtIRd+LdUa52L5pihtQhfHO0GAkDOcZNS/2HqP8A0Nes%0Af9+rT/4xW3RQBif2HqP/AENesf8Afq0/+MUf2HqP/Q16x/36tP8A4xVjxJeT%0A6d4W1e+tmC3FtZTTRMRnDKhIOD15FV/7D1H/AKGvWP8Av1af/GKAD+w9R/6G%0AvWP+/Vp/8Yo/sPUf+hr1j/v1af8Axij+w9R/6GvWP+/Vp/8AGKP7D1H/AKGv%0AWP8Av1af/GKAD+w9R/6GvWP+/Vp/8Yo/sPUf+hr1j/v1af8Axij+w9R/6GvW%0AP+/Vp/8AGKP7D1H/AKGvWP8Av1af/GKAD+w9R/6GvWP+/Vp/8Yo/sPUf+hr1%0Aj/v1af8Axij+w9R/6GvWP+/Vp/8AGKP7D1H/AKGvWP8Av1af/GKAD+w9R/6G%0AvWP+/Vp/8Yo/sPUf+hr1j/v1af8Axij+w9R/6GvWP+/Vp/8AGKP7D1H/AKGv%0AWP8Av1af/GKAD+w9R/6GvWP+/Vp/8Yo/sPUf+hr1j/v1af8Axij+w9R/6GvW%0AP+/Vp/8AGKXw/LdmfWLS7vZbz7HeiGOaZUVypgikwdiqvWRu3TFAEFst/p/i%0Am0sZtYu7+3ubK4mK3McI2tG8IBBjjXtI2c57V0NYl1/yPOlf9g29/wDRtrW3%0AQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYlr/AMjzqv8A2DbL/wBG3VLa+I4r%0AzxRcaNBAzLBAZGud3ylwyhkA743DJ9eOoOIYLm3j+IOoW7zxLPNploY4mcBn%0ACyXO4gdTjIz6ZFAHQUUUUAFQS2kcrbxujl/56RnB/H1/Gp6KabWxE6cZq0lc%0AqhrqD/WAXCf3kG1/xHQ/hj6VLDcw3GfLcEj7yngj6g8ipahmtoZyDInzDowO%0AGH0I5qrp7mXJUh8Duuz/AM9/vuTUVUK3dv8AcYXEY/hbh/z6H8cfWpIbuKVt%0AnzRy4z5cg2t/9f8ACk4vdajjXjfll7r8/wBHsyeiiipNwooooAKKKKACiiig%0ADE8Zf8iN4g/7Btz/AOimrXmkeMApBJLnshUY/MisnxipbwRr6qCSdNuAAO/7%0AtqT/AITLwt/0Mmj/APgdF/8AFU0TJNqydjS+1Tf8+Fx/31H/APFUfapv+fC4%0A/wC+o/8A4qs3/hMvC3/QyaP/AOB0X/xVH/CZeFv+hk0f/wADov8A4qnzLt+f%0A+Zl7Gf8Az8f/AJL/APIml9qm/wCfC4/76j/+Ko+1Tf8APhcf99R//FVm/wDC%0AZeFv+hk0f/wOi/8AiqP+Ey8Lf9DJo/8A4HRf/FUcy7fn/mHsZ/8APx/+S/8A%0AyJpfapv+fC4/76j/APiqVLiVnCmznQH+JimB+TZrM/4TLwt/0Mmj/wDgdF/8%0AVR/wmXhb/oZNH/8AA6L/AOKo5l2/MapTT+N/+S/5EHiDxDqGjXdtDbaVFem6%0AkWKBBd7JJHPXC7Dwo5LE4AFY3iDxHq0K63daY8e3T76y05EdgFLyPE0jdDni%0AZE9sMeelJfXHhm78QPrMPxCjs7loRAFhvLJ0jQHJCiSNiuTycHnA9BivdXHh%0Ae8uNZtZfFWmJY6k9vd+dDqEAkjuYtgzg5HIiiPQjIbI6VJsdTBf3EPi+fTJ3%0A3R3Fmt3Cuc+WysEkUeq8xke5b2o0P/kMeJv+wkn/AKSW9Y1tr/h4+J7jVLjx%0ANo5SO1S0ts38OWGd8jnBwMnaMcfcPqK0/DF3bX974hu7O4iuLaXUlMc0Lh0f%0AFrbg4YcHkEfUGgCa6/5HnSv+wbe/+jbWtuufnubeT4g6fbpPE08OmXZkiVwW%0AQNJbbSR1GcHHrg10FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU%0AAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA%0AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUdxG8ttLHFKYZHQqs%0AgAJQkcHB6461JRQBxui+F9W0fxHZOdS+0afb2Twk+QiliWB2nnJJPzFu5Bz1%0ArXtf+R51X/sG2X/o26rbrEtf+R51X/sG2X/o26oA26KKKACiiigAooooAKZL%0ADHMm2RAy+hFPooTsKUVJWauip5FxB/qJfMT/AJ5zH+TdfzzT0vE3BJgYZD0W%0ATofoehqxTXjSVCkihlPUMMg1fMn8Rh7GUP4T+T1X+a/LyHUVU+ySQ82sxUf8%0A85PmX8O4/D8qUXojIW5QwMeAScof+Bf44o5b/DqHt+X+KuX8vv8A87FqigHI%0AyOlFQdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYl1/yPOlf9g29/8A%0ARtrW3WJdf8jzpX/YNvf/AEba1t0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA%0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU%0AUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIc4OO%0AD2oAWsS1/wCR51X/ALBtl/6Nuqx7VbrSPGOnWMl3qUiXEMonubyYvFeS7QwE%0AabiIyMOcAKMAgbutacErr8QdQiFvK6PploWlUrtjxJc4Byc854wD0OccZAOg%0AooooAKKKKACiiigAooooAKKKKACkIDDBAIPY0tFAFT7EITm0kMP+xjKH/gPb%0A8MUv2toeLqPy/wDpovzJ+fb8fzq1RV81/i1Of2HJ/CfL5dPu/wArCKyuoZSC%0AD0IPWlqq1kqsXtnaBz/d+6fqvT+tH2iWHi5i+X/nrECV/EdR+o96OW/wh7Zw%0A/iq3nuv+B89PMtUU1HWRA6MGU9CpyDTqg3TTV0FFFFAwooooAKKKKACiiigA%0AooooAxLr/kedK/7Bt7/6Nta265+eV2+IOnxG3lRE0y7KysV2yZktsgYOeMc5%0AA6jGecdBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU%0AUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjKHUqwyCMEUtFAGFYeFreyubK%0AVr++uo7EMLOC4dCkGVK8EKGYhSVBYtgGnWv/ACPOq/8AYNsv/Rt1W3WJa/8A%0AI86r/wBg2y/9G3VAG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA%0AV3s0LmSFmhkPVk6H6joaZ9pmt+LmLKf89YgSPxHUfrVuiq5u+pg6CTvTfK/w%0A+a/ys/MbHIkqB43V1PQqcinVWkso2cyxM0Ep6vHxn6jofxponuIOLmLen/PW%0AEE/mvUfhmnyp/CT7aUNKqt5rVfPqvy8y3RTI5Y5kDxurqe6nIp9QdCaaugoo%0AooGFFFFABRRRQBiXX/I86V/2Db3/ANG2tbdYl1/yPOlf9g29/wDRtrW3QAUU%0AUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRRQAUUUUAFFFFABRRRQAUUUjgFGDHCkcnOP1oAp22saZe3ctpa6jaT3MWf%0AMhinVnTtyoORVG1/5HnVf+wbZf8Ao26rG0eOy1XVdKl0qOK30bR1kS0bd89y%0AxQodoPPlgZO48scHoMnUgidviDqEouJURNMtA0ShdsmZLnBORnjHGCOpznjA%0AB0FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFaWzR%0A3MkbNDMf44+M/UdD+NM+0XFvxdRb0/56wgn816j8M1coq1Po9TnlQSfNTfK/%0Awfqv10fmNjkSVA8bq6noVORTqrSWaFzJCxhlPVk7/UdDSfaJoOLmPK/89YgS%0APxHUfrRyp/CHtpQ/iq3mtv8AgfPTzLVFIjrIoZGDKehByDS1BummroKKKKBm%0AJdf8jzpX/YNvf/RtrW3XPzxOvxB0+U3Ero+mXYWJgu2PEltkjAzznnJPQYxz%0AnoKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACmuiSxtHIqujAqysMgg9QRTqKAMuz8M6%0ADp90l1ZaJpttcJnZLDaRo65GDggZHBI/GoLX/kedV/7Btl/6Nuq26xLX/ked%0AV/7Btl/6NuqANuiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKAK0lmpcyQu0Ep6snRvqOh/nTRdyQHbeRhB/z1TlD9e6/%0Aj+dW6Kvm6S1Od0LPmpvlf4P1X+VmICGAKkEHoRS1Wa02HdbP5LZyVxlD9V/q%0AMU1bwxsI7uPyW6B85Rvoe30NHLf4Q9vyO1VW8+n39PnbyuZ91/yPOlf9g29/%0A9G2tbdYl1/yPOlf9g29/9G2tbdQdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ%0AAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB%0ARRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZ%0AF7ob3OqPqFtq19YTSQpBJ9nWFg6ozsuRJG2CDI3THWtZ3WNGdyAqjJJ7Cuc0%0AvxRPfXGmm404W1pqqM9jKJ97sAu8B02jYSgLDBbpg4oAs/2HqP8A0Nesf9+r%0AT/4xR/Yeo/8AQ16x/wB+rT/4xW3RQBif2HqP/Q16x/36tP8A4xR/Yeo/9DXr%0AH/fq0/8AjFbdFAGJ/Yeo/wDQ16x/36tP/jFH9h6j/wBDXrH/AH6tP/jFbdFA%0AGJ/Yeo/9DXrH/fq0/wDjFH9h6j/0Nesf9+rT/wCMVt0UAYn9h6j/ANDXrH/f%0Aq0/+MUf2HqP/AENesf8Afq0/+MVt0UAYn9h6j/0Nesf9+rT/AOMUf2HqP/Q1%0A6x/36tP/AIxW3RQBif2HqP8A0Nesf9+rT/4xR/Yeo/8AQ16x/wB+rT/4xWhq%0AmoQaTpV3qNznybaJpX2jJIUZwPes/TdavJ9U/s3U9Pjsrp7f7TEI7jzgyAhW%0ABO1cMpZcjkc8E0ARW3hq8s7SG2h8Va0IoUWNAyWrEKBgZJgJPA6nmpf7D1H/%0AAKGvWP8Av1af/GKg1rxJcadrEWm2lnaTytCJma5vRbhcsVUD5WySQ35VvxNI%0A0KNKgSQqC6K24Ke4BwM/WgDH/sPUf+hr1j/v1af/ABij+w9R/wChr1j/AL9W%0An/xituigDE/sPUf+hr1j/v1af/GKP7D1H/oa9Y/79Wn/AMYrbooAxP7D1H/o%0Aa9Y/79Wn/wAYo/sPUf8Aoa9Y/wC/Vp/8YrbooAxP7D1H/oa9Y/79Wn/xij+w%0A9R/6GvWP+/Vp/wDGK26KAMT+w9R/6GvWP+/Vp/8AGKP7D1H/AKGvWP8Av1af%0A/GK26KAMT+w9R/6GvWP+/Vp/8YpDoOoMMHxVrBB7GK0/+MVuUUAY+m+H1sL1%0ALuTULy9mjikijNx5YCK5QsAI0UdY17VsVial4jj0/XNO0tbSeV7yYRNNtKxx%0AZR2HzEYZjsPyj6nHGdum23uTCEYK0VZBRRRSKCiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AAI54hcW8sLEgSIUJHbIxXI6Pp2rsfDdjd6e9tFoaHzbhpUZLhlhaFfLCktgh%0Ay3zBcdOa7KigAooooAKKKKACiiigAooooAKKKKACiiigDL8SaZJrPhrUtNid%0AUlubd442boGI4z7ZxWbajVL3Xl1e50ma0W0sJIEt5JY2aaR2Rm2lWICjygAW%0AIznoK6aigDlNYtZri8lmm8JQ6kLmyWJW3ReZG3zExyF2HyfMDlM9+Olbeh2U%0A+m6Bp1jdTefcW9tHFJLnO5lUAn9K0KKACiiigAooooAKKKKACiiigAooooAK%0AKKKAMXXrC5vb3QZLePetrqInmO4DankyrnnryyjA55raoooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k="><meta property="og:image" content="%0Ac//+AB1NQVRMQUIsIFRoZSBNYXRoV29ya3MsIEluYy7/2wBDAAgGBgcGBQgH%0ABwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0%0AHyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIy%0AMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAINArwD%0AASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QA%0AtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0Kx%0AwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZ%0AWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKz%0AtLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6%0A/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQD%0ABAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLR%0AChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hp%0AanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6%0AwsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIR%0AAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACiiigAooooA43xf/AGvpltNf2niO9jeaRYbOwitrdg8rcKgZkJ5P%0AJJPAz6U2JtdvNYh8PS67LFNZaelze3lvBGHmldmCqAylQo2k8DJ4961dS0y6%0Av/GGi3DRZ06wjnmLFhgzsFRBt68KXOcY/Sq9/a6jpni59asdNk1CC6s1tp4o%0AZY0kR0ZmVv3jKCCGIPORgcUAWvCeqXOqaRKL1ke8s7qaznkRdqyNG5XcB2yM%0AHHvV2/17R9KlWLUdWsbOR13KlxcJGSOmQGI4ql4T0u50vSJTeqiXl5dTXk8a%0ANuWNpHLbQe+BgZ9qda/8jzqv/YNsv/Rt1QAf8Jl4W/6GTR//AAOi/wDiqP8A%0AhMvC3/QyaP8A+B0X/wAVW3RQBif8Jl4W/wChk0f/AMDov/iqP+Ey8Lf9DJo/%0A/gdF/wDFVt0UAYn/AAmXhb/oZNH/APA6L/4qj/hMvC3/AEMmj/8AgdF/8VW3%0ARQBif8Jl4W/6GTR//A6L/wCKo/4TLwt/0Mmj/wDgdF/8VVzR9PfTLKSB3Vy9%0A1cT5A7SzPIB+AcD8Kv0AYn/CZeFv+hk0f/wOi/8AiqP+Ey8Lf9DJo/8A4HRf%0A/FVt0UAYn/CZeFv+hk0f/wADov8A4qj/AITLwt/0Mmj/APgdF/8AFVt0UAYn%0A/CZeFv8AoZNH/wDA6L/4qj/hMvC3/QyaP/4HRf8AxVXNc099W8P6lpsbrG93%0AaywK7DIUuhXJ/Or9AGJ/wmXhb/oZNH/8Dov/AIqj/hMvC3/QyaP/AOB0X/xV%0AbdFAGJ/wmXhb/oZNH/8AA6L/AOKo/wCEy8Lf9DJo/wD4HRf/ABVbdFAGJ/wm%0AXhb/AKGTR/8AwOi/+Ko/4TLwt/0Mmj/+B0X/AMVW3VDUNPe8vdKnV1UWV007%0AAj7wMMseB+MgP4UAU/8AhMvC3/QyaP8A+B0X/wAVR/wmXhb/AKGTR/8AwOi/%0A+KrbooAxP+Ey8Lf9DJo//gdF/wDFUf8ACZeFv+hk0f8A8Dov/iq26KAMT/hM%0AvC3/AEMmj/8AgdF/8VR/wmXhb/oZNH/8Dov/AIqtuigDE/4TLwt/0Mmj/wDg%0AdF/8VR/wmXhb/oZNH/8AA6L/AOKq5Np7yeILPUg6hILWeApjkmR4mB/Dyj+d%0AX6AMT/hMvC3/AEMmj/8AgdF/8VR/wmXhb/oZNH/8Dov/AIqtuigDE/4TLwt/%0A0Mmj/wDgdF/8VR/wmXhb/oZNH/8AA6L/AOKrbooAxP8AhMvC3/QyaP8A+B0X%0A/wAVR/wmXhb/AKGTR/8AwOi/+Krbqhp+nvZ3uqzs6sL26WdQB90CGKPB/GMn%0A8aAKf/CZeFv+hk0f/wADov8A4qj/AITLwt/0Mmj/APgdF/8AFVt0UAYn/CZe%0AFv8AoZNH/wDA6L/4qj/hMvC3/QyaP/4HRf8AxVbdFAGJ/wAJl4W/6GTR/wDw%0AOi/+Ko/4TLwt/wBDJo//AIHRf/FVt0UAYn/CZeFv+hk0f/wOi/8AiqP+Ey8L%0Af9DJo/8A4HRf/FVc0PT30nw/pumyOsj2lrFAzqMBiiBcj8qv0AYn/CZeFv8A%0AoZNH/wDA6L/4qj/hMvC3/QyaP/4HRf8AxVbdFAGJ/wAJl4W/6GTR/wDwOi/+%0AKo/4TLwt/wBDJo//AIHRf/FVt0UAYn/CZeFv+hk0f/wOi/8AiqP+Ey8Lf9DJ%0Ao/8A4HRf/FVc1zT31bw/qWmxusb3drLArsMhS6Fcn86v0AYn/CZeFv8AoZNH%0A/wDA6L/4qj/hMvC3/QyaP/4HRf8AxVbdFAGJ/wAJl4W/6GTR/wDwOi/+Ko/4%0ATLwt/wBDJo//AIHRf/FVt0UAYn/CZeFv+hk0f/wOi/8AiqP+Ey8Lf9DJo/8A%0A4HRf/FVt1Q1DT3vL3Sp1dVFldNOwI+8DDLHgfjID+FAFP/hMvC3/AEMmj/8A%0AgdF/8VR/wmXhb/oZNH/8Dov/AIqtuigDE/4TLwt/0Mmj/wDgdF/8VR/wmXhb%0A/oZNH/8AA6L/AOKrbooAxP8AhMvC3/QyaP8A+B0X/wAVR/wmXhb/AKGTR/8A%0AwOi/+KrbooAxP+Ey8Lf9DJo//gdF/wDFUf8ACZeFv+hk0f8A8Dov/iquQ6e8%0AfiC81IupSe1ggCY5BjeVifx80flV+gDE/wCEy8Lf9DJo/wD4HRf/ABVH/CZe%0AFv8AoZNH/wDA6L/4qtuigDE/4TLwt/0Mmj/+B0X/AMVR/wAJl4W/6GTR/wDw%0AOi/+KrbooAxP+Ey8Lf8AQyaP/wCB0X/xVatrd219bJc2dxFcW8gyksLh1btw%0ARwamrE8Kf8gef/sJX/8A6VzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF%0AFFABRRRQAUUUUAFYlr/yPOq/9g2y/wDRt1W3WJa/8jzqv/YNsv8A0bdUAbdF%0AFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU%0AUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ%0AAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYnhT/%0AAJA8/wD2Er//ANK5q26xPCn/ACB5/wDsJX//AKVzUAbdFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYlr/AMjzqv8A2DbL/wBG3VbdYlr/%0AAMjzqv8A2DbL/wBG3VAG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU%0AUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRRQAUUUUAFFFFABWJ4U/5A8/8A2Er/AP8ASuatusTwp/yB5/8AsJX/AP6V%0AzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVQ1HXNJ0h4k1%0ALU7SzaX7gnmVC30yaXUNZ0vSYI59R1G1tIpDhHnmVAx9snmgC9WJa/8AI86r%0A/wBg2y/9G3VbEUsc8SSxSLJG4DK6HIYHoQe4rHtf+R51X/sG2X/o26oA26KK%0AKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo%0AAKKKKACiiigAooooAKMg556UVieH/wDj91//ALCR/wDRMVUo3TfYDboooqQC%0AiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK%0AKKACiiigAooooAKKKKACiiigArE8Kf8AIHn/AOwlf/8ApXNW3WJ4U/5A8/8A%0A2Er/AP8ASuagDbooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPOoE%0A1nUPFXi1rGz02V0ljtma/wBzB4hEpESgfdBJZiTxlhwex4LuLLV/EUFxb2hh%0AtINBt1tIJGL+UrPIHAJ68oFz3Ciuov8AwvDd6hc31tqWoadNdRiO5+xugEwA%0AwCdythgONy4OO9Mk8IWSfYm065u9Lls7f7LHJaMmTF/dYOrA885xnOeeaAKv%0AgPMelalaqu23tdWu4LdR0WMSnAHsMkfhSzS6pF451H+zbOzuc6bZ+Z9pu2h2%0A/vbnGNsb57+mOOueNzSdKttF0yGwtA/lR5O523M7EkszHuSSSfrVG1/5HnVf%0A+wbZf+jbqgDZQuY1Miqr4G4KcgH2OBn8qdRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFU578QanZ2Xl7%0AjcrI2/P3dgHbvnNXKx7/AP5GjRv+udx/JKqCTevn+QGxWJ4f/wCP3X/+wkf/%0AAETFW3WJ4f8A+P3X/wDsJH/0TFVQ+GX9dQNuqdhfi++1Yj2eRcPB1zu2459u%0AtXKx/D//ADFP+whL/SpSXK2BctL8Xd5f2/l7fskyxbs535jR8+338fhVysfR%0A/wDkM+IP+vyP/wBJ4q2Kc0k9PL8gCis2wu5rjVdWgkYGO3mjSMY6Axqx/Umt%0AKpas7AFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA%0AooooAKKKKACiiigAooooAp6hJqUcaHTbS0uHJ+cXNy0IA9isb5/IVmeDjK2g%0AOZ0RJjqF8XRHLKrfapcgEgZGe+B9BW/WJ4U/5A8//YSv/wD0rmoA26KKKACi%0AiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxLX/kedV/7Btl/6Nuq%0A26xLX/kedV/7Btl/6NuqANuiiigAooooAKKKKACiiigAooooAKKKKACiiigA%0AooooAKKKKACiiigAooooAKKKKACiiigAooooAKx7/wD5GjRv+udx/JK2Kx7/%0AAP5GjRv+udx/JKunv8n+QGncXEVrCZZ5BHGCAWPTJIA/Uisnw/8A8fuv/wDY%0ASP8A6Jip/in/AJF+f/rpD/6NWmeH/wDj91//ALCR/wDRMVXFfu2/66AbdY/h%0A/wD5in/YQl/pV6O+STVrjTwjB4IIpi3Yh2kUD8PLP5is7Q3EUWryNnC38zHH%0AtipSai16AZXgBme11ZmYsxvRkk5J/dR11a3ELXUlssgM0aLI6dwrFgp/Eq35%0AVx3w0nF1pF/cKpUS3KuAe2YYzWpcXi6d4g16+dC6W2k20zKvUhXuTgflW1eF%0A6sl6foBa0n/kO69/18Rf+iUrYrF0dg2ta6w6GeI/+QErarGpv8l+QBRRRWYB%0ARRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF%0AFFABRRRQAVieFP8AkDz/APYSv/8A0rmrbrE8Kf8AIHn/AOwlf/8ApXNQBt0U%0AUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAViWv8AyPOq/wDY%0ANsv/AEbdVt1iWv8AyPOq/wDYNsv/AEbdUAbdFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxUurXM3xb%0At9JYJ9mt7B5kwPm3NgHJ9OBXa155/wA12/7hf9a6MOk+a/ZgdP4wcxeF7uRc%0AZVo2GfaRao+BbuS/0+/vJtvm3Fykr7Rgbmt4ScfnVzxp/wAilff9s/8A0YtY%0AvgC6gh8M3bPPGm14QSzgYJtoAPzPA96uEb4d+v8AkBhfEDxhqfhPxhI2nLAT%0APpkLP5yFvuzSgYwR/fP6V2Hh+Vp9F1SV8bnuJWOPUqDXz9rd7cXgglu7mWeU%0A2W0PNIWY/vm4yfxr1/RdSijCN9tRbaSa7XPmgI58uIAdcE5z+Nd2IwyhSilv%0A372Axfhrrt3b6nbaOgj+y3BgL5X5ubV24OfWJf1rs9f/ANd4s/7AEX87qvNP%0AAl1b2nizTpLmeKFM2w3SOFHNpMByfcgfUiuyW7EkPjCOa4Dztp1yFV3yxVLm%0A+HAPOACo9uKnFU7VuZLovzA6Lw7cPJqfiRmxmO6jVfoII619Fu5L/QdOvJtv%0Am3FtHK+0YG5lBOPzrjfDMsn/AAn3imHzG8rarbM8Z8uMZx611fhf/kUtG/68%0AYP8A0WtcVeCj+H5AatFFFcoBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ%0AAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVieFP8AkDz/APYSv/8A0rmrbrE8%0AKf8AIHn/AOwlf/8ApXNQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRXN3/iDVR4guNJ0jRoL420EU08st75AUuXAUDY2eEz+NLda/qgvrbSr%0APSreTVGtRdXMct2VigXO0DeEJYkhgPlHQk0AdHWJa/8AI86r/wBg2y/9G3VW%0AdC1hNc0pLxYXgkDvFNA5y0UiMVdSR1wQee9VrX/kedV/7Btl/wCjbqgDbooo%0AoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig%0AAooooAKKKKAK11fRWlxZQyK5a7mMMZUDAYRvJz7YQ/jiuF/5rt/3C/611etf%0A8hXw7/2EH/8ASWeuU/5rt/3C/wCtdlBWUv8AC/zA6Lxw4i8G6hI2cKqMcezr%0AXnPhbUYZPD+r2QV/MLafNkgY2/uF9eua2PGvii7uND8T2LQwCK1vILVCAclW%0AwxJ568V5dZ+IrrSLe4+zxwsbhLdGLgnAQIwxz6qP1ruwmGk6LXW6/RjM7V/u%0A2P8A17n/ANGPXR2fiK0TQtPtDHP5gv5nyFGMMYyO9czqLmSGwcjGbc8f9tZK%0AhWVo7W3YAZSZ2GfXCf4V60qamkn/AFuBq2d0lzfWWwMNs9mhz6qpU/rXdWN9%0AFqGteIJ4ldVbRdRYBwAfmuZmH6MK850b/j9tf+vyD+ZroNL1Waza9kjSMtc6%0AVPE+4HADzsDjn0JrDEU77AdtbeJLPQPiB4oe6jnceSrfulB42xDuR616N4X/%0AAORS0b/rxg/9FrXzx4g1ad/FV/cMke++ghWQAHC5SNjjn2r6H8L/APIpaN/1%0A4wf+i1rysdS5KcZdXb8EI1aKKK8sAooooAKKKKACiiigAooooAKKKKACiiig%0AAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxPCn/ACB5/wDsJX//AKVz%0AVt1ieFP+QPP/ANhK/wD/AErmoA26KKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigDz7Wo/BDeIdY/4SO3WC8KRsHu5CBMoTAaAZ6jp8vzZFUvDF7L4d%0A1K0vfFNybU3+jwoLi8bb88budjsf49jIcHk89xXp1FAHMeBYnGjXl6yOkeoa%0Ajc3kKupVvLeQlCQemQAfxps2lW+p+OdR+0SXieXptnt+zXs1vnMtz18tlz07%0A5xz6muprEtf+R51X/sG2X/o26oA2UQRxqgLEKABuYk/iTyadRRQAUUUUAFFF%0AFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU%0AAYmtSINZ8Oxl1D/b3O3POPs04ziuD026Y/HrVGuJvkitiil24VdqcewyT+dd%0AH4h/5KL4Y/3pP/RUtefavMlv8UfE08mdkdtvbHoBETXqYandNd4/qBH4xukZ%0APGQSdSH1K0aPa/3vkfJHr2rzYuzDBYke5/CtXVpFDyxE/My2zD6CLn+YrJr2%0A6FPkhb0/JIY5nd1RWYkINqg9hknH5k/nSZO0Lk4ByBSUVuBd0gn+2LFcnBuY%0AyR/wIVc84ie0RH620iOAf+mkhwf0P5VnWEyW+o2s8mdkcyO2PQEE0sMyJemR%0Aj8vzc49Qf8azlG7AdcSvPfxySOXYrECT7Kor6K0e+C2ng+0juQC9ovmxK/JA%0AtwRkfiD+Ir5th/10f+8P517L4X/5HnQv+vP/ANsrauHMKalFeSf5Aet0UUV8%0A2IKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig%0AAooooAKKKKAKeoaZBqcaJPJdoEOR9mu5YD+JjZSfxrM8HRLBoDwoXKx6hfKC%0A7l2IF1KOWYkk+5JJrfrE8Kf8gef/ALCV/wD+lc1AG3RRRQAUUUUAFFFFABRR%0ARQAUUUUAFFFFABRRRQAUUUUAFFFFABWJa/8AI86r/wBg2y/9G3VbdYlr/wAj%0Azqv/AGDbL/0bdUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU%0AUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5z471RtK8baDcpEJDDb3M4BOMlIn4%0A/WuB8XTmH4jeJ0Cgia1dCfT90rf+y10vxfleLxDozRttJtbhc+xGD+hNcX8Q%0ApWi+IWutG2CSFJHoUUEfkSK9/BQTUH3i/wD0oZy99Obi7ZyoBCqmB/sqF/pV%0Aenzf66T/AHj/ADplestEAUUUUwCiiigB8P8Aro/94fzr2Pwq2fHWiDH3bTH/%0AAJJW1eNAlWBHUHIr02zvZbPWLe4hl8ueOwYo3GQfsNtiuLGR5lZdmB7Rp181%0A696rIF+z3LQDBzuACnP61drG0EgTavz11F//AEBK2a+ZmkpWQgoooqACiiig%0AAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC%0AsTwp/wAgef8A7CV//wClc1bdYnhT/kDz/wDYSv8A/wBK5qANuiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACsS1/wCR51X/ALBtl/6Nuq26%0AxLX/AJHnVf8AsG2X/o26oA26KKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKKKKACqep6rZaPaG6v5vJgGcttLdFLHgA%0Anop/Krlcd8S/+RRl/wC2n/oiWtKMFOai+oHD/F+9t5tf03y5M/Z454pflPyt%0AgHHvww6etea69cw3viLU7q3ffDNdyyRtgjcpckHB56Gux+KbbdfkOM/6TMPz%0Ajirz6vpsFBKjB+Qx0hDSuR0LEim0UV2AFFFFABRRRQAVpXt1DNqttMj5jSG2%0AVjg8FIkVvyINZtFJq7uB9F297bjWrKcyfu59ZmEbbT8xa2+X8813FeS6RejU%0ALbw7cCPYD4gZNuc/dh25/HGa9ar5TFQ5Wl/W4gooorlAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxPCn/IHn/7C%0AV/8A+lc1bdYnhT/kDz/9hK//APSuagDbooooAKKKKACiiigAooooAKKKKACi%0AiigAooooAKKKKACiuB+Iur30mjapYaRcPAbK2+0XtzGSDGOqRKR0Zup9FH+0%0AK0L6Nte8bzaRPdXcNjZWMc5jtrh4TJLI7AEshBIUJwM4yaAOurEtf+R51X/s%0AG2X/AKNuqg8GX1zd6Pc293O9xNYX1xZGeT70ojchWPvtxn3qCbVbfTPHOo/a%0AI7x/M02z2/ZrKa4xiW56+WrY698Z59DQB1NFNRxJGrgMAwBG5SD+IPIp1ABR%0ARRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF%0AFABXB/F2eS38EM8ZwxnVDxnhlZT+hNd5XiGuz5+CFn5shMkmouBuOSSJJD/I%0AV2YKF6kZdmvxv/kBifFORj4ruIifkWZmH1Kpn+QrhqnvJDLezOzFsyMck+9Q%0AV9NRh7OmodhhRRRWgBRRRQAUUUUAFFFFAHq/hiRhbeFowfkbXrhiPcKMfzNe%0A2V8u+CbyOz8Y6TNczeXbxT7mLHheDzX0Lr11FcaRG9vLuC6naRMV7Mt3GrD8%0AwRXz2Y0WqsV3/ViN2iiivKAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKxPCn/IHn/wCwlf8A/pXNV/UNTg0yNHnj%0Au3DnA+zWks5/ERqxH41meDpVn0B5kDhZNQvmAdCjAG6lPKsAQfYgEUAb9FFF%0AABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxniX4e6dqumar9hSWHUL3%0Ac+9r2dYjIcfMyBivb+6atSeH77SdYi1Dw+ttKptBaTQX1zIMhWLI4k2uxILM%0ACD1BHIxXU0UAZHhvR5NF0kw3EqS3c88lzcyRjCtLIxZsD0GcD2FR2v8AyPOq%0A/wDYNsv/AEbdVt1iWv8AyPOq/wDYNsv/AEbdUAbdFFFABRRRQAUUUUAFFFFA%0ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXzpq+rpefC3%0ATbJYmVodQeQsTwdxlIFexXWv3sOlLcL5fmHUbm25XjZGZtv4/u1/Wvna5vJR%0Ao1pY/L5JHnHjncGcfyNezltB3bfRr8LgUHYNIzDoSTTaKK90YUUUUAFFFFAB%0ARRRQAUUUUAS20oguI5SMhTnFfQFrqSXmj31skbKbfxDFlj33agD/AEr56r1n%0AwvqlzPoUFw+zzL/X7MzYHrcNIcenzKK8/H0+aMZdmB6rouuRazLqMccLxmxu%0A3tWLEHcVPUe1atefeBbyX/hL/FFj8vk/bZ5unO7zMfyr0Gvn69NU52Qgooor%0AEAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACsTwp/yB5/8AsJX/AP6VzVt1ieFP+QPP/wBhK/8A/SuagDbooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigArEtf+R51X/sG2X/o26rbrEtf+%0AR51X/sG2X/o26oA26KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKAPJPHN0V+G8lxazkZ1u4KyRtjgyzDgj1Brxq%0ARiyRDdnauMZ6ck/1r0rxPqMI+GEGnbX87+0pJd2BtwZrgDv1+Q/pXmVfU4GP%0ALBrzYwooortAKKKKACiiigAooooAKKKKACut0e+jTwRPbrcBbpdVt5UQNhgo%0ADfMPYE/ma5Krmnyqkuwg5kdAMezA1nVhzRA9i+GDmTxRrbsxYtvJYnOfnHNe%0Aq15D8H7hLrWdUmQMFZCQG6/eBr16vmcerV2vQQUUUVxgFFFFABRRRQAUUUUA%0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVieFP+QPP/wBhK/8A%0A/SuatusTwp/yB5/+wlf/APpXNQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQA%0AUUUUAFFFFABRRRQAViWv/I86r/2DbL/0bdVt1iWv/I86r/2DbL/0bdUAbdFF%0AFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU%0AAFYNrrlxPbaJK0cQN/dSQyAA/KqxzOMc9cxr+ZreryPxrqFxYfDTRbqxungu%0AI9RIWSJ8MvyzA8j2JH410Yel7R8vd2/BgeYanr9zf2P2CWOJY0lLhlBznfK3%0Ar6yt+QrHoJJOScmivrIxUVZDCiiiqAKKKKACiiigAooooAKKKKACpLditzEw%0A6hwf1qOlBKsCOoORQB6v8D3J1XVI+MLAGH4sP8K9c0a+k1HTI7qVVV2eRcL0%0Awrso/QV4f8GbgxeNJIjNsSW1cFS2AxBXH1PWvTNCupV0rw4I5m2Tardo+G4d%0AAt0wB9RlVP4Cvnsxp3rSfp+T/wAhHZ0VleGZ5bnwpo9xPI0k0tjC7uxyWYoC%0AST65rVry5LlbQBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACsTwp/yB5/8AsJX/AP6VzVt1ieFP+QPP/wBhK/8A/SuagDbo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM+/13SNLuIrfUNTs7Wa%0Ab/VxzzKjN9ATT9R1jTNIhSXUtQtbONztRp5VQMfbJ5rE8RaTK1lq8uiadZXe%0Ao38flXRuZj90JhQBgjp/DlRzkn1w/Bc1rqfiC2ljMk9vbeH7WO1a4X58FnVy%0ARyNxKAHHpQB6DFLHPEksUiyRuAyuhyGB6EHuKx7X/kedV/7Btl/6NuqoeA8x%0A6VqVqq7be11a7gt1HRYxKcAewyR+FLNFqkvjnUf7NvLO2xptn5n2m0abd+9u%0AcY2yJjv6546Y5AOpopqBxGokZWfA3FRgE+wycfnTqACiiigAooooAKKKKACi%0AiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAryXkMV9BZsT5s6O6DHG%0AFxn/ANCFeC+KNSt7jwBbafGW+0WmqSvKCOMO8+3B7/dNer+J9UbSvEnh6RYh%0AIZ5GtiCcYEkkKk/hmvCdZlP2PUIsDH21Tn6Ncf417GXUtpej/FoDnaKKK94Y%0AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB0HgjUYNJ8Y6df3RYQQM7PtGTjY3a%0AvX/BxDeFPBRH/QRuB/5Duq8GtZPKnD4zhW4/4Ca9v8FXJPh3wJDt4lvbyTOe%0AmEuBj/x79K8zMoe7zf1opAdt4S/5EzQv+wfb/wDota2Kx/CX/ImaF/2D7f8A%0A9FrWxXz9X436iCiiioAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACsTwp/yB5/8AsJX/AP6VzVf1CPUpI0Gm3dpbuD85ubZpgR7B%0AZEx+ZrM8HCVdAcTujzDUL4O6IVVm+1S5IBJwM9sn6mgDfooooAKKKKACiiig%0AAooooAKKKKACiiigAooooAKKKKAMC98KxXOoXd5a6pqOnSXqqt0to6BZcDAb%0A5kYq2OMqQeKa/g+xj+xNptzd6XJZ2/2WOSzZMtF12sHVgeec4zkk55roaKAK%0AWk6VbaLpkNhaB/KjydztuZ2JJZmPckkk/WqNr/yPOq/9g2y/9G3VbdYlr/yP%0AOq/9g2y/9G3VAG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF%0AFABRRRQAUUUUAFZktzMvimztRIRA9lPIydiweIA/gGP51p1jz/8AI52P/YPu%0Af/RkFXT3+T/IDifjBdS2ltptzbS7J4Gd0deqMHhIP8jXi97PLJJdK7kgz5I9%0ATlz/AOzH867v4lXkGoWMV3bPvhl1KV0bBGQYICOD7GvN6+lwFPloK4woooru%0AAKKKKACiiigAooooAKKKKACiiigAooooAASOhr1jwHeO2oeDbVph5MUcrqhI%0A+V2N6CfqQqfpXk9a/hV1j8YaI7HCrfwEn28xa58TS9pTa9fyYH0l4RZT4O0N%0AQwLDTrfIzyP3a1tV5j8MtXspru4CSkma1sLZPlPMkdu+8dO3ltz04r06vmMT%0ATdOq0/6uIKKKKwAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACsTwp/yB5/8AsJX/AP6VzVt1ieFP+QPP/wBhK/8A/SuagDbooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArEtf+R51X/sG2X/o2%0A6rbrEtf+R51X/sG2X/o26oA26KKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigArHn/5HOx/7B9z/wCjIK2K5rVrmS38aaX5ZA3a%0AfeZ464MRH6gVpSV5W8n+QHgniLVPNsbXSvJx5BS483d97fbwrjGO2zrnvXOV%0AoayS1+hPU2tuT/35Ss+vr6UVGCSGFFFFWAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRRQAVf0OTyvEGmyYzsuomx64cVQp8Mz288c0Zw8bB1OM4IORSkrpoD0v4R%0AtnUYhj7t6g/8l7mvda+e/hLcSjxfaWwb900pkYY6sIZQP0J/OvctAu5r7Rbe%0A5uH3Svu3HAHRiB09hXzuaQarN+n6/wCQjSooorzACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACiiigArE8Kf8gef/ALCV/wD+lc1bdYnh%0AT/kDz/8AYSv/AP0rmoA26KKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKxLX/kedV/7Btl/6Nuq26xLX/kedV/7Btl/6NuqANuiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAbI6xRtI5wqgs%0AT6AV5B8S9d0+9u9IvLO8WSD7JfReYmQNzwLtH471/OvRPFetxaJo7ySwvIJk%0AlQBSBjbE7/8AsmPxr5w1HUlvNF0+3EZUwSPkk9f3cK/+yZ/GvVy3D80vaP8A%0ArRgZBJPU0UUV9CMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDV8%0AP3MdrqUkkknlg206A/7TRsoH4kgV9HeDr23ufD8EcMqu8YYuB2y7Y/ka+XkY%0ALIrHoCDXunwg1VNRt9SiSJkNukKkk9ctKa8rNaV6fP2A9Nooor54QUUUUAFF%0AFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYnhT/AJA8/wD2%0AEr//ANK5q26xPCn/ACB5/wDsJX//AKVzUAbdFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAFFFFABRRRQBz17resnUry10jRI7lLIKZZbm5MAlYru2RfI244I5OB%0AniqkPjGbVxYR+H9PS6nurMXzi6nMKQxk7QCQrEsSGAAGPlJzWT4o8Y2FzrVx%0A4ZOs2+lW0SgX93JIBIwYZ8qIepHVu2eOadY3+haB4pW9W7trbQ73SYYbK5Lb%0AYcwu4KBjxnDAjPXmgDrtC1hNc0pLxYXgkDvFNA5y0UiMVdSR1wQee9VrX/ke%0AdV/7Btl/6Nuqp+BYnGjXl6yOkeoajc3kKupVvLeQlCQemQAfxps2jaXq/jnU%0Af7S02zvfK02z8v7TAsmzMtznG4HGcD8hQB1NFNREjjWONVVFACqowAB2Ap1A%0ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVHWXaPQtQ%0AdGKuttIVZTgg7TyKaV3YDh/jJdS2nha0eEgM90YjkZ+VopFP6E14IXJjCfwg%0Akj8cf4V33ju+lm094J7p5D58TojuTwDcAkA/8BH5V5/X1GApezo2GFFFFdoB%0ARRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeg/DLWbvSIdba12Za%0AFXO5c8qkhH6159Wnp90bfSdSVJzHI4jChWwSMnP6H9axr01UpuD62/MD6gv7%0AyW31PSrePbsuZnSTI5wI2YY/ECtCvNtIu5rnxN4WL3Dyo8Ny+S5YHmUA/l+l%0AejedF5/keYvm7d+zPO3OM49M18rWp8jS8v1Yh9FFFYgFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYnhT/kDz/wDYSv8A/wBK5qv6hpOm%0A6tGkepafaXiIcotzCsgU+o3A4rM8HQxW2gPBBEkUMeoXyJGihVRRdSgAAdAB%0A2oA36KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxLX/ked%0AV/7Btl/6Nuq26xLX/kedV/7Btl/6NuqANuiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigArH8U30Vh4bvXlVyJYzCNoH3nG0fhk1sV5%0Af8UPEl5aanZ6DHHAbW5iE7uyneGVjgA5xj5R2rfDUnUqqKA8q8Taxb6vcRS2%0A6SqoU/6wAH77nsT6isGlLEhR6DFJX1sIqKshhRRRVAFFFFABRRRQAUUUUAFF%0AFFABRRRQAUUUUAFFFFABRRRQAU5WAVx6jH6im0UAem+GvGGnxX2hTtDcldLt%0A3imAVcsX8zG35uR8w64r1DStUg1nxDb31skixPZToBIAGyk4Q9Ce6mvnLSp2%0Ah+07QDiIvz6jp/OvdvAn+ssv+ve9/wDSxq8TMKEYLnX9bsR2ljfRX8MksSuF%0ASaSE7wAdyOUP4ZU4qzWP4a/5B91/2ELz/wBHvWxXjTSUmkAUUUVIBRRRQAUU%0AUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYnhT/kDz/wDYSv8A/wBK5q26%0AxPCn/IHn/wCwlf8A/pXNQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA%0AFFFFABRRRQAViWv/ACPOq/8AYNsv/Rt1W3WJa/8AI86r/wBg2y/9G3VAG3RR%0ARQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBFNdW9uyLN%0APFE0hIQO4Utj0z1r578f6kLu60WdbwTTrp5EjiTcwYs+MnscEV33jzVraafw%0AjqKb/IuHkMeV5w6pjI/EV4XM4eQFemxR+Sgf0r3Mtw1v3j/rdDI6KKK9oAoo%0AooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAs2jBVufmx%0AmEjr7iu88La1cRWcO3UXWYaZqBwJsMH5de/XOWHvzXnVXNLuY7S9Msudvkyp%0AwM8tGyj9SKxrUlOLX9bAfQtrduvg2e4tpyC2qviSNuoa8weR6gn867KvMfCV%0A5FefCtRFu/c6iqNkY5Nyjj9HFenV8xiY8smvN/oIKKKK5gCiiigAooooAKKK%0AKACiiigAooooAKKKKACiiigAooooAKxPCn/IHn/7CV//AOlc1bdYnhT/AJA8%0A/wD2Er//ANK5qANuiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK%0AKKACsS1/5HnVf+wbZf8Ao26rbrEtf+R51X/sG2X/AKNuqANuiiigAooooAKK%0AKKACiiigAooooAKKKKACiiigAooooAKKKKACsC48QSweIW00QIUC7t+Tn/Vs%0A/wD7L+tb29f7w6469/SvM/GlzNaa/ezW8hjkW2kKsOoItZyP1Arow9NTk0+w%0AHnGteLp9S0Xw3E9rGn9m52EMTv27QM/981yFOaR2RULEqmdo9M02vq6dOMFa%0AIwoooqwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig%0AAooooA9N8Cay8Xw/160EKkWdzbXStn7xaReD7fux+det6Frkur/Z/MhSPzdN%0Atr07SThpd+V+g2ivnXS72ez8JayIJjGZbm1VwMfMoErY+mQtem/D/UruXXdM%0Aha4ZojpkMZXjG1FfaPw5rxcdhk1Ofn+iA9YooorwxBRRRQAUUUUAFFFFABRR%0ARQAUUUUAFFFFABRRRQAUUUUAFYnhT/kDz/8AYSv/AP0rmrbrE8Kf8gef/sJX%0A/wD6VzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxvjt9bit%0AoJrS8jtdOjubUSCMHzpmadVK56KmCDxknpwOsl9G2veN5tInuruGxsrGOcx2%0A1w8JklkdgCWQgkKE4GcZNa3ibSp9Z0b7HbvGsn2m3lzISBiOVHPQHnCnHvVX%0AUdK1SDxINb0dbOV5bUWtxBdStECFYsjhlVuQWYEEcg9RigA8GX1zd6Pc293O%0A9xNYX1xZGeT70ojchWPvtxn3qCa+uLLxzqP2fSby/wB+m2e77M8K7MS3PXzJ%0AE657Z6HpxWl4b0eTRdJMNxKkt3PPJc3MkYwrSyMWbA9BnA9hUdr/AMjzqv8A%0A2DbL/wBG3VAGyjFo1YoyEgEq2Mj2OOKdRRQAUUUUAFFFFABRRRQAUUUUAFFF%0AFABRRRQAUUUUAFVrq/t7N40ncq0gcoNpOdq7j+gNWa5Hxtf/ANn3Gjv5fmeb%0ANJBjdjG+Mrn8M5xWlKHPLlAz49Xsmt7bUVmzaN4hcCTYe6Oo4xnrXF+MfF+i%0Aarf3U1ndmRJYGVD5TjJMEqdx/eYD8apR6/5Xw+gP2bPk6mt7/rOu55Pl6f7P%0AX36V54zZCjH3Rj9a97D4Nczk+mgxKKKK9QAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr0PwH4j0vRdQtLu/uDFBB%0AD5UjCNmwx8wgYAz3rzypVm22skO377q+c9MBh/7N+lZVqSqw5WB9ZSanaRWt%0ArcmQmG6eNImCn5i+NvHbrVyuCsNW/tfwnozeR5X2fULKDG/duwIznoMfe6e1%0Ad7XydWnyaPzEFFFFZAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFPULy%0AezjRoNMu78scFbZogV9z5jqPyzWZ4OkaXQHkeJ4WfUL5jG5BZCbqXg7SRkdO%0ACR7mt+sTwp/yB5/+wlf/APpXNQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQA%0AUUUUAFFFFABRRRQAViWv/I86r/2DbL/0bdVt1iWv/I86r/2DbL/0bdUAbdFF%0AFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWVf+JNI0yVo7y9SJ1YqQVY4%0AITfjgf3eacYuTslcCPxFf3NhBZPbSbDJdpG/yg5UqxI5+grx3xp4n1e50Dw3%0AdS3QaZnuJC3lqMsj7VOMY4FbHxJvI7fxnayyylIBCOTnHKSY4+przPU7uK40%0AzRokk3vBbOso5+VjNI38iD+Ne5gcMkozav8ALyYyOXULkaTDYBwLdlDMu0ck%0AO+Oev8RrPoor2EktgCiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA%0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAdf4b8V6utxaacLlfsgu4JhH5a/eD%0AooOcZ6AD8K9g8A69qWtWFrJqFx5zPZCZjsVct50q54H91FH4V84AkHIODXUJ%0AqtsmmwRrc7ZE0lrcgZBDmaRwv5MD+Nefi8JGpG0VZvyA+m6Kx4vEmkBre3N6%0AglkiSRV2tyrbcHp33r+dXrLULTUUZ7SYSqu3JAIxuUOOvqrKfxr5twktWhFq%0AiiipAKKKKACiiigAooooAKKKKACiiigAooooAKxPCn/IHn/7CV//AOlc1bdY%0AnhT/AJA8/wD2Er//ANK5qANuiiigAooooAKKKKACiiigAooooAKKKKACiiig%0AAooooAKKKKACsS1/5HnVf+wbZf8Ao26rbrEtf+R51X/sG2X/AKNuqANuiiig%0AAooooAKKKKACiiigAooooAKKKKACqmqXy6ZpdzfMhkWCMuVBwTjtVuuP8a6h%0AcRWeqWalfJ/see4wRzvVlA/QmtKUOeaiBfuPFcVu8ym1c+Utwx+cc+S8aH8/%0AMB/CvJvGPiSPUkudQW2ZE/tKaAIWyci3WPP5nNZev+MtXg1rULdHhEYluoh+%0A752vKC36xL+tcvcapc3Nq1tIVMbXDXJwMHewAP4cCvdwuB5GpsZv+N/FMfii%0A7t7mO1aAeUowzZ+6WFcnTmcsqA9FGB+ZP9abXpU6cacVGOwBRRRVgFFFFABR%0ARRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF%0AFABRRRQAUUUUAd9pvi2PUfEemIto6Hy4LQZcH7pjG7p/sdPeu8+H3ieKeKWE%0AWzgyCM53DgR2yL+vl/rXhlndy2N7Ddw482Fw6ZGRkHIrT0nxTqeiOGsnjUgE%0AfMgPVdv8jXBXwSnFxiB9Q6fdi/021vFQoLiFJQpOcbgDj9asV5P4L8Y6vcS6%0AbpsskRt10Z5h+7AO5HZF5+iiu9s9UuZ7vRY3K7bzT5LiUBf4x5WMen32rwa2%0AGlTk0/63/wAhG3RRRXMAUUUUAFFFFABRRRQAUUUUAFFFFABWJ4U/5A8//YSv%0A/wD0rmrbrE8Kf8gef/sJX/8A6VzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUU%0AUAFFFFABRRRQAUUVmar4g0/RpIYrp5mnmBZIbeB5pCoxltqAnAzyelAGnWJa%0A/wDI86r/ANg2y/8ARt1WnY31rqdjDe2UyzW0y7o5F6EVmWv/ACPOq/8AYNsv%0A/Rt1QBt0UVmXmuW9lqAs5I5TIfJwVAx+8kKDv2I5pqLlogNOis+/1aHT5/Jk%0ASRm+yzXWVxjbEUDDr1PmDH0NYl74+02xjkeS2u2CafHqB2qv3HZVA6/e+Ye3%0AvVxpTn8KA6uivNP+F2aBtDf2fqeCSPuR/wDxdXovizok2qQ2C2WoeZLKIgxR%0AMAl9n971rV4Out4gd7RXmi/GzQGUn+z9SGBk/JH/APF00/G7QO2nan/3xH/8%0AXVfUcR/IwPRLzULPTkje8uYoFkcIhkbG5j2FVW8RaMlmLx9TtVtipYSmQBcB%0Ath5/3uPrXkXi/wCJ2leIbezitrO9j+z3CzEyhRkDqOGNcxe+KbO48Ix6QkM4%0AmWKRC5A25a580d89OPrXTTy2copyunf8APedY8UaJZWs0M+r2kM8luXjVpQC%0AwIO0j615na+KrYaBIja0BOETAM53Z+2Fjjn+5z9K4TxXrlvr2oWlxbxyxrDZ%0AQ27CQDO5BgkYJ4rBruw+XRjD3nroxnpOpeJlbVPDLQ6wxij0REuStwcCby3y%0AG5+9kjrzXC3uqXtxdTs99cSK5ZfmlY5XOcdentVCiu6nQjT2Ac7tI7O7FnY5%0AZmOST6mm0UVsAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ%0AAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBLHdXETbo55U%0AIQplXI+U9R9Paug0rWp4hZtLqUqtF5gy0xyqkpx14HB/KuaoqJQUlqB69B4r%0AtB8YZ7l9aX+yS42uZz5OPs5Hrj72PxruLfxbog8RajM+tWgtTZ27IxmG378o%0AYj/vpPzFfNNX2vYjBIm18tapCOB94OrflgGuCrl0J216JfcB9OQ+KtAuYpZY%0ANYs5I4QDIyyghM5xn06GtC2vrW8eZLa4jlaB/LlCNnY3XB96+YNF1qDTdI1W%0A0ljkZ7wRhCoGBt3Zzz/tV3vh34p6Ro9zrEk1lfOL28NxGEVPlUqBg5brxXBW%0AyyUb8l3/AEv+CI9htdQs74E2lzFOAoYmNg3BJAPHup/KrNeH+E/ibpOgxSLc%0A2d65aGOMeWqHlWkPdh/fH610n/C7vD//AED9T/74j/8Ai6wqYCtGTUYtoD0y%0AivN0+NOgOQPsGpcqzfcToAT/AH/akHxq0AxNJ/Z+p4VguNkffP8At+1Z/UsR%0A/KwPSaKwNN8W2Wpz2EMUE6teQRzJuAwodZGAPPX90fzFSDxRaE6sPJnzpkyw%0AzcD5i2MFeffvisXSmnZoDboqrqF9Hp1obmVWZA6JheuWcKP1arVRZ2uAVieF%0AP+QPP/2Er/8A9K5q26xPCn/IHn/7CV//AOlc1IDbooooAKKKKACiiigAoooo%0AAKKKKACiiigAooooAKKKKACuWtc/8LR1HzcZ/smDyc/3fNk3Y/HGfw9q6msz%0AU9A07WJoZruKTzoQyxywTyQuFbqu5GBwfTOKAMnwJn+zdVx/qP7YvfIx93Z5%0ArdPbO6tK90N7nVH1C21a+sJpIUgk+zrCwdUZ2XIkjbBBkbpjrV+xsbXTLGGy%0AsoVhtoV2xxr0Aqtf6/o2lTrBqOr2FnMy71juLlI2K5IyAxHGQfyoAq/2HqP/%0AAENesf8Afq0/+MVm33gy9u7pLlfFOoiUbMtLBbt9xtyY2xqOGJPvXU29xDd2%0A8dxbTRzQyKGSSNgysD0II4IqSqjNxd0Bx9z4P1i8l8yfxdeO/kyW+fscA/dy%0Abd44XvsXnrxxWdcfDGW7R1n8SXbq9qtmw+zRDMKkELwOxUc9eOteg0VrHEVI%0A/C/wQHlX/Cj9O2gf2zd4Bz/q1qwnwdt47yO7TXrsTxuJFfyU4YNuzjp15r02%0AitHjsQ95fkB5UPgfpwBA1m75GD+7Wj/hR2m/9Bm7/wC/a16dLeW0Fzb20s8a%0AT3BYQxswDSFRk4HfA5qen9fxP835AeVf8KO03/oM3f8A37Wj/hR2m/8AQZu/%0A+/a16rRR9fxP835AeVf8KO03/oM3f/ftaP8AhR2m/wDQZu/+/a16rRR9fxP8%0A35AeVf8ACjtN/wCgzd/9+1o/4Udpv/QZu/8Av2teq1n2OvaRqlzLb2GqWd1N%0AF/rI4Z1dl+oBo+v4n+b8gPOv+FHab/0Gbv8A79rR/wAKO03/AKDN3/37WvVa%0AKPr+J/m/IDyr/hR2m/8AQZu/+/a0f8KO03/oM3f/AH7WvVaKPr+J/m/IDyr/%0AAIUdpv8A0Gbv/v2tH/CjtN/6DN3/AN+1r1Wobq7trG2e5u7iK3gjGXllcKqj%0A3J4FH1/E/wA35AeYf8KO03/oM3f/AH7Wj/hR2m/9Bm7/AO/a16Tp2radrFuZ%0A9Nvre7iB2l4JA4B9DjoauUfX8T/N+QHlX/CjtN/6DN3/AN+1o/4Udpv/AEGb%0Av/v2teq0UfX8T/N+QHlX/CjtN/6DN3/37Wj/AIUdpv8A0Gbv/v2teq0UfX8T%0A/N+QHlX/AAo7Tf8AoM3f/ftaP+FHab/0Gbv/AL9rXqNxcQ2tvJcXEqRQxKXe%0ARzhVUckk+lPVldFdSCrDII7ij6/if5vyA8r/AOFHab/0Gbv/AL9rR/wo7Tf+%0Agzd/9+1r1Wij6/if5vyA8q/4Udpv/QZu/wDv2tH/AAo7Tf8AoM3f/fta9Voo%0A+v4n+b8gPKv+FHab/wBBm7/79rR/wo7Tf+gzd/8Afta9Td1jRndgqKCWZjgA%0AepqnputaXrCyNpmo2t4IzhzbzK+0++DR9fxP835Aecf8KO03/oM3f/ftaP8A%0AhR2m/wDQZu/+/a16rRR9fxP835AeVf8ACjtN/wCgzd/9+1o/4Udpv/QZu/8A%0Av2teq0UfX8T/ADfkB5V/wo7Tf+gzd/8AftaP+FHab/0Gbv8A79rXqtFH1/E/%0AzfkB5V/wo7Tf+gzd/wDftaP+FHab/wBBm7/79rXp9vdQXaM9vMkqo7RsUbID%0AKcEfUHipqPr+J/m/IDyr/hR2m/8AQZu/+/a0f8KO03/oM3f/AH7WvVaKPr+J%0A/m/IDyr/AIUdpv8A0Gbv/v2tH/CjtN/6DN3/AN+1r1Wij6/if5vyA8q/4Udp%0Av/QZu/8Av2tH/CjtN/6DN3/37WvR9S1nS9GjSTU9QtbNXOEM8qpuPtk81agn%0AhuoEnt5UlhkG5JI2DKw9QR1FH1/E/wA35AeXf8KO03/oM3f/AH7Wj/hR2m/9%0ABm7/AO/a16rRR9fxP835AeVf8KO03/oM3f8A37Wj/hR2m/8AQZu/+/a16rRR%0A9fxP835AeVf8KO03/oM3f/ftaP8AhR2m/wDQZu/+/a16rWfNr2kW+ppps2qW%0Acd8+Ntu86iQ56fLnPNH1/E/zfkB51/wo7Tf+gzd/9+1o/wCFHab/ANBm7/79%0ArXqtFH1/E/zfkB5V/wAKO03/AKDN3/37Wj/hR2m/9Bm7/wC/a16rRR9fxP8A%0AN+QHlX/CjtN/6DN3/wB+1o/4Udpv/QZu/wDv2teq0UfX8T/N+QHli/BHT1OR%0ArV3wpX/VL0Oc/wAzSD4IacEKf2zd7SQSPKXqM/4mvTZby2gube2lnjSe4LCG%0ANmAaQqMnA74HNT0vr+I/m/IDhrT4fXtjLbSW3im8je2jWKE/ZYTtVQyqOV5w%0AHbr6/SnDwFfg3x/4Sq8/051kuf8ARIf3jDGD93joOmK7eis3iKjd7/ggOVn8%0ALazeRiG88X30sG9XZFs7dSSrBhg7OOQKv/2HqP8A0Nesf9+rT/4xW3RWUpOW%0A4GJ/Yeo/9DXrH/fq0/8AjFXtK01NJsBaRzSzfvJJWlm27neR2didoA5Zj0AF%0AWpporeCSeeRIoY1LvI7BVVQMkknoAKoWPiHRNUuPs+n6xp93NtLeXb3KSNgd%0A8Ak4qQNKiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM/Vta%0As9FhjlvPtG2Rtq+TbSTHPXkIpI/GuWl0zW9Q8QajremrpEkFxbW6266hDIz7%0AVUttK/KYyS565PTiu5rn73wpHcajdXtpqmoac96qrdraMgE2BgH5lJVsYG5c%0AHAoAt+GtVj1zw5Y6lFb/AGdZ48+TxhCDggY7Ag1q1W0+wttL0+Cxs4hFbQII%0A40HYCrNABRRRQAVjal4o0vSb0Wl410smAxZLOV0APcuqlR+J4rZooA8hh8T6%0APqXjLw9r91q9qJ5LiZVg84H7JAYXCK3ozMQW9yB2r16qF5pNve6jp19I0gls%0AJHkiCkbWLIUO7j0Y9Mc1foAKKKKACiiigDEuda0m9vbjQbj7XvkR4pf9GmSP%0AbtJb96FCjjPIb9a5+/gbS/GPhky2Vva6Rbu9pYyWz73Z3jIVJAQNq4DEY3cg%0AEkV2t5aQX9lPZ3UYkt542jkQ9GUjBH5VhWXhCG2u7Ka61TUNQjsDmzgunQpC%0AcbQ3yqC7AEgFicZ9eaAOjooooAKKKKAGu4jjZ2ztUEnAyfyrm5tU8O+IrQ3N%0A00y2ulypdO13byW6KwDBSd6gMBzxzzj2rpqxfEnhuDxNaW9tc3l3bJBOs4+z%0AMg3MvTcGVgQDzjHXFAGb4aim1LxDqXiYWzWdneQxQW8brtedULHznXtndhc8%0A7RXWVlaVo02mTSSS63qeoB12hLxoyq+42ovNatABRRRQAVU1LUrfSbNru683%0AylIB8qF5W5/2UBP6VbooA4jxrb2XibwFf6kJr37NBZXEscDB4Vd1U7WdGAY7%0ASuQDx3weK6/T/wDkG2v/AFxT+QpmqafFq2k3mnTs6w3cLwu0ZAYKwIOMgjPP%0ApViGJYII4lJKooUZ64AxQA+iiigAooooA5b4glj4UaHB8qe7toZv+ubTIGH0%0AIOPxpmoxrafEbw81tGsZuLK7hm2DG5E8tkB+hPH1rodU0221jTLjT7xC1vOu%0A1gDgjuCD2IOCD6iqGl+HEsNROoXOo3uo3gh8iOW7KZjjzkqAiqMkgZJGTgUA%0AbVFFFABRRRQAVU1KxGpWElobm4t1kwGkt32PjIJAbtnpxzg8Yq3RQBynw+to%0AbPQLu1t02Qw6neRxrknaomYAc+wrq6o6VpUGkW80Nu8jLNcS3LGQgkNI5dgM%0AAcZJxV6gAooooAKKKKAOf1ybR9Evhrd3G82oyxCztoUG+SXktsjX1JPJ9MZ4%0AFL4O0m50fQBDdpHFPNPLctbxHKW/mOW8tfZc4/Oo9V8IRapryayNY1Szuo4P%0AIT7M8e1Fzk4DI2Ce59hWvpli+nWnkSX93fNuLeddFS/0+VVGPwoAuUUUUAFF%0AFFABXBeNdK+z+FtUGl2Nu1lcSNd6lcCYtOmGDO0angsADjLDbgADtXe1zFz4%0AJtbhryJNS1CDTr2VpbqwidBFKzfe5Kl1Dc5CsAc0AdFbTx3VrFcQtuilQOh9%0AQRkVLTY40ijWONQqIAqqBgADoKdQAUUUUAFR3FxFaW0tzM2yKJDI7Y6KBkn8%0AqkooA8hh8T6PqXjLw9r91q9qJ5LiZVg84H7JAYXCK3ozMQW9yB2r16qF5pNv%0Ae6jp19I0glsJHkiCkbWLIUO7j0Y9Mc1foAKKKKACiiigDD8YWN1qfhPUdPsm%0AiW4uo/JUyvsXDEBsnB/hJrN0651DSPEtlpWp2elbb6GQ20+nwtGUMYBZGDE5%0AGCMEEdOldBq+k2ut6XNp96rGGXGSjbWUgghlPYggEfSqWneG0tNTXUrvUb3U%0AryOIwwyXZT90hIyFCKoycDLEZOKANuiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k="><meta property="og:image" content="%0Ac//+AB1NQVRMQUIsIFRoZSBNYXRoV29ya3MsIEluYy7/2wBDAAgGBgcGBQgH%0ABwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0%0AHyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIy%0AMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAINArwD%0AASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QA%0AtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0Kx%0AwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZ%0AWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKz%0AtLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6%0A/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQD%0ABAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLR%0AChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hp%0AanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6%0AwsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIR%0AAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACkJCgkkADkk9qWqOs6XHrWj3WmzTzwRXKGN5IGCuAeuCQRz06dDQ%0ABy+l+Jb7U/GxbeI9BfTZprVdvMuySNfOPfB3NtHpg96pRa1rcPhqx8Yz6m7Q%0AXE0TTad5SeUlvJIEAUhd+8BgclucEYq5B4OvrfxjZ3J1bUrjT4rCSFmlaEcl%0A0xFhUB2kAngfwjkdDUj0TXJfDFj4Qn0srb288SS6j50flvBFIHBVQ2/ewUDB%0AUAEnmgDTkl1jX9c1qDT9Xk06HTGSCERxIwlmKByZN6k7RuAwMdznpVDSPEGo%0A+NJ7GC0v5NLjGmR3l09siM7SuzKEG9WAUFGPTJyBnrWg8Gs6Drmt3GnaO+ow%0A6kUniMc8aCKYIEIfewO07Qcrk9eKoaP4d1LwbcWMtnYPqcZ0yO0ukt5UR1lR%0AmYOPMZQVJdh1yMDigDoPCeqXOqaRKL1ke8s7qaznkRdqyNG5XcB2yMHHvV2/%0A17R9KlWLUdWsbOR13KlxcJGSOmQGI4ql4T0u50vSJTeqiXl5dTXk8aNuWNpH%0ALbQe+BgZ9qda/wDI86r/ANg2y/8ARt1QAf8ACZeFv+hk0f8A8Dov/iqP+Ey8%0ALf8AQyaP/wCB0X/xVbdFAGJ/wmXhb/oZNH/8Dov/AIqj/hMvC3/QyaP/AOB0%0AX/xVbdFAGJ/wmXhb/oZNH/8AA6L/AOKo/wCEy8Lf9DJo/wD4HRf/ABVbdFAG%0AJ/wmXhb/AKGTR/8AwOi/+Ko/4TLwt/0Mmj/+B0X/AMVVzR9PfTLKSB3Vy91c%0AT5A7SzPIB+AcD8Kv0AYn/CZeFv8AoZNH/wDA6L/4qj/hMvC3/QyaP/4HRf8A%0AxVbdFAGJ/wAJl4W/6GTR/wDwOi/+Ko/4TLwt/wBDJo//AIHRf/FVt0UAYn/C%0AZeFv+hk0f/wOi/8AiqP+Ey8Lf9DJo/8A4HRf/FVc1zT31bw/qWmxusb3drLA%0ArsMhS6Fcn86v0AYn/CZeFv8AoZNH/wDA6L/4qj/hMvC3/QyaP/4HRf8AxVbd%0AFAGJ/wAJl4W/6GTR/wDwOi/+Ko/4TLwt/wBDJo//AIHRf/FVt0UAYn/CZeFv%0A+hk0f/wOi/8AiqP+Ey8Lf9DJo/8A4HRf/FVt1Q1DT3vL3Sp1dVFldNOwI+8D%0ADLHgfjID+FAFP/hMvC3/AEMmj/8AgdF/8VR/wmXhb/oZNH/8Dov/AIqtuigD%0AE/4TLwt/0Mmj/wDgdF/8VR/wmXhb/oZNH/8AA6L/AOKrbooAxP8AhMvC3/Qy%0AaP8A+B0X/wAVR/wmXhb/AKGTR/8AwOi/+KrbooAxP+Ey8Lf9DJo//gdF/wDF%0AUf8ACZeFv+hk0f8A8Dov/iquTae8niCz1IOoSC1ngKY5JkeJgfw8o/nV+gDE%0A/wCEy8Lf9DJo/wD4HRf/ABVH/CZeFv8AoZNH/wDA6L/4qtuigDE/4TLwt/0M%0Amj/+B0X/AMVR/wAJl4W/6GTR/wDwOi/+KrbooAxP+Ey8Lf8AQyaP/wCB0X/x%0AVH/CZeFv+hk0f/wOi/8Aiq26oafp72d7qs7OrC9ulnUAfdAhijwfxjJ/GgCn%0A/wAJl4W/6GTR/wDwOi/+Ko/4TLwt/wBDJo//AIHRf/FVt0UAYn/CZeFv+hk0%0Af/wOi/8AiqP+Ey8Lf9DJo/8A4HRf/FVt0UAYn/CZeFv+hk0f/wADov8A4qj/%0AAITLwt/0Mmj/APgdF/8AFVt0UAYn/CZeFv8AoZNH/wDA6L/4qj/hMvC3/Qya%0AP/4HRf8AxVXND099J8P6bpsjrI9paxQM6jAYogXI/Kr9AGJ/wmXhb/oZNH/8%0ADov/AIqj/hMvC3/QyaP/AOB0X/xVbdFAGJ/wmXhb/oZNH/8AA6L/AOKo/wCE%0Ay8Lf9DJo/wD4HRf/ABVbdFAGJ/wmXhb/AKGTR/8AwOi/+Ko/4TLwt/0Mmj/+%0AB0X/AMVVzXNPfVvD+pabG6xvd2ssCuwyFLoVyfzq/QBif8Jl4W/6GTR//A6L%0A/wCKo/4TLwt/0Mmj/wDgdF/8VW3RQBif8Jl4W/6GTR//AAOi/wDiqP8AhMvC%0A3/QyaP8A+B0X/wAVW3RQBif8Jl4W/wChk0f/AMDov/iqP+Ey8Lf9DJo//gdF%0A/wDFVt1Q1DT3vL3Sp1dVFldNOwI+8DDLHgfjID+FAFP/AITLwt/0Mmj/APgd%0AF/8AFUf8Jl4W/wChk0f/AMDov/iq26KAMT/hMvC3/QyaP/4HRf8AxVH/AAmX%0Ahb/oZNH/APA6L/4qtuigDE/4TLwt/wBDJo//AIHRf/FUf8Jl4W/6GTR//A6L%0A/wCKrbooAxP+Ey8Lf9DJo/8A4HRf/FUf8Jl4W/6GTR//AAOi/wDiquQ6e8fi%0AC81IupSe1ggCY5BjeVifx80flV+gDE/4TLwt/wBDJo//AIHRf/FUf8Jl4W/6%0AGTR//A6L/wCKrbooAxP+Ey8Lf9DJo/8A4HRf/FUf8Jl4W/6GTR//AAOi/wDi%0Aq26KAMT/AITLwt/0Mmj/APgdF/8AFVq2t3bX1slzZ3EVxbyDKSwuHVu3BHBq%0AasTwp/yB5/8AsJX/AP6VzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF%0AABRRRQAUUUUAFYlr/wAjzqv/AGDbL/0bdVt1iWv/ACPOq/8AYNsv/Rt1QBt0%0AUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR%0ARQAUUUUAFFFFABRRRQAUUVl+Ibq4tdGla1LLK5EayARny9xxnDugPoBnqRwa%0AqMeZpEylyxbH32uadprlbu48rb5ZdijFUEhZULMBgAlSMk4HfGaq2PinTbu1%0As5JZlgkuVi+Q5KpJIhcR78Y3YB9O3qK8C1HU5bu9u3icxQTsoaKPKIyrwuV3%0AHGMdMkDoOKgivruCAwRXMqQsWJjDnaSVKk46Z2kjPoa9lZVHl1ep4bzeXNpH%0AQ+jtM1zTtXXNndRSNvkQIJFJOxtpIAJ45Ug+jKe9aNfN+geILrw/eJcWryDE%0AyPIiuAsiLuyrcHqG69uuCcEfQWj6pb6xpkN5bzQSh1G/yZN4RiASpOAQRkcE%0AA+1cOMwboO61TO/BY1YhWekkXqKKK4jvCiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxPCn/IHn/wCw%0Alf8A/pXNW3WJ4U/5A8//AGEr/wD9K5qANuiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACsS1/5HnVf+wbZf+jbqtusS1/5HnVf+wbZf+jbq%0AgDbooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigBk00dvC80zqkUalndjgKB1JrxHxt42k1u4ubOz%0AcrYNtQlJGKzKp3AlWUYOcdMdDywwR6v4rAHh26ka4v4Y4l8yQ2EipKVXkgM3%0AQdzjnjHsfnacRrPIsTbowxCnJORnjkgfyH0FevldGEr1Hujxc2rzilTjsyOg%0AYzz0r2Lwb4H0qTTVvmu49RtLu3eJl8gqMkoGIYgNwyNgkDrxjvS8beARHYib%0ARNPxFbRjCJJLNM5L/cVCSAo3MxI7+nNdyx9J1PZnA8uqql7Q860u7s7S7he6%0AglkCzxyGSCUo6qM5UduSVOf9nAIzmvatG8b6ZdWNluug7m0aW4JbdIjq0ahC%0AoUFixc4wOccA5rxfWdHvdFvJLa5huFhWWRIZJYmRZQpwWXP4dM9ql8NSxQ61%0AE8jsrrnyT9o8hA/H3n3KVXbu5BznHB6ExOHp14c4YXE1MPPktufSAORmiqmm%0ANatp0RsrgXFuc7ZRcGfPJz85JLc5HXtirdfNtWdj6hO6uFFFFIYUUUUAFFFF%0AABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA%0AFYnhT/kDz/8AYSv/AP0rmrbrE8Kf8gef/sJX/wD6VzUAbdFFFABRRRQAUUUU%0AAFFFFABRRRQAUUUUAFQ3X2gWcxtBEbny28kSkhC+Pl3Ec4zjOKmqvfLdNYXC%0A2LxpdmNvJaUZQPj5dw9M0Acfp2o6jZ+L9P0h9f8A7XuJY5G1O38uMC0ITKsu%0AxQVBbC7WJJBzWXoXieTV7uGe48YXVr9pvZFgtBYR+SUEjBI/OMeCSoH8WefW%0Atea01vX9T0GW50U6XNp8/wBouLx5on3fIymOPYxYqxbJ3beB61Ff2niLXNBi%0A8P3ujRwStPH59/HLGLcIkgffGoYvuIXgFRgnrQBbkl1jX9c1qDT9Xk06HTGS%0ACERxIwlmKByZN6k7RuAwMdznpVDSPEGo+NJ7GC0v5NLjGmR3l09siM7SuzKE%0AG9WAUFGPTJyBnrWg8Gs6Drmt3GnaO+ow6kUniMc8aCKYIEIfewO07Qcrk9eK%0AoaP4d1LwbcWMtnYPqcZ0yO0ukt5UR1lRmYOPMZQVJdh1yMDigDoPCeqXOqaR%0AKL1ke8s7qaznkRdqyNG5XcB2yMHHvVObVbfTPHOo/aI7x/M02z2/ZrKa4xiW%0A56+WrY698Z59DVzwnpdzpekSm9VEvLy6mvJ40bcsbSOW2g98DAz7U61/5HnV%0Af+wbZf8Ao26oA2UcSRq4DAMARuUg/iDyKdRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZ2uTtb6Pcs%0AsF7KDGwY2RUSxrtOWXcw5HbGTnGBTiruwpPlTZ5f8U9SF7ewQB7MJbbwi7pP%0APDfKGDKQAoOQR1yEyDziuP8ADlubjWIIzHdtE7hC1oimVW+8u0twp3KOeDgH%0A3qpqM813qU08zzSPK24NNuLFT937xJ6Yxknjua9b+H/hZY7CK+1KGUzIpihi%0AmiVU2b94YDG4ndkgtjg+mDXu16iwmHVOO7/q58/h6TxmIlVl8K/Hy/rp8jq4%0AdPuL6KOTU5ZUG0YtI5SFT2dlOXPr/D7d6l/sHSxzHZpC3XfBmNvzXBrRor57%0A2cequfS+1n0dvQ4nxboon03ZqE6NGo8qHUJow5tg7LnevAOcAbxyM/jXiDoU%0AOCR0B4YHqM9q+hPFeg2+rae8hjtkmRfnney+0S+WMkomCGBPsc8nHPNeG6rp%0AdzpNxLb3kUQuVC+YofJjJVX6A+jAdx1x0r28sq8i5G7p/h/wH+fqeFmtL2r9%0Aoo2a381/mvy9D0r4b+Ibh7L7HeIRbQrFHFKJkKJuLgbtzbtzMMADI6cKOT6T%0AXzTot/JYapbyo8igOCPLlWI7h907mVgOT1I6EjoTX0Ro97Ff6ZDJHdwXTqoS%0AWSGZZRvAGQWUAZ59B16Cscxw/JPnWzNcsxPtKfI90XqKKK809QKKKKACiiig%0AAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK%0AeoanBpkaPPHduHOB9mtJZz+IjViPxrM8HSrPoDzIHCyahfMA6FGAN1KeVYAg%0A+xAIrfrE8Kf8gef/ALCV/wD+lc1AG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFF%0AABRRRQAUUUUAFFFFABWJa/8AI86r/wBg2y/9G3VbdYlr/wAjzqv/AGDbL/0b%0AdUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR%0ARQAUUUUAFFFFABRRRQAVyXjvxJZ6PpjWcrb5rhDuiRk3iPkZw6sCCcKeCcFi%0AOnHRald/YdPlud1suzHNzP5MYyQOXwcdfTrgV8/a5rN5qGo3cJnLIziHKXDy%0AK6IzbBknDDkc45wD1Jz3YLDqpLnlsjgx+JdOPJD4pEelyx3WtCe/+0SCdyX+%0AzhPNLdfk3cZzjAHrgelfRNlvNhb+YJg/lru8/bvzj+Lbxn1xxXjXgzwlDrb2%0A9w+ye3WUrLtyDAAkm0nI2sS+045wNuQQxr2DTNPh02yWCGC2hP3pPs0IiRnw%0AAW2j6CnjZRk79fyXRf11FgYyiuX7K6931fn5eSLlFFFcB6AVxnxDs9NfQZml%0Ak0+2unPmbplUSyqu3cEOQS2FQd+gHHBHZ1V1GxTUrCWzlkdIphtk2EAsv8S5%0A9CMg9+eMVdNpSTexFRNxfLufNpZbed5ljhZH8xFRhuABXAOCSRjdkE9x1ODX%0At/gjxG+tWskcz3E06BWkkkMO1MqCqAK248c5KjJDdMbR5L4p0eTStSmhaORU%0ASWRY3eIoJE3ZDD5FGBuA4yMg44xW18OrTVJtUSS1nEdpCxKu9qZovOZOhGVI%0AIUH5s8dOjc+1WUa+H5pPVdf67nhUXLD4nlgtJdP67ar/AIc9tooorwj6AKKK%0AKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo%0AAKKKKACsTwp/yB5/+wlf/wDpXNW3WJ4U/wCQPP8A9hK//wDSuagDbooooAKK%0AKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArEtf+R51X/sG2X/AKNu%0Aq26xLX/kedV/7Btl/wCjbqgDbooooAKKKKACiiigAooooAKKKKACiiigAooo%0AoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK1/LZw2MrX8kKWrLskMxG%0AwhuMHPHOcYr571q0trXW7qC3ud0Uc7weZJCsYVt5ycJnKgHrgegHGK9M+JGu%0Az2dq9hGmpQiWJkLpDG0E6spyC5yykYPQA4B7ENXluk6TLq+oxWMSzFVUvK8M%0AXmGNQMliuRkDgdfpkkA+tg6bjC7ekt/Rf1b5nkYyqpT91ax29Xt/n8jvvhpY%0A6hZyBpI2USOzpFNeyRAKCUkYRBSrsCMEMRjC9ODXqtZfh/TW0zSIoZQvnsWk%0Al2PIyhmOTjzGZh788nJwM1qVw4qr7Wq5HdhKPsaSiwooornOkKKKZLFHPE8U%0AsayRupV0cZDA8EEdxQB498SJrb+1kiMcsUqB3YXM0zs2WAwgOUCkHdwR93Hy%0AkAHF8I6rqOnassVqrnzVaDeHACbnQu67zs34VQM4BO3Oe/aeKPBNrCZb9dOj%0AmQQzMRb+XbRQkFDEGBZflwH3EEk57cY8xgnezuQXaWNM+Tcx/MN6AjKMAykg%0AgdMjp1HWvcoOEoJR1T0fruv1/A8GuqkZNy0ad16aJ/p6an0layvPbpJJby27%0AnOY5SpYc99pI9+D3qasbw3q/9qWG2V1a7gwtwI7WWFEYjIUCQZOBj9DxkVs1%0A4s4uMmme3CSlFNBRRRUlhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU%0AUUAFFFFABRRRQAUUUUAFFFFABWJ4U/5A8/8A2Er/AP8ASuatusTwp/yB5/8A%0AsJX/AP6VzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQ3STS2c0dtMIJ2j%0AZY5Sm8IxHDbcjODzjNTVXvoJbmwuIILhraaSNljnQAmNiOGAPXB5oA4WCVdB%0A8Y6ZYW+oapK/kzNqL30shjuiseQYvMO0vuwcR8AZB6VUSa8tfBWn+NX1G9fU%0AZZYJ54zcOYXillVTEIydoAV+CBnIzmt9tE1/WLnR11z+zUt9OmFw720ju9zI%0Aqso4ZFCL8xJGW9Kqw+FNa/sez8NzyWB0W2uEYziRzPLDG4dIym3aDkKC248D%0ApQBItpJ4p8Q6+k2oX9tHp8iWtotrcPEI38sO0hCkBjl8fNkYHTk1leHdSuPH%0AVxYxX91dRQQaTFcTJaztAZZ3dlLEoQcDy8gZxk+1dDcaTrun6xqt3oZ0949T%0ACOwupHQwTKoTeAqtvBAU4O3kdeaq2XhS/wDDc1jNoP2O48rT1sbiK7kaESbC%0AWWQMqtzlmyMdD14oA0PBl9c3ej3NvdzvcTWF9cWRnk+9KI3IVj77cZ96gm1W%0A30zxzqP2iO8fzNNs9v2aymuMYluevlq2OvfGefQ1peG9Hk0XSTDcSpLdzzyX%0ANzJGMK0sjFmwPQZwPYVHa/8AI86r/wBg2y/9G3VAGyjiSNXAYBgCNykH8QeR%0ATqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACobq6gsrd7i5nighTG6SVwijJwMk9OSKmoPTriheYPyPn/xlrL6%0A14iZ5FVUgXBWK8+0RMf7yHoARtGAO3POa6X4eeFftUv2+/tbWWFk3gTwCdJk%0Af+624qrKyHI25GSD6CtrXhbzfHiWKXk8k1z+8M14Vcysqs5xhdoX5VXDDjP3%0ASK9S0OwGnaXHCvmqD8/lyJEhjz1XESqvX+fWvUrYlKn+77WXp1t87r5HlUcN%0AJ1P3ndt+vS/ys/maVFFFeWeqFFFFABRRRQBU1OzF/p8tsUtn3YOLmDzo+CDy%0AmRnp69a8E1jQ57e+vGCZhY+ZiOHYYywkZVMeSUyEYgdlxnB4r6Grxj4k/wBo%0AWmqxK8148SqALifyV84kHhRGqkgAsOc43HpnnvwLlK9OL31Xqjz8coR5aslo%0AtH6PR/gd14EtYbTTpLe11OS7t7aQw/K0TQuxCvuQqu7OGGQScEkc4zXW14d4%0AEudWXWbezsIrZoWmZ0e5R3WAlRucKrDLbQBk9MgZXcc+41li4WmpXvfU1wc7%0AwcLW5XYKKKK5TrCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK%0AKACiiigAooooAKKKKAKeoanBpkaPPHduHOB9mtJZz+IjViPxrM8HSrPoDzIH%0ACyahfMA6FGAN1KeVYAg+xAIrfrE8Kf8AIHn/AOwlf/8ApXNQBt0UUUAFFFFA%0ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAViWv8AyPOq/wDYNsv/AEbd%0AVt1iWv8AyPOq/wDYNsv/AEbdUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXN+L/E9v4fsCpnVbiQYwjoZ%0AYlIIEgjYjeAwHHHf0NdJXj/xOm1CTVIxdRTxWKMTAslzEVfAGWEajcB15Yn7%0A38PSujDQjKfvbLU58TOUYWju9PTzZztlrWoXfiIMyPMZwVuLe3t94l4Uv+7V%0AlzkoC2CM4544r3qxaZrGFp3R5GXcWSBoRg8j5GJKnGOCfy6V4L4Hewi8T21x%0AqF1JD5bgxrGsjNKxyAoEYz1I/LGDmvoKunHx9nyU7bL731OTL5+1c6l93t2X%0AQKKKK849MKKKKACiiigArg/GvhGLUyLuSSSO3ikRnka4kkZQ8iiQ4YlY0VMt%0AwO3YLz3lUNZWVtLm8t4QoUmVZrZrgOmDlQispJ/P6VtQqSpzTizHEUo1KbjJ%0AXPHtDvdP8O+I1gENlqCpvj+0TPFsDhi0Uqyc7RtxnBzz0JAFez2F/banYQ3t%0AnKssEy7kdeh/+uDxivnW/muF1meR7iV5iQ6SFm3DABTBJJ4GAOT7EjmvdPB9%0A9DqWhLdQR3Sxs7DdcXDTbyOCylyWC5HQ478V142lyq/X/PX8728kceCq8zt0%0At+Wn5Wb82b9FFFecekFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ%0AAUUUUAFFFFABRRRQAUUUUAFYnhT/AJA8/wD2Er//ANK5q26xPCn/ACB5/wDs%0AJX//AKVzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF%0AYlr/AMjzqv8A2DbL/wBG3VbdYlr/AMjzqv8A2DbL/wBG3VAG3RRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4%0Ap49ubu91NoZomSRplUh4408oEfIjOsrKeNx+bBGWPAPHrWuX403SpbhhKF+6%0AZI5IkMeeA2ZGC9cDvyRxXgGo65d6hqAuL2RpizpLKpVBvYKAMjbt6ccgjr1y%0Ac92BpSnNW/q2v52ODH1owpu+9rffp+Vz074c+GPslmNRlknB81zCpAUOvTdl%0AXYMpAB4xz/eAU16FWV4d8o6Jbvb3T3EDrmMsYjsHTYPKAXAIP45rVrDEVJVK%0Ajcjow1ONOkoxCiiisDcKKKKACiiigAqjrBi/sm5E9+1hEV2tcpKsZTJxwzAh%0ASemffjnFXqD064pxdncUldNHzPqipHqjNG7szHe5kuEmO4nP+sXhs9c8ckjt%0Ak+ofDBrCGKRTPZfaZBtgU+UtwRyzjC/OV6HLHt0AHOH8QtLOk3/meSzNPCFj%0AvTegSSMA/ml0wCchgOOAAoHXbT/hnr1xa3YsppmazciNIjcRIFkZhghXIZuO%0Ay5+hJFezipOrRU49dP1/Rr5niYSKpVpQlunf9H990/kew0UUV4p7gUUUUAFF%0AFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVie%0AFP8AkDz/APYSv/8A0rmrbrE8Kf8AIHn/AOwlf/8ApXNQBt0UUUAFFFFABRRR%0AQAUUUUAFFFFABRRRQAVBepcS2FxHZyrDctGyxSsu4I5HDEd8HnFT1V1IXrab%0AcjTTCt8Y2EDTk7A+OC2ATjNAHGm0fRfFGhWGnanqF3qMpL6ks908qNAEOZHV%0AiQh37QuAO4rI0i+QtDqWunxXa/ab52Fw1zJHaR7pT5aFN+QuNq8rt564rf8A%0ADOi+JNFxHcWujubhw99fC8le4mbu3MYB9hkAUtzoPibVNKj0PVLmwlsvOUz3%0A6u3nzRo4cDy9gVWOACdxHXigBFtJPFPiHX0m1C/to9PkS1tFtbh4hG/lh2kI%0AUgMcvj5sjA6cmsrw7qVx46uLGK/urqKCDSYriZLWdoDLO7spYlCDgeXkDOMn%0A2robjSdd0/WNVu9DOnvHqYR2F1I6GCZVCbwFVt4ICnB28jrzVWy8KX/huaxm%0A0H7HceVp62NxFdyNCJNhLLIGVW5yzZGOh68UAaHgy+ubvR7m3u53uJrC+uLI%0AzyfelEbkKx99uM+9QTX1xZeOdR+z6TeX+/TbPd9meFdmJbnr5kidc9s9D04r%0AS8N6PJoukmG4lSW7nnkubmSMYVpZGLNgegzgewqO1/5HnVf+wbZf+jbqgDZR%0Ai0asUZCQCVbGR7HHFOoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC%0AiiigAooooAKKKKACiiigAooooA5D4iXkkWgNaJLaIlwreb5zyBioGcIEHUnA%0AyxC9AQd3HkXh3StS1jWYl06U29wSzRzZdQCMZAZQcHB9vrzXc/FWNBcQu2qX%0ABJjLGzLqUT+FSq5BySWyTk4zzhcVkfDGB/7eik/tGGFireTbuxcyDjzPlVxt%0AOFH3gQcZwdvHr4T3KEqi6L8d3+n3HjY1e0rwpvq7/LZfr957HaWy2lrHArSs%0AEHWWVpGPflmJJqeiivIbvqewlZWQUUUUDCiiigAooooAKKKKAOZ8dw2Uvhxj%0AfzRQQLKpMslm1xt68DaQUz03Z4zjgkGvF/DV7HYa1BPIbYJG4cPdRPIiEfxb%0AVIJIBJHv+dfQ97A11Y3Fur+W0sbIH5+UkYzwQfyI+orwDULZdK8QBIJJZULC%0ANkezeHzCApwY2P3SSOP/AB0DGfTwkuahOn1Wv3a9up5eLjyYiFTSz0fz079D%0A6BtZPNtIZPOim3orebEMI+R95eTweo5P1NS1naJetf6VFM7+Y+MM4tngVu4K%0Aq/JGCOQSD+g0a817nprYKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACiiigAooooAKKKKAKeoXk9nGjQaZd35Y4K2zRAr7nzHUflmszwdI%0A0ugPI8Tws+oXzGNyCyE3UvB2kjI6cEj3Nb9YnhT/AJA8/wD2Er//ANK5qANu%0AiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsS1/5HnVf+wb%0AZf8Ao26rbrEtf+R51X/sG2X/AKNuqANuiiigAooooAKKKKACiiigAooooAKK%0AKKACiiigAooooAKKKKACiiigAooooAKKKKACmSyLDE8rBiqKWIRSxwPQDkn2%0AHNPqnqrlNKumFvFcjyzuhlJCuv8AEDhWPTPGDnpTSu7CbsrnhXi7xHc6zqcx%0AW/kuLMs4hBjEY8rcCAQOvI788CvQPhVaGLR5p4NS8+2dyslubbZ5coxyHzyC%0AuO3p06V5eNOlv9ZgsrcwpudI4/NcJgN8wySATx3x6Y6qK908KaMdI0lfOiiS%0A6mw8oSCKMrxwhMagNjnk9cnp0r1cQ408JGC66/fqeRh4zqYyU3ry6X9NDdoo%0AoryT2AooooAKKKKACiiigAooooAZLGs0TxMWCupUlGKnB9COQfcc14T4wlhs%0A/GO45nSF9jqt8826MHBQuWLKSNwI4xnGOMn3mvGPiL4WbTJmvra0c2pYfvIo%0AooooVPRCqAEnJPzHttHJ5r0ctlFVbSe55maQk6SlFbHR/DbxDJd28WmOt5M0%0AcX3gi+TCoJ6sW3FieMY6AYGATXolfPvhDW49Hv0kllkjjMqb386RY1UNkllj%0A5c4BAB4+bkGvfbW5hvLSG6t33wzIskbYIypGQcHnoawxVH2crJabf5fhY6cL%0AX9rFNvVq/wDn+NyWiiiuU6gooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACsTwp/yB5/+wlf/APpXNW3WJ4U/5A8//YSv/wD0%0ArmoA26KKKACiiigAooooAKKKKACiiigAooooAKKKKACikDqzMoYEr1APSjcu%0A4ruG4DOM84oAWikLKpAZgMnAyepoZlQZZgo6ZJxQAtYlr/yPOq/9g2y/9G3V%0AbdYlr/yPOq/9g2y/9G3VAG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA%0AUUUUAFFFFABRRRQAUUUUAFFFFABXCeO/ElnHplzZw3sRmUrt+zXnzhw2HSRV%0AOQCu4c5GeuDjPd15P8Vr7bqFtDHdxy7EG62OG8l87skZwSwxww6D3rWhBTmo%0AProZVpunBzXTX7hPBFja3d/JJFJcTSXE2Z1gu5U8qPy1dXLKw53My7WLHOcE%0A7WJ9ZrwX4fWsFxr6/aRpMkOVjaHUGGZNxx+7BBy4wOPfHeveq68xjy1bXOLL%0AJc1JuwUUUV556QUUUUAFFFFABRRRQAUUUUAFcJ8RdNsHsfNMOnrdzhgDI0MM%0AsjAABvMcg7V4yByflHTNd3VLVrD+1NKuLHzTEJkKFsZGO4I44PQ4IODwQea1%0AoVPZ1FIxxFP2lNxPAdAjtW1oRyjzrNZVfawiV5QHAC/O2OQ3IBP5DI+i68Mn%0A0O4tfEn2Uyobee4ul8uKAgR7QGYrHuDAbdh65OCBuGN3sWg3b3+hWd1JLFI8%0AkeS0SlV+gBJ6dM55xnjpXVmLTqKSejV/0/yOXLU1RcWtYu36r9TRooorgPQC%0AiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx%0APCn/ACB5/wDsJX//AKVzVt1ieFP+QPP/ANhK/wD/AErmoA26KKKACiiigAoo%0AooAKKKKACiiigAooooAKgvbd7uwuLaOeS3eWNkE0f3oyRjcPcdRU9VdSt7i7%0A025t7S6+yXEsbJHcBN5iJGNwGRkj60AcI+maXp3ibTLXwzZol3pe6XU7qEYz%0AF5bfu5WH33dtpwckYzWetlb2fw50zxckSnXTLb3cl7/y0lMkyh0ZupUq5Xb0%0AAx6V1Ph3wvrXh+K3tY9csnso23SxrppV5ifvEv5p+Y9yQabB4LuY7a10uTVw%0A+hWtys8dp9mxIQrb0jaTdgorAfwg4AGaAKtvo+n+KvEnidtXtkuRbSx2dsJB%0AkwJ5SsWT+6xZicjngelYvhBk8aXdiuvwpfRWmjQssVwN6NK7urSEHgtiMDPb%0AJ9a6+98O6h/al/e6RrCWH9oRqtyslr53zqu0SId67W24HO4cDiol8IyabLYz%0AaBfpZSWtkLFhcW/npLEpypIDKdwJJzn+I8UAL4Flc6NeWTO7x6fqNzZws7bm%0A8tJCEBJ64BA/CmzX1xZeOdR+z6TeX+/TbPd9meFdmJbnr5kidc9s9D04rX0L%0AR00PSks1meeQu8s07gBpZHYs7EDpkk8dqrWv/I86r/2DbL/0bdUAbKMWjVij%0AISASrYyPY44p1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFfP8A44mvLrxHdy3DmQRuEbZKZUiPOEDbVx91sDAPXryT%0A7frl8dP0madX8twOHNs86rxkllTkDAPJIA7+h8Hi1uSHWMzRwNbK4JtrmAtC%0ArqrgApnIUNI5wD3Jwelehl0G6vMlsr/p/n9x5+ZTSo8rduZpfr+Fl953nwx8%0AO6haMdRubqRLVk3R2yu4VmYD5mHCt8v159CMV6bVPS7v7ZYRud5dQFctbSQA%0AtgZKq4Bxz7/Wrlc2Iqyq1HKR0YajGlTUYhRRRWB0BRRRQAUUUUAFFFFABRRR%0AQAUUUUAeBeObfU9P8Ryfbbqa4kZNn2v7ItuJfl+YDbw3DAE/geAK7T4b+KPM%0AtF068lgQF28tnlji+YldsaRjBOSWPAwOB3rJ+I/hZba/fULOwlWOcg74QZPN%0AndzuDZfK8YxtXBJxWb8NtR/s7XA5ExjkDRy+XaGUgYyoBXLZJXsP4fqR7OIU%0AauFjNa2+W+nTzseJhnOli503opfPbXr5XPcaKKK8Y9sKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCnqF5PZxo0GmXd+WOCt%0As0QK+58x1H5ZrM8HSNLoDyPE8LPqF8xjcgshN1LwdpIyOnBI9zW/WJ4U/wCQ%0APP8A9hK//wDSuagDbooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC%0AiiigArEtf+R51X/sG2X/AKNuq26xLX/kedV/7Btl/wCjbqgDbooooAKKKKAC%0AiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDlfH9wF8%0ANy2rRSlLjO6SMIdgT94eGYZOFYjHp9M+M6NoN5q+oPawWs00sYLNCjIj4VlD%0AZ3H5fvdcHnjHXHR/EjXTqGsSWu1xHbkxJHNAEKEEEupDEsGwMEgDGOO9O+HF%0AjaXWrJDd2iTJKrsoudP81JAoXOHJIUg+2Dnk5IFezg1KhQnU7/p/TPEx0o18%0ARCl2/X/gW/rQ9d0bTU0jR7awSWeRIU2q07h3AznGQAMDOBx0Aq9RRXjybk7s%0A9qMVFJIKKKKQwooooAKKKKACiiigAooooAKKKKAOX8efbToDCwsVnlBLtO8q%0ARrbqB8xyxByVJXjHBPI4z4npN9Po+qo3kxebFKp23EZOx1PGR169R/UAj6L1%0ACzS/sJrZ1Q71+UuCQrdVbgg8HB4IPHBHWvAvEGk3Ola7uu44wktzJtkcShZA%0AH5Y7iWxzjgk4Gechm9bAuNSjOi92ePj1KlXhXWyPf7OY3FjBMW3GSNWLeWY8%0A5HXaeV+h5FT1g+DmV/DNtIJzOzFg0nmSOCQdvy7ySBgDpgdwBnFb1eTe+p7F%0AraMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgArE8Kf8gef/ALCV/wD+lc1bdYnhT/kDz/8AYSv/AP0rmoA26KKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACik3DdtyM4ziloAKKQsqkBmAycDJ6mhmVBl%0AmCjpknFAC1iWv/I86r/2DbL/ANG3VbdYlr/yPOq/9g2y/wDRt1QBt0UUUAFF%0AFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVe/hluLC%0AaGCVYpHXbvZWYAHrwrK2cZwQQQeasVQ1u/8A7M0a6uw2JEQiL5C+ZDwgwOuW%0AIFF7ahy83u9zwm/0C8utahtrG0G24QyRLFHIAkfmMm9gxZlGVyck4yPpXb/D%0A/wAIXVhcR6hcs0b5cHy0iYxPHI0boxYE4IHVCM5PTgnh21iSTxDE9s0cqBfs%0AxCpKI7hQTjcgbcVY4YjjJJ+Unr7xpF1JdaejTMzSqSrsbSS2BPXhJOcYI56H%0An6D18TUq0sPGD67/AK/ieNhqdGtiZTj0enotvwL1FFFeQeyFFFFABRRRQAUU%0AUUAFFFFABRRRQAUUUUAFeHeP9N1CPV5DMsUnzs4eITAykoGdgju2FUKASvGM%0ADthfca80+J1rC4LfbIPtBi3tHN9mDLGvRU3ASctk8Mejd8A92Xzca1u55+ZU%0A1KhfsJ8KdTklS5svKLR7TKZPOYrFggLGEb2ycgngAHtj0yvC/hxdWUXiKCO+%0AW3YM4WESwqSHPIYMRwQVUD/e4717pWWLh7OvKPn+ev62N8HUdShCT7flp+l/%0AmFFFFcx0hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR%0AQAVieFP+QPP/ANhK/wD/AErmrbrE8Kf8gef/ALCV/wD+lc1AG3RRRQAUUUUA%0AFFFFABRRRQAUUUUAFFFFABQc4460UUAcV4fsLqw+IOqJe6jLf3Mum28kkrqF%0AUEySjaij7qgAcc9zkk1zljpsejQx6z4k8G2+ZL5prjUGnVp4mkmJRjGB90Fl%0AHDZ74r0RNHC+JLrVzPkT2cdr5O3GNjO27dnvvxjHasX/AIQ+/msYdJvddNzo%0A8UyyGJ7f9/IqtuVHlLnIBAyQoJA60AVbfR9P8VeJPE7avbJci2ljs7YSDJgT%0AylYsn91izE5HPA9KxfCDJ40u7FdfhS+itNGhZYrgb0aV3dWkIPBbEYGe2T61%0A1974d1D+1L+90jWEsP7QjVblZLXzvnVdokQ712ttwOdw4HFRL4Rk02Wxm0C/%0ASyktbIWLC4t/PSWJTlSQGU7gSTnP8R4oAXwLK50a8smd3j0/UbmzhZ23N5aS%0AEICT1wCB+FNml1SLxzqP9m2dnc502z8z7TdtDt/e3OMbY3z39Mcdc8a+haOm%0Ah6UlmszzyF3lmncANLI7FnYgdMknjtVa1/5HnVf+wbZf+jbqgDZQuY1Miqr4%0AG4KcgH2OBn8qdRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB%0ARRRQAUUUUAFeefFPUZrSztIQzrFJuZQkuN7D++pQgqMqfvc5PHAI766m+z2k%0A02Yh5aM+ZX2IMDPzNg7R6nBxXgvjXUzfaxKvmLLGCSuy9a5iUnBJjJAwO2MY%0Azn2x04Wj7Sol0v8A8P8AgcuLreypyfW3/AX42K/hG3S8162WdZ5I4WDOsayP%0AmLncu1EYnO72GMjIzkfQcEKW8EcMZYoihRvYscD1J5NeU/C/Rblb8X0tqqRC%0APzI7lWLeYpyNmVkCggjOChPBzjivWq6MyqKVXlXQ5srpONHmfUKKKK849MKK%0AKKACiiigAooooAKKKKACiiigAooooAK5vxxoKeIPDcsLXS2zW5+0I7kBMqp+%0A8ewwTz2689K6SmSxrNE8TFgrqVJRipwfQjkH3HNXTm4SUl0IqQVSDg+p8vRH%0AbKueh4P0NfRfhjVjqui27T3VrNfJEv2kW8yybWI6tt4UnBOOxyB0rxHxZpN7%0Ap+rXEt2buZmmZDcSwyLG2PuhXckt8vr6cFhyfSfhjrsl9pj6dIbmZ7cb/McL%0AsiQ8KgOdx5DHpx07CvVzFKcY1V1X5f8ADv7jycsbg5Un0f5/8MvvO+ooorxz%0A2QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAp6hJq%0AUcaHTbS0uHJ+cXNy0IA9isb5/IVmeDjK2gOZ0RJjqF8XRHLKrfapcgEgZGe+%0AB9BW/WJ4U/5A8/8A2Er/AP8ASuagDbooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigArEtf8AkedV/wCwbZf+jbqtusS1/wCR51X/ALBtl/6N%0AuqANuiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAD06Zr5x8Q3M2p60ZnSRrmfDMpg8sszHI2jccggrj+vU+2eNtQtNP8L3P2%0AuNZBP+6RDGHy3XODx8oBYZ7gV4vozw3urLJdWE1wftEcgFpah9wXOY/LBC4Y%0Ack/7PfJNellsLTlVfRfn/wAMeZmk7040k/if5f8ADo9g8B3LXOiM5tpY1Lgp%0AM9mtsJF2jAVVdtwUYAbgYwOSDXVVT0uyt9P0yC2tbU2sSoMQkglCeSCQSCfU%0A5P1q5XDVkpTckd1GDhTUWFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA%0AUUUUAeYfE/Romd9Qt45vPeJftG2xLptUkhjLt+Q8bTzk/LnA5rC+G72H9sRL%0AeywYUh4w9sr/ALwnCjzGXKHOCMEZJAzniu7+JWnz33hOVraOR3hPmOFkIURj%0A5mJG4A42jqGPoOcjxjTbm8sr9fslx5M6yAowkAUODwck7cdRk8YJ7V69Ne1w%0Ae+sX+HX8LnjVH7LG7aSX3vdfikfTFFVdMuFutMt5luYrnKANNFIsisw4bDKA%0ADyD0A+g6VaryWrOx7Cd1dBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFYnhT/kDz/wDYSv8A/wBK5q26xPCn/IHn/wCwlf8A/pXN%0AQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFQi6ga7a0EyG4RBI0Qb%0A5gpJAJHoSD+VVU1zSZdUbTI9Ts2v1+9bLMpkHr8uc0AaFFUL/XNJ0qaKHUNT%0As7SSb/VpPMqFvoCadqOsaZpEKS6lqFrZxudqNPKqBj7ZPNAF2sS1/wCR51X/%0AALBtl/6Nuq2IpY54klikWSNwGV0OQwPQg9xWPa/8jzqv/YNsv/Rt1QBt0UUU%0AAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFV764+y2M%0A0wLAqvBWB5sE8A7E+ZhnqB27jrTSu7CbsrnkHxU1C5uPEAtpEKW9tGEhyR85%0AbDO44zjgL3Hyn3qr8OPDUmq+IYb64i3WNoPOJJ4ZwcKvB4ORux6Dngiud1pX%0Ak1l4BEgn37XWISndITycSZfJPXPOe1ex/DnTo7Hw6rxxWBE4Vzc2sru0x5++%0AGUFSPQHGSeB39hz9hhPd3l/w1/mtfmeLye3xtpbR/Pe3ybt8jsKKKK8Y9sKK%0AKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCG7iE9nNEYYp96MvlSnC%0APkdGODwfofpXztq+oyT65PeSWtxbSvI7bZJDvXjbszgfKpBGMDjIPSvo+vBf%0AiLp62fi68cXUczTbZXVTzGWzhSCxPRQfT5hwBgV6eWcspShJbo8rNeeMY1Iv%0AZ/8ADHrPgzXm1/w+k8quLiBvImZ8fOwUHcMdiCD065+p6GvJPhbqsy3b2W+/%0AuAycW6bPKiUMAZCWYEfeHCjn34x63XDWp+zlynoUqiqR5l/V9QooorI1Ciii%0AgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTwp/yB5/8AsJX/%0AAP6VzVt1ieFP+QPP/wBhK/8A/SuagDbooooAKKKKACiiigAooooAKKKKACii%0AigAoPI9KKKAOG0bS49D8c6yltJcXEz6VBNJLcSGSSaTzJRkn6ADAwMAYFZBi%0ASH4M6RqEKA3sctpdpLjLec86bmz3J3MD9a9CTSoI9dn1cPJ9omt0tmUkbAqM%0AzAgYznLnv6VkQ+CrGCWBRe37WFvc/aodOZ08iOTO4Y+XeQG5CliAe1AFXRLW%0ADUvEnjD7dAkpaeK1KuM/uRCpC89iWY/jXPfDiWXUtQspb8eY9voECQFxn5Wk%0AkBIz6hFBPfFdlqPhWC/vrm7h1HULCS7iEV0LR0AnUcDO5WIIBxlcHHeifwpZ%0Al7OSwurvS5bS3+yRyWbJkw8YRg6sCBjIOMg96AKfgPMelalaqu23tdWu4LdR%0A0WMSnAHsMkfhSzS6pF451H+zbOzuc6bZ+Z9pu2h2/vbnGNsb57+mOOueNzSd%0AKttF0yGwtA/lR5O523M7EkszHuSSSfrVG1/5HnVf+wbZf+jbqgDZQuY1Miqr%0A4G4KcgH2OBn8qdRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRRQAV598R/FYsoToVnMn2m4Qi4wNxjQ4+U9lJBJ7kYHAyDXoNeIePdaubr%0AUbi0klXYkm5oYrsTxrJt2fKdileN2QT1zwOK6cLByk2um3q9F+JzYqajFJ7P%0Af0Wr/A5zRkuLzXonghlnlD+YNiSOVI6MfLIfAOMkHI9zxX0Tp8UUOnwpCJhG%0AV3KJndnGeeS/zd+h5HTivKPhj4atL66fVJrmQy2zK0aQTKo5B++Ad457YAOO%0ArA17BXTmNSPMqUdonLltOXK6s95O4UUUV5p6YUUUUAFFFFABRRRQAUUUUAFF%0AFFABRRRQAUUUUAFFFFABXD/ErTILjR1vZpSoQiP97JN5MZPSQpGD8w5AJwPm%0A5zwK7iqeq2MWpaVdWc0Ec6SxlfLkYqrHtkgEjnHIGR1rWhU9nUUjGvT9pTcT%0AwDwtq40XV4rtl3KjAlfOeMY7klASQOCRg5A6GvoiKWOeJJYpFkjdQyOhyGB5%0ABB7ivmq+tH0rV5ba4eCWSKQrKIjlMgkEcY/TpnseB7j4H1xNZ0QKZLIT25CN%0Ab2sbIsK4+UYYnPQ8jjt2zXdmNJc/Ouuv6f16nBltV8ns5dNP1/z+46eiiivM%0APVCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKeoSalHGh0%0A20tLhyfnFzctCAPYrG+fyFZng4ytoDmdESY6hfF0Ryyq32qXIBIGRnvgfQVv%0A1ieFP+QPP/2Er/8A9K5qANuiiigAooooAKKKKACiiigAooooAKKKKACiiigA%0AooooAKKKKACsS1/5HnVf+wbZf+jbqtusS1/5HnVf+wbZf+jbqgDbooooAKKK%0AKACiiigAooooAKKKKACiiigAooooAKKKKAM3XppYNGmaGRo3ZkjDr1Xe6qSP%0AfBqAeG9GxzpsB92XJP1J61J4j/5Azf8AXeD/ANGpWieBTQGX/wAI3ov/AEDL%0Ab/vij/hG9F/6Blt/3xUlpren3mmS6jHcBbaEuJWkBQxFPvBgeQRjvVmyu4r+%0Ayhu4Q4imUOm9CpIPQ4PIpgUv+Eb0X/oGW3/fFRf8Il4e/wCgNZf9+RWpc3MN%0AnbSXFxIscMYyzt0AqjpviDTNXleKzud8ijcUZGUlfUZAyKuNObi5JOy6mcql%0ANSUJNXfQYnhfQoxhNKtFHXCxgU7/AIRvRf8AoGW3/fFX7m5hs7WS5uHCRRqW%0AZj2FVTrVgujjVnm22RAbzCh6E4HGM9aSpylqlfp8+w3UhF2bS0v8u5F/wjei%0A/wDQMtv++KP+Eb0X/oGW3/fFJY+JNI1JJ3tbxXWBd8rMjIFX1ywFO03xDper%0ATvDZ3O+RRu2lGUlfUZHIq3QqxveL0302IjiKMrWknfbVa+hQ1jR9P07Rb2/s%0ArVLe5tYHnjkh+VgyqT1HY4wR0rpqx/Ev/Iq6x/14zf8AoBrYrFmwUUUUgCii%0AigAooooAKKKKACiiigAooooAKKKKACmSxRzxPFLGskbqVdHGQwPBBHcU+igD%0AwPx34WPhvVEaNYks7ouYFjdiQFxwd2SPvDuc8njoI/COtz6Tr9m0Et0sVyVi%0Anig2MZmB+UANwOdoznIBbB5r2Dxpplxqvhm5ggupoAoMkghh8x5VAPyAZHU4%0A79sd68OFrNouqva6ivkTQYdlMKT7cqDjax2ngivbpVlXorn3Wj9Hp+dn8jwq%0AtB0KzUNE9V6rX8rr5n0dE7SRI7RtGzKCUfGVPocEjI9iRT6zdCk01tKii0u4%0Atp4IRsLW+wLu6nhPlBJOSAO9aVeNJWbR7cXeKYUUUVJQUUUUAFFFFABRRRQA%0AUUUUAFFFFABRRRQAUUUUAFFFFABWJ4U/5A8//YSv/wD0rmrbrE8Kf8gef/sJ%0AX/8A6VzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWXeeJdB0+6%0Ae1vdb022uExuimu40dcjIyCcjgg0AalFZ99r2kaZJDHfapZ2zz8xLNOqFx6j%0AJ5HvU99qNlpdo13f3cFrbrwZZpAi57DJ70AWaxLX/kedV/7Btl/6Nuq1bS8t%0Ar+1S5s7iK4t5BlJYnDK30I4rKtf+R51X/sG2X/o26oA26KKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigDK8R/8gZv+u8H/AKNStGs7xH/yBm/67wf+%0AjUq+6CRGQ5AYEHaSD+BHIpoDzPXGt38TXV9FFK/h2K4iTWfLb93JMucNtxyF%0AOzfjrxwcGvTUZXRWQhlIyCDkEVUtNKsbHSxptvbItmEKeUfmBB65zyc5Oc9c%0A0+wsbfTLGGytEZLeFdsas7PtHpliTTAxl1SPU7K7TWtHms7KNN7tc/dbB6fW%0Aq2i79Z1z+3pEW3to4TDaREgMy55dvQdeP8nob/T7XVLRrW8jMkDEEruK5xyO%0AhFZ9r4S0OylaS3stjsjRk+a5+Vhgjk+ld0a9FU5JXTfzVuu73fU8+eHrupFt%0AqSXfRt9NlsunmYHi/VI7i8/s6ZZ/sMUJlZokLCWTHyAkfwjqajtBDq/gGxsv%0AtiWeJ1iZ514dgd2F9eo/I12kOn2tvpwsIottqEMYTcT8p6jOc96hfRdOk0pd%0AMe1VrNRhYyxOPoc5/HNaRxlOMIwimuVp3089bd/6uZywVWVSU5NPmTVtfLS/%0Abz/DU4fX7rUbe01nR550uhHFFN56xLGwUuuVIXjuK2dMmubXxDp9tdPa3Yub%0APfFJHAqNAAM7QRyVrcs9B0ywtp7eC1Xy5xiXeS5ce5OaTTfD+l6RM8tlaiOR%0Aht3FmYgegyTgU54yi6bgl+C1bSV/La+m5MMFWjVU3L8W7JNu3no7a7CeJf8A%0AkVdY/wCvGb/0A1sVj+Jf+RV1j/rxm/8AQDWxXls9YKKKKQBRRRQAUUUUAFFF%0AFABRRRQAUUUUAFFFFABRRRQAyWKOeJ4pY1kjdSro4yGB4II7ivnjxPY3ekeJ%0AJ7S98ljHgK8FusCyIejBVAHQ89eQRk4r6KrhfiN4egvdKe9hsTLdg8C1tt00%0Ar4AXc4BOxVySCOcKMjiu3A1VGbhLaWhw4+lKUFUhvHU5L4f+LZdKv00u+uJm%0AsRlIoo4U2oS25pHckEKoySeeMnjFezg5GR0r5e8yRAssbsjFTGxU4OCMEfQg%0A4/Ovb/h5eajd6Oz3cdqsbMWRY5GDRLgBE8ojCrtGQQeRg4JJNb42heCrddn6%0A9TDBV+Wbo9N16PY7KiiivLPVCiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKxPCn/IHn/wCwlf8A/pXNW3WJ4U/5A8//AGEr/wD9K5qANuiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigArzy4sde0f/hIddFvol3AbqS7aKZWe%0AWSJFChQ/RCFToQ3Neh1zNx4Js5vtsKahqMFheymW5sYZEEUjN97kqXUN3CsA%0AcmgDP8Li11/VfFF3c26vHctBCElXpAbdGVcdgd5P1NY3hSabUJfAa3uZEj0y%0A5mj3jq6lEVvchD1/2q6++8JW11dTz2t/facbmFYLhLJ0VZUUYXIZWwQOMrg4%0Aqa78MWU9rp0NtJPYPpuBaTWrKHiXbtK/MGBBGAQQelAGf4YH2fxT4ts4lCWs%0Ad5DKiKOA7wIz4+p5/Glmi1SXxzqP9m3lnbY02z8z7TaNNu/e3OMbZEx39c8d%0AMc7Gj6Nb6LbzRxSzTyzytPPcTsGklc4GTgAdAAAAAABVW1/5HnVf+wbZf+jb%0AqgDZQOI1EjKz4G4qMAn2GTj86dRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAZXiP/AJAzf9d4P/RqVfkZkidkQuwBIUHG4+nNUPEf/IGb/rvB/wCj%0AUrRpoDIsvEdheaDJq7O0EEIf7Qsow8LL95WHqPT6etXdOvDqGmwXjW8tt5yb%0AxFNgOoPTOOhxziuS1LRoJPiBa2251sr6I3l1bD7kssJAUkf8CBI77Rmu2OMH%0APTvmmBz0XjKwlnjAt7tbWWXyUu2jxEzfXPSrt74gsrLVLXTi3mXNw4TYhB2e%0A7elcxJq2n+INWitjdW1ppFnMHVCwVrmQHjA7Lk/jn8r+vWVta6/ocsECJJPf%0AF5HA5c8dTXqPDUlNRlFptPT5XV3+djyI4qs6cpRkmk0r/Ozsu3a50eo6hBpd%0AhNeXLbYolycdSewHuaTTL+PVNNgvYkZEmXcFbqK5XxY1/PqDI+mXFxp1vAzo%0AU+6ZCp+dvZfStTwVO83he1DwPEI8opb+Mddw9ucfhWE8Mo4ZVerffpr+J0Qx%0AUp4p0tkk+nVW19DoaKKK4jvMvxL/AMirrH/XjN/6Aa2Kx/Ev/Iq6x/14zf8A%0AoBrYpMAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUc8KXFvJBI%0AWCSKVbYxU4PoRyPqKkooDc8B8a6L/Y/ia7t0tYbe2n/eW0cc2/jHXHVcnPBG%0AOoGQM1J8P/ETaFr8cbmJbO6Oy4Z2C4GPlbLEAYOfqCepxj1rxfoUOt6JMv2S%0AWe7QZhEMixuTkHG5uNuQCQc9MgZAr5/vIfJuXXa6jccCRNrDBwQR2OR0r28L%0AVjXi6c+q/Ff5r8meFjKUsPJVIfZf4N/o7/ekfUAORkdKK8/+H/jK1v4YtIub%0AmZr0R7lMkUUUQAAAjjCnsPbsTx0r0CvJrUZUp8sj2KNaNaCnEKKKKyNQoooo%0AAKKKKACiiigAooooAKKKKACiiigAooooAp6hHqUkaDTbu0t3B+c3Ns0wI9gs%0AiY/M1meDhKugOJ3R5hqF8HdEKqzfapckAk4Ge2T9TW/WJ4U/5A8//YSv/wD0%0ArmoA26KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxLX/ke%0AdV/7Btl/6Nuq26xLX/kedV/7Btl/6NuqANumGWMTCHePMKlgvcgHBP6in1m3%0Ag8rW9On6BxJbk/UBx/6BUydlcqEeZ29TSoooqiQooooAKKKKACiiigAooooA%0AKKKKACiiqeo6nbaZazT3Dj91A8/lqRvZUGW2gnnt+YppNuyE2krsreI/+QM3%0A/XeD/wBGpWjXl3jb4q6bpevJoUumz3NvG0MtzKsuwr92Rdox82PlJBI9Pet7%0AVfiTpWk6nLYy2l5JIm07o1UqwZQwIywPQinTjKo7RTbJnUhBXm7I65raBrlL%0AloYzOilUlKjcoPUA9QDgflUjKrqVYAqRggjgisHTvEs2qQNNa6DqRRW2nzPK%0AjOcA9GcHvVz+0tQ/6AF7/wB/oP8A45RcseNC0hWDLpViCDkEW6cfpVuW2gne%0AN5YY5HiO6NnUEofUehqj/aWof9AC9/7/AEH/AMco/tLUP+gBe/8Af6D/AOOV%0ATqSerZCpwSskjSdFkRkdQysMFSMgj0psMMVvEsUMaRxqMKiKAB9AKz/7S1D/%0AAKAF7/3+g/8AjlH9pah/0AL3/v8AQf8AxypvpYqyvc06KzP7S1D/AKAF7/3+%0Ag/8AjlH9pah/0AL3/v8AQf8AxykMTxL/AMirrH/XjN/6Aa2K5+/bUdVsJ9OG%0AkT263UbQvNNLFtRWBBOFYknHQY64roKGAUUUUgCiiigAooooAKKKKACiiigA%0AooooAKKKKACiiigAooooACMjB6V5N8SfCcVs8Oo2EVvBC+yEp5wXL4wNqkAA%0ABVGcH8Bgk+s1Fc20V3bSW86B4pFKsCOxGK0p1JU5c0d0RUpRqR5ZbP8Ar+vM%0A+YIpXhcMhHbIIBBwQcEHgjIHB4r3/wAHeKYPEWlRGW4tP7RAJlt4crtGeMK3%0AOMFQTyM55ryHxL4SvNE1K4iiikngTL7kRm2R4B3MQMAHn/vk1j6bqU+lXJuL%0AYJ5pUoGIOVBxnaQQVJGRkEHBOMda96rTp46ipwev9aM+dpVKmX13Ca0/qzR9%0AN0VzfhnxlpviG1jxLDb3jMU+ytMGYkKG+XOCwwcE46g9QMnpK8CdOVOXLJWZ%0A9FTqRqR5oO6CiiioLCiiigAooooAKKKKACiiigAooooAKKpahcSQm0jhba89%0AysecZ+UAs3/jqmrtJO7sNxaSfcKxPCn/ACB5/wDsJX//AKVzVt1ieFP+QPP/%0AANhK/wD/AErmpiNuiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK%0AKzNV8Qafo0kMV08zTzAskNvA80hUYy21ATgZ5PSgDTrEtf8AkedV/wCwbZf+%0AjbqtOxvrXU7GG9splmtpl3RyL0IrMtf+R51X/sG2X/o26oA26zdd+TTDcd7a%0AWOfOOgVgW/8AHdw/GtKsHW/FPh/SpDYareiNpotxQRO+UOR1UEdjR7OVROMV%0AdgqsKTU5uyN6iuM074h+HIdOt4rvVMTogVj5Ep3Y4DZC9xz+NWf+Fj+E/wDo%0AK/8AkvL/APE1rGhWlFSUHr5MynXowk4ua080dVRXK/8ACx/Cf/QV/wDJeX/4%0Amj/hY/hP/oK/+S8v/wATT+rVv5H9zJ+tUP5196OqorlH+JHhYRu0eoPK6qSI%0A0t5MtjsMqB+ZArIn+I2jXt4kMmoz2tmzMC0ETb+O7tjKg9AEBPqVqXRrX5VB%0A39C1Wotczmku9/6/rc7m61GysiFuruCFj0WSQAn6DvVf+3tLH3r2NB/efKj8%0AzxXKp4/8GaXJDHZGRxIdrzRW7ZQZHLlsM34bjx9Khk+L2iBR5VjqDNuGQyoo%0AxkZP3jyBkgdzxkdapYPFS+z+H/DCljcHHTmv8/8AgM7yC5guU3wTRyp/ejYM%0AP0qWvLbz4j+Gbi7jdNHvF3Z825j2xTJj7u0q3zc9ckY96z4vi1qEbFVtI2i2%0Anb9obe4ODjLKF4Bx2yR371SweJWsof16b/mQ8bhG7Rnr5/57ffY9iqK4ure1%0AQPcTxQoc/NI4UcAsevoFJ+gJ7V4pe/E7xPMCYpbW2U7fmghDAYzn7+7rkZ/3%0ARjHOeUvNW1DULx7y7vJ5bhlZTIznIU5yo9F5IwOOTXXRy2VRXclby1OOvmka%0AT5VF389D2XWvidoumOiWp/tAskhPkNgKynCgkjGD83IzgAHBBFeW+IPGOseJ%0AU8q+liFuHEiQRRgKjAYyCct3PUnr9KwK3tN8GeINVmiS302ZY5EWQTyjZHsb%0AGG3Hg8EHAyevHFelSwtDDe89+7PKq4vEYp8q27Imtr2x128tG1DwzDquqRCO%0AGObz2jD4IVPMUcNyVGTjsDXYaP4XuZ74aprMAOsXzLNaxsShtiCSXZAfugbM%0AA85wMVv6F4Z03whbRRGJNR1iRi8bCMBxxjg/wIO5PqfYV1FjZNAXuLhlkvJs%0AebIowAB0VfRRk/qe9eLiMTTUpQwytfd/5dj3cLg58samKd7bL/PvYls7WOyt%0AI7eLO1B1PVieST7kkk+5qeiiuNKysjtbbd2FFFFMQUUUUAFFFFABRRRQAUUU%0AUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY3iHRotWtM%0AtAszKpVoiceahwSmex4BB7EA14z4t8L/ANkzi+02OeXSJ13pIVz5LZwY2PYg%0A8c49OSDXv9YuqaSHEskUPnwTEG6sw20TYIO4c43cDIPDDg9iN8Nip4afMtYv%0Adfr6mGKwkMXT5HpJbP8AR+R8729xPaTrPbTSQzLnbJGxVhkY4I9q7/QPirda%0AfbRWup2jXiqyr5yy4dYwoHQj5m4LZJ5J7Dpb1j4dQahbXWoaDKssuW22iKIs%0AOZScNuOF2owXbgfdB74Pnl5pOoafePZ3dnPFcKrMY2Q5KjOWHqvBORxwa96M%0A8NjI9/zPnZQxWBnbVfkfQHh/xZpPiSENYz7Zud1tLhZVA74ycjkcjI59citu%0AvlpJHjYsjspIK5U44IwR+IJFa+meKtb0mR3tL+be0KwL5h8wIinKgBsjjkDj%0AgMcda46uVbunL7zto5vsqkfu/wAj6OorxWH4p+IocGZbB8IqEPEckjOWwrDk%0A556DgYA5zMfiteT8Xdm5ToUtbjyQ31O1mH4MK4PqdZ/w1zem33v9D0vrtCP8%0AR8vk1r9yv+Nj2J5EjGXdVHqxxTY54pTiOVH/AN1ga8sj+IfhdJGdvD0rvuG2%0ASUJI5G4gkliTnbhsZOWJGRjcbp+IPgqdHMmjzKUXcubSPLHIGFIbg8k844B5%0AzgGHg8WvsFrHYN/8vPw/4J6VRXmafEbRYLeeewudSiePG2zu4/NWXPGFO4lc%0Ae7AegPSt62+JPhqW2Ek96YHzhl8mRgD7EL0+uPpUOhWi7Sg0Wq9CSvCaaOuo%0Arlf+Fj+E/wDoK/8AkvL/APE0f8LH8J/9BX/yXl/+Jqvq1b+R/cyPrVD+dfej%0AqqK5X/hY/hP/AKCv/kvL/wDE0f8ACx/Cf/QV/wDJeX/4mj6tW/kf3MPrVD+d%0AfejZf9/4hiT+G1tzIR/tO21T+SP+daNcbpPjbw/NqlwjagPtV5crHCnkycrw%0AqDO3AzyeTxu5xXYghhkEEeorBQlFc0la+p0ynGT5Yu/Lp8+v4i1ieFP+QPP/%0AANhK/wD/AErmrbrE8Kf8gef/ALCV/wD+lc1Mk26KKKACiiigAooooAKKKKAC%0AiiigAooooAKKKKACiiigArlrXP8AwtHUfNxn+yYPJz/d82Tdj8cZ/D2rqazN%0AT0DTtYmhmu4pPOhDLHLBPJC4Vuq7kYHB9M4oAyfAmf7N1XH+o/ti98jH3dnm%0At09s7qJotUl8c6j/AGbeWdtjTbPzPtNo02797c4xtkTHf1zx0xz0NjY2umWM%0ANlZQrDbQrtjjXoBWZa/8jzqv/YNsv/Rt1QBpzpdNZFYZoVuNo/ePCXTPf5Aw%0APrxu/OvnXxFbm31y5xatbRu2+NDbNACvTKoxJAJBwM/l0H0lVK80fTNQlEt7%0AptncyBdoeaBXIHXGSOnJ/Ou3B4v6u3dXTOHG4P6zFJOzR80n54Qe6cH6dqjr%0A6JvvCWjT2rLbaTp0MykMjC1TBI5wwA5B7imWWleGrwbDoemQ3K8SW72se9D9%0AMcj0PQ11QzWEG4uOl7r5/wDBOWpk86iU1JXSs/ls/u/E+eaciFzgduSfSvoC%0A4sPDSS/Z7TQdNvLvOPJhtozt93OMKPr+ANS2PhDSYVeW70zTpZ5cb1W1QRJj%0AoFXHv1PJ/QOWcRekI6/kTHJJR96pLTt1f/A8/uPnxnAGxPu9z3ao6+kv+EY0%0AD/oB6Z/4CR/4Uf8ACMaB/wBAPTP/AAEj/wAKcMzpwVlF/wCZNTK6tR3cl+i9%0AD5tor6Xi0LSIEdIdKsY0f7ypboA3BXnA54Zh9GI71Yexs5FjV7SBljl89AYw%0AQsmSd49GySc9ck1TzaPSH4krJpdZ/gfMaRSSLIyRsyxrucgZCjIGT6DJA+pF%0AXbfQtXukL2+lX0yDHzR27sOQGHQdwwP0IPevpeioebvpD8TRZNHrP8P+CeDW%0APw48U3IWT7EtsrqrAzSqpwSByoJIwDkgjoD3wD0tt8IZJLQG91SNLonkQREo%0ABz3JGc8dhjnr1r1SiuOrjalR32fdb/ed1HA0qS5d12eq+44vQvBg8OyCW20y%0AwurkbcXE1y6spC4JUeW23Jyevf0wB0XlavccST21oh6+Qpkf8GbAH/fJ6+1a%0AVFcc3Ko7zk2dtPkpq1OKX9fcVrSxgsg5iUl5CDJI7Fnc+5P8ug7VZoopJJKy%0ABtt3YUUUUxBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR%0ARRQAUUUUAFFFFABRRRQAUUUUAFFFFAFO60yC5kMwLwXHH7+Btr8evYj2ORVG%0A90i9vbdra4uLO7hZWX/SLU7wGUqfmVhg7WIyADya2qKnlSd1oXztrleq89Tz%0A/VfhlHq1zcXT3Vrb3E0vmEw2zYHygEY8zGCRuJxnJPNcvqfwv121DnTmS7US%0A7ABtiZl2qd/LdNxZcE54B5B49oorpp4mpDd8y89Tlq4anO9lyvvHR/gfO9z4%0AK8R2k8UEulSmWVJJESNlkJVMbj8pOOo+pIAyTWUdM1APIhsbkPGjSOvlNlUU%0AlWY8cAEEE9iCK+naK745tPrFHmyyeH2ZM+WKK+opLW3luIbiSCJ5od3lSMgL%0AR5GDtPUZHXFMubGzvGRrq0gnZFZVMsYYqGGGAz0BHB9RWn9rr+T8f+AZ/wBj%0AP+f8P+CfMFOVyhyPxHrX0qNC0hdm3SrEbEaNMW6fKjZ3KOOAdzZHfcfWov8A%0AhGNA/wCgHpn/AICR/wCFN5pTkrShoEcpqwalGdmfOJUONydR1X0+lR19Jf8A%0ACM6AOmiaaD6i1T/Css+F9P02TKaFYX1mf4TbRmaP6Ej5x168+56VnHNVT0cW%0A1+P/AAf69TWWTurqpJS/B+nb027djwGnxKC+W+6vJ+le+m18JBf+QHaeZj/V%0Af2X85Ppt2Zp9j4X0yaZ7y60OwhV1Cx2v2eMhF65bAwWP44HA6nJPOITjywWr%0A/D+ugU8kqU5KdRqy6d/+B38jwBEkuJ1REZ5JGAVUXJYk9AO5r6F8IwSW+hQJ%0AtjitwgEUC2b27xnnduDOxJJ7/XrmrkXh3RIJUli0bT45EYMjpaoCpHIIOODW%0AlXPi8Yq0VCKskb4PBSoTc5yu2U9Qj1KSNBpt3aW7g/Obm2aYEewWRMfmazPB%0AwlXQHE7o8w1C+DuiFVZvtUuSAScDPbJ+prfrE8Kf8gef/sJX/wD6VzVwHom3%0ARRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWJa/8jzqv/YN%0Asv8A0bdVt1iWv/I86r/2DbL/ANG3VAG3RRRQAVXubG0vQBdWsE4XoJYw2Pzq%0AxRSaT0Y02ndEcMENtEIoIkijHRUUKB+AqSiimJu+rCiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACsTwp/yB5/+wlf/APpXNW3WJ4U/5A8//YSv/wD0%0ArmoA26KKKACiiigAooooAKKKKACiiigAooooAKKKKACiisC98Z6HYajcWE9x%0Acm5tyBKsNlPKEJUMAWRCOhB60Ab9FYupeK9I0qfybqebzBGJpBFbSS+TGejy%0AbVOwcfxYqTUPEml6aLbzZpJXuUMkMdrC87ugxlwqAnaMjnpQBrViWv8AyPOq%0A/wDYNsv/AEbdVp2N9a6nYw3tlMs1tMu6ORehFZlr/wAjzqv/AGDbL/0bdUAb%0AdFFFABRRRQAUUUUAFFV7K9h1CBpoCxRZpYTkY+aN2Rv/AB5TVigAooooAKKK%0AKACiq+oXsOmabdX9wWEFtC80hUZO1QScD6CrFABRRRQAUUUUAFFFV7m9htJ7%0AOGUtvu5jDFgZywR359PlRqALFFFFABRRRQAUUUUAFFV3vYY9SgsGLefNDJMg%0AxxtQoG5+si1YoAKKKKACiiigAooqvbXsN3PeQxFt9pMIZcjGGKI/Hr8rrQBY%0AooooAKKKKACiiigAoqvp97Dqem2t/bljBcwpNGWGDtYAjI+hqxQAUUUUAFFF%0AFABRVfUL2HTNNur+4LCC2heaQqMnaoJOB9BVigAooooAKKKKACiiq9zew2k9%0AnDKW33cxhiwM5YI78+nyo1AFiiiigAooooAKKKKACiq6XsMmpT2ClvPhhjmc%0AY42uXC8/WNqsUAFFFFABRRRQAVieFP8AkDz/APYSv/8A0rmrbrE8Kf8AIHn/%0AAOwlf/8ApXNQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZV3rFxbar%0AFZJouo3EblQbqIR+UmTgk5cNx1OB+dcnNaalpmneI9f0rxPCypdT3jW626NE%0ASgAMcjHLZAQL8pGPSvQaw7nwfoV3dTXE1mxM8glmiW4kWKVx/E8QbYx4HUHN%0AAGP4OuVvdT8T3d3Gsbzy28jo+Plia2QqD7ct+tYfwxE32+0+153/APCP232f%0Ad18rzZent939Pau41Lwto+r3LXF3bSGV4vJkMVxJF5qddrhGAcdeGzT7/wAN%0A6VqP2YzWzo1shjhe2meBkQgAqGjZTt4HHTigDL8CZ/s3Vcf6j+2L3yMfd2ea%0A3T2zurSvdDe51R9QttWvrCaSFIJPs6wsHVGdlyJI2wQZG6Y61fsbG10yxhsr%0AKFYbaFdsca9AKrX+v6NpU6wajq9hZzMu9Y7i5SNiuSMgMRxkH8qAKv8AYeo/%0A9DXrH/fq0/8AjFH9h6j/ANDXrH/fq0/+MVr29xDd28dxbTRzQyKGSSNgysD0%0AII4IqSgDE/sPUf8Aoa9Y/wC/Vp/8Yo/sPUf+hr1j/v1af/GK26KAMT+w9R/6%0AGvWP+/Vp/wDGKP7D1H/oa9Y/79Wn/wAYrbooA5208L3VjC0Vv4o1hEaWSUjy%0A7Q/O7l2PMHdmJ/Gp/wCw9R/6GvWP+/Vp/wDGK1Jby2gube2lnjSe4LCGNmAa%0AQqMnA74HNT0AYn9h6j/0Nesf9+rT/wCMUf2HqP8A0Nesf9+rT/4xW3RQBif2%0AHqP/AENesf8Afq0/+MUf2HqP/Q16x/36tP8A4xW3RQBzt74XutQsbiyuvFGs%0ASW9xE0UqeXaDcjDBGRBkcHtU/wDYeo/9DXrH/fq0/wDjFbdZ9jr2kapcy29h%0AqlndTRf6yOGdXZfqAaAKn9h6j/0Nesf9+rT/AOMUf2HqP/Q16x/36tP/AIxW%0A3RQBif2HqP8A0Nesf9+rT/4xR/Yeo/8AQ16x/wB+rT/4xW3RQBif2HqP/Q16%0Ax/36tP8A4xUE/he6uZraWbxRrDPaymWE+XaDa5RkzxBz8rsOfWuiqG6u7axt%0Anubu4it4Ixl5ZXCqo9yeBQBlf2HqP/Q16x/36tP/AIxR/Yeo/wDQ16x/36tP%0A/jFX9O1bTtYtzPpt9b3cQO0vBIHAPocdDVygDE/sPUf+hr1j/v1af/GKP7D1%0AH/oa9Y/79Wn/AMYrbooAxP7D1H/oa9Y/79Wn/wAYo/sPUf8Aoa9Y/wC/Vp/8%0AYrbooA51/C9099Fet4o1g3EUTxI/l2nCOVLDHkY5KL+X1qf+w9R/6GvWP+/V%0Ap/8AGK17i4htbeS4uJUihiUu8jnCqo5JJ9KerK6K6kFWGQR3FAGL/Yeo/wDQ%0A16x/36tP/jFH9h6j/wBDXrH/AH6tP/jFbdFAGJ/Yeo/9DXrH/fq0/wDjFH9h%0A6j/0Nesf9+rT/wCMVt0UAYn9h6j/ANDXrH/fq0/+MVBB4Xuraa5lh8Uawr3U%0AolmPl2h3OEVM8wcfKijj0roqz7LXNJ1K6mtbHU7O5uIf9ZFDMrsv1AP4UAVP%0A7D1H/oa9Y/79Wn/xij+w9R/6GvWP+/Vp/wDGK26KAMT+w9R/6GvWP+/Vp/8A%0AGKP7D1H/AKGvWP8Av1af/GK26KAMT+w9R/6GvWP+/Vp/8Yo/sPUf+hr1j/v1%0Aaf8AxituigDnbLwvdafY29la+KNYjt7eJYok8u0O1FGAMmDJ4Hep/wCw9R/6%0AGvWP+/Vp/wDGK1be6gu0Z7eZJVR2jYo2QGU4I+oPFTUAYn9h6j/0Nesf9+rT%0A/wCMUf2HqP8A0Nesf9+rT/4xW3RQBif2HqP/AENesf8Afq0/+MUf2HqP/Q16%0Ax/36tP8A4xW3RQBzt74XutQsbiyuvFGsSW9xE0UqeXaDcjDBGRBkcHtU/wDY%0Aeo/9DXrH/fq0/wDjFXdS1nS9GjSTU9QtbNXOEM8qpuPtk81agnhuoEnt5Ulh%0AkG5JI2DKw9QR1FAGR/Yeo/8AQ16x/wB+rT/4xR/Yeo/9DXrH/fq0/wDjFbdF%0AAGJ/Yeo/9DXrH/fq0/8AjFH9h6j/ANDXrH/fq0/+MVt0UAYn9h6j/wBDXrH/%0AAH6tP/jFQT+F7q5mtpZvFGsM9rKZYT5doNrlGTPEHPyuw59a6Ks+bXtIt9TT%0ATZtUs4758bbd51Ehz0+XOeaAKn9h6j/0Nesf9+rT/wCMUf2HqP8A0Nesf9+r%0AT/4xW3RQBif2HqP/AENesf8Afq0/+MUf2HqP/Q16x/36tP8A4xW3RQBif2Hq%0AP/Q16x/36tP/AIxR/Yeo/wDQ16x/36tP/jFbdFAHOr4Xukvpb1fFGsC4liSJ%0A38u05RCxUY8jHBdvz+lT/wBh6j/0Nesf9+rT/wCMVqS3ltBc29tLPGk9wWEM%0AbMA0hUZOB3wOanoAxP7D1H/oa9Y/79Wn/wAYo/sPUf8Aoa9Y/wC/Vp/8Yrbo%0AoAxP7D1H/oa9Y/79Wn/xij+w9R/6GvWP+/Vp/wDGK26KAMT+w9R/6GvWP+/V%0Ap/8AGKvaVpqaTYC0jmlm/eSStLNt3O8js7E7QByzHoAKtTTRW8Ek88iRQxqX%0AeR2CqqgZJJPQAVQsfEOiapcfZ9P1jT7ubaW8u3uUkbA74BJxQBpUUUUAFFFF%0AABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBn6trVnosMct59o2yNtXyb%0AaSY568hFJH41y0uma3qHiDUdb01dIkguLa3W3XUIZGfaqltpX5TGSXPXJ6cV%0A3Nc/e+FI7jUbq9tNU1DTnvVVbtbRkAmwMA/MpKtjA3Lg4FAFvw1qseueHLHU%0Aorf7Os8efJ4whBwQMdgQa1arafYW2l6fBY2cQitoEEcaDsBVmgAooooAKxtS%0A8UaXpN6LS8a6WTAYslnK6AHuXVSo/E8Vs0UAeQw+J9H1Lxl4e1+61e1E8lxM%0AqwecD9kgMLhFb0ZmILe5A7V69VC80m3vdR06+kaQS2EjyRBSNrFkKHdx6Mem%0AOav0AFFFFABRRRQBiXOtaTe3txoNx9r3yI8Uv+jTJHt2kt+9ChRxnkN+tc/f%0AwNpfjHwyZbK3tdIt3e0sZLZ97s7xkKkgIG1cBiMbuQCSK7W8tIL+yns7qMSW%0A88bRyIejKRgj8qwrLwhDbXdlNdapqGoR2BzZwXToUhONob5VBdgCQCxOM+vN%0AAHR0UUUAFFFFADXcRxs7Z2qCTgZP5Vzc2qeHfEVobm6aZbXS5Uuna7t5LdFY%0ABgpO9QGA5455x7V01YviTw3B4mtLe2uby7tkgnWcfZmQbmXpuDKwIB5xjrig%0ADN8NRTal4h1LxMLZrOzvIYoLeN12vOqFj5zr2zuwuedorrKytK0abTJpJJdb%0A1PUA67Ql40ZVfcbUXmtWgAooooAKqalqVvpNm13deb5SkA+VC8rc/wCygJ/S%0ArdFAHEeNbey8TeAr/UhNe/ZoLK4ljgYPCruqnazowDHaVyAeO+DxXX6f/wAg%0A21/64p/IUzVNPi1bSbzTp2dYbuF4XaMgMFYEHGQRnn0qxDEsEEcSklUUKM9c%0AAYoAfRRRQAUUUUAYfjOee18E65PbkrMljKVZeq/KeR9OtYeq2sGmx+B3sYUj%0AeK+itkKD/lk8L71+hwD+Ga7SeCK6t5bedBJDKhR0boykYIP4Vg6b4Rt7C8s5%0A5dRv71LBStlDcuhW3BG3jCgscZALEkA0AdFRRRQAUUUUAFVNSsRqVhJaG5uL%0AdZMBpLd9j4yCQG7Z6cc4PGKt0UAcp8PraGz0C7tbdNkMOp3kca5J2qJmAHPs%0AK6uqOlaVBpFvNDbvIyzXEtyxkIJDSOXYDAHGScVeoAKKKKACiiigDn9cm0fR%0AL4a3dxvNqMsQs7aFBvkl5LbI19STyfTGeBS+DtJudH0AQ3aRxTzTy3LW8Ryl%0Av5jlvLX2XOPzqPVfCEWqa8msjWNUs7qODyE+zPHtRc5OAyNgnufYVr6ZYvp1%0Ap5El/d3zbi3nXRUv9PlVRj8KALlFFFABRRRQAVwXjXSvs/hbVBpdjbtZXEjX%0AepXAmLTphgztGp4LAA4yw24AA7V3tcxc+CbW4a8iTUtQg069laW6sInQRSs3%0A3uSpdQ3OQrAHNAHRW08d1axXELbopUDofUEZFS02ONIo1jjUKiAKqgYAA6Cn%0AUAFFFFABUdxcRWltLczNsiiQyO2OigZJ/KpKKAPIYfE+j6l4y8Pa/davaieS%0A4mVYPOB+yQGFwit6MzEFvcgdq9eqheaTb3uo6dfSNIJbCR5IgpG1iyFDu49G%0APTHNX6ACiiigAooooAw/GFjdan4T1HT7JoluLqPyVMr7FwxAbJwf4SazdOud%0AQ0jxLZaVqdnpW2+hkNtPp8LRlDGAWRgxORgjBBHTpXQavpNrrelzafeqxhlx%0Ako21lIIIZT2IIBH0qlp3htLTU11K71G91K8jiMMMl2U/dISMhQiqMnAyxGTi%0AgDbooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKAP/Z"><meta property="article:published_time" content="2022-03-09T08:00:00.000Z"><meta property="article:modified_time" content="2022-03-14T01:24:02.194Z"><meta property="article:author" content="青酒"><meta property="article:tag" content="基础理论"><meta name="twitter:card" content="summary"><meta name="twitter:image" content="%0A6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAndSURB%0AVHhe7Z3rteI6DIUpZ2qgi2mCPm4HVMOv6YRiuNqykziO37byAH1rZQ2EYPmx%0AIzm2DnP7KIoAKixFBBWWIoIKSxFhB2G9Po/b7fN42beNvB73z+32oNL2wNT5%0AxsdeNhdej/7+6uP9ed5N+1vrcQmP9X7eP/fnm8VF/4jzfj52sRPk/fzcB9yI%0A7dibqrMCFxAW7p49vcbirSDmvXk9n5/nYR7LeKoR7W4T1uvxud2f1AkIT6Yi%0A8CrBweA70Hqa+bUTalI9CDsl10lgPYfbnnUbaRAQnqkf+ofBQu1FM0OhUNw2%0A4DZTHci+3+e19huE5d3R7gDYii3Vma71xDRdw8LJhDe6xjQmhrnLTLne0S1G%0A1NnzlraNT/IsqVrVQ+14GkvROZaYbQOL50HthW07rqt6VNhv81iugGKvJ/ic%0A77HMR5v3AdDYpK6qqRPiCx1tXxvwfbdOU3n+daDC1otCoC0zPnn3bQPvRt9Q%0AXgf0tVsG6rEuM2Cfx9CU5157cmGhIaEBc6kYvGpC9o29bYfn6pkGg+jXfyuU%0Are03eQ9jN+BdKzEeaykhLCzv3JumQfyC7Duh8dzCwufd4uggEIZfDxpIhHB0%0AIjqVP+4XlkvMY4VtL3Q/Na/GA0Jdl5e0T9+1kZxpEJZRLe6ox8t9jbLNBG9R%0A/fL5jTr+Mb1m8bmfhWM2yttdV+g4riMdjvE3n193+mPuSVlhpW0v4Iky1I9V%0AOO2f6pCzP3tbp9JtHmsntvObszJWWE3Q4O9+E65Y98EJhWUrSK714frhU3Ow%0AsOBRjlUV43rMkwqL3GokPJ6RORQcUOd5+uGFr72Y2+7ZPnUoVK6LCksRQYWl%0AiKDCUkRQYSkiqLAUEVRYiggnEdZbJr9IOYwTCAuiwkq7SmoE2Ne7B/YR54Vn%0AXsxcby6bzefA+Q6OF9altm7Oy/tF/UjCQTZIqDfdPH5eLZ+jg5PFwAIbszV1%0AvLAO3zyVBN5YOLwjM5cF9SSvb8/lcAW02mc0Xm3EeFxWWNMemcmXGj9HG1N+%0AXlg9dvi7vGFvT5QCYVkbXIYzAPBmfg5aC9f2WPbOk8oB7y8/Lyymw84bHovm%0AqM8adfE8zFwPYblCUmExNHAS+eczfvkAcxLzvfAAJOxEPZFnh4VmvlM6yDzH%0AKhIYQudSDxVWEDOI647AuTET0FD5dTnm9P2iOZZnB2m//GItghJYYMGnQsMm%0AeZL6X+dYHtL55/055mXCitohz5XQSDXwTouGpqdx3CDOU2GlkGNcUljS+efj%0AcszTwkrZmRPoEp0zX+Mfge9sr3Vuijn0Ouc6uXgoDDHOYyUZXu8QO7VFABVW%0AC/A08qpihvzlzQF8nbBmlz9oruDD6z5OSJHQlxu2dtLvcA4X1qE/GaSIocJS%0ARFBhKSKosBQRVFiKCCosRQQVliKCCksR4XBh/fv75/P3n33jsCxEjtu/KgMr%0A99MC5b62sTAquSAaz4df2NahrT/OKax5590KbMflZ9eD8gr4sBV8GqDUoNqN%0AYImm5vLhZwJ1aO2P03qsGb7LxgytgQa4IJWF4Y4ete+YFpbI77tX5sNn61DR%0AHycX1nYwphBpxAaR0Psqr1IpLKfsPtsJYdn9Uj8M9djj72Izvqxy0Tqs8Poj%0AxYmFhfwkE9s3HsveOW256BXCCnnLKttka56feMc8QIvggoPa0dbyfPhMHSYq%0Aosfhwso9FZq71ne/GDB3IjkNYMxNlwywD8JI6DPfNkjcBDPL4K3I/r57wB6L%0ALWdvIZsPn60DiPVHmNMLixsUFJbfqThXEv/pugKPFf9h3a3tsjx4+l5AWBjI%0AldA3Ygm0FenL/KJusGP58Pk6pPojzPmFRe7Xfyrsy3XPCwtecjZJ3sH9S+32%0APPiwsFxC3iJpj+qWKbKaUB1S/RHjlMKaJq18OK0ck+ueFtb27jX2xuXBx3EH%0ANWdvrqevAsu2HfaIXD/hCyvWHzkuEApLKRWWICSGzLgN5gRtjnC4sLLrWMUc%0A3MnwMPuqijlrTvzXCGt22RWT2VGsQjcd0vpyw9MBWi5CXFgIdam2j/NYypkQ%0AFRYeb3P/e1dOeMo16RIWRBFbqCtz1+knNOW6dAgLk+XUo2dqsZB4v0hUo54I%0AlbPRFwqxWBZzR8mnJIgqk8KhXJr+ORbWbjZuB94s88SiHuuraRQW5kY2zGFD%0A1H/ExzmEQWxB2FNhIECdY30jjcLC/GmanK/3kTgD8T8Kg3fyRtMWxHQ+4MHG%0ArbwrZ6I/FHYiLaxl8bJsj2sMZiqwl91ULvsx7f92YeHhwhbOHZyc9I3DbRMv%0AuwiF+2wu+0HtB1/vsWb4rh5lCHPMQrFM8037dgiVuezM0Pbn+RFhkRC8UDGF%0ACNPZEAq9L/YslcLyyu2xzd/FZntZRS3b9kvzA8JaHjQ2d6z1JvX55BXCinmK%0AZtv01eJcdpBovyA/EwqNl/BDEgmkOHd++ixwRL0NQlbsM982qBNBNpfdIdx+%0AOX5njsWDFhKWP4g4lxsAuqbAY6XzxLe2635DfiGWy76mrsxefmry7j8VtefO%0A54UFDzGbc57OJtpz5xsJtF+SrxbWNEnmw+nU/tz5tLBSeeK9ufPbsu0REE2s%0A/XvwQ6GwlBJhCUPi21kHw1FhbThYWDuHLClUWB5zqClcVxrJKnTRcWV9qbAU%0AEVRYiggqLEUEFZYiggpLEUGFpYigwlJEUGEpIvyUsF68MVxhjHOmsFhZsiEs%0Anz3AC6jJVVPsGkwLrGWb2MuirLN/OWBx+HBh7fujIO8Psgb4L4iyAjMbxNzZ%0ANikvPqTOtT783bJBTjELICEs9yYtyrV3si5Wos22N8+PCcvCfyybEdhqz854%0AgtiYYhCTjmQQeY/lUCsOau8qL61zz/JywpruXNMJSF+BQBpdN1J8uaxtB/qD%0ACPEEszoxgFH7NjQN2nesFlaxXarnpg9Q93ZPe02PZe/Gtt95N+TSejGIrpBi%0AwsoNtl/OghUdz2+8I1JelbB8DxTF3Fyw61/f44kvGgrTd1MyJbjwDxFqhJUa%0AwJGZoOXCojZWekku2wudubaluLCwIqEpASa3xU+FhXOsdOenBljOY9X+JrsB%0AnuvHhRXPF48LoB50tPU2iflKcrARjsZUhikRFq6ZL6F6b38JKEJgsv4zobAo%0AX5zmTrG+REfVeAgWFF+TCGcZ0bUOzAZu+1JfFhm9dsvftm+pd+j66Rwfm4qm%0Apxs5DhfW6AXSI36eOnxnY2BaQlIFJOrAA22cmusDHqyG7xIWXH9HZ7TjhE0W%0AFH5TgTyZZF0w8NH5W4Ca61H3qy+QosGjhDU09FQzeSgzz+PfV7CfXIvtJL6F%0A44WFhpAa2rVFA8l/47dD6FGKOYGwCPuzPK0x3Uxaj/RWis85hKV8HSosRYDP%0A53+ugqlMe8AgPwAAAABJRU5ErkJggg=="><link rel="canonical" href="https://qingjiu.life/%E7%A7%91%E7%A0%94%E6%96%B9%E6%B3%95%E8%AE%BA%E7%AD%94%E6%A1%88.html"><script id="page-configurations">CONFIG.page={sidebar:"",isHome:!1,isPost:!0,lang:"zh-CN"}</script><title>科研方法论答案 | 青酒的代码馆</title><noscript><style>.sidebar-inner,.use-motion .brand,.use-motion .collection-header,.use-motion .comments,.use-motion .menu-item,.use-motion .pagination,.use-motion .post-block,.use-motion .post-body,.use-motion .post-header{opacity:initial}.use-motion .site-subtitle,.use-motion .site-title{opacity:initial;top:initial}.use-motion .logo-line-before i{left:initial}.use-motion .logo-line-after i{right:initial}</style></noscript><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css"><link rel="alternate" href="/atom.xml" title="青酒的代码馆" type="application/atom+xml"></head><body itemscope itemtype="http://schema.org/WebPage"><div class="container use-motion"><div class="headband"></div><header class="header" itemscope itemtype="http://schema.org/WPHeader"><div class="header-inner"><div class="site-brand-container"><div class="site-nav-toggle"><div class="toggle" aria-label="切换导航栏"><span class="toggle-line toggle-line-first"></span> <span class="toggle-line toggle-line-middle"></span> <span class="toggle-line toggle-line-last"></span></div></div><div class="site-meta"><a href="/" class="brand" rel="start"><span class="logo-line-before"><i></i></span><h1 class="site-title">青酒的代码馆</h1><span class="logo-line-after"><i></i></span></a><p class="site-subtitle" itemprop="description">浩瀚书海是我的归宿</p></div><div class="site-nav-right"><div class="toggle popup-trigger"></div></div></div><nav class="site-nav"><ul id="menu" class="main-menu menu"><li class="menu-item menu-item-home"><a href="/" rel="section"><i class="fa fa-home fa-fw"></i>首页</a></li><li class="menu-item menu-item-tags"><a href="/tags/" rel="section"><i class="fa fa-tags fa-fw"></i>标签<span class="badge">8</span></a></li><li class="menu-item menu-item-categories"><a href="/categories/" rel="section"><i class="fa fa-th fa-fw"></i>分类<span class="badge">2</span></a></li><li class="menu-item menu-item-archives"><a href="/archives/" rel="section"><i class="fa fa-archive fa-fw"></i>归档<span class="badge">7</span></a></li></ul></nav></div></header><main class="main"><div class="main-inner"><div class="content-wrap"><div class="content post posts-expand"><article itemscope itemtype="http://schema.org/Article" class="post-block" lang="zh-CN"><link itemprop="mainEntityOfPage" href="https://qingjiu.life/%E7%A7%91%E7%A0%94%E6%96%B9%E6%B3%95%E8%AE%BA%E7%AD%94%E6%A1%88.html"><span hidden itemprop="author" itemscope itemtype="http://schema.org/Person"><meta itemprop="image" content="/images/avatar.png"><meta itemprop="name" content="青酒"><meta itemprop="description" content=""></span><span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization"><meta itemprop="name" content="青酒的代码馆"></span><header class="post-header"><h1 class="post-title" itemprop="name headline">科研方法论答案</h1><div class="post-meta"><span class="post-meta-item"><span class="post-meta-item-icon"><i class="far fa-calendar"></i> </span><span class="post-meta-item-text">发表于</span> <time title="创建时间:2022-03-09 16:00:00" itemprop="dateCreated datePublished" datetime="2022-03-09T16:00:00+08:00">2022-03-09</time> </span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="far fa-calendar-check"></i> </span><span class="post-meta-item-text">更新于</span> <time title="修改时间:2022-03-14 09:24:02" itemprop="dateModified" datetime="2022-03-14T09:24:02+08:00">2022-03-14</time> </span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="far fa-folder"></i> </span><span class="post-meta-item-text">分类于</span> <span itemprop="about" itemscope itemtype="http://schema.org/Thing"><a href="/categories/%E5%9F%BA%E7%A1%80%E7%90%86%E8%AE%BA/" itemprop="url" rel="index"><span itemprop="name">基础理论</span></a> </span></span><span class="post-meta-item" title="阅读次数" id="busuanzi_container_page_pv" style="display:none"><span class="post-meta-item-icon"><i class="fa fa-eye"></i> </span><span class="post-meta-item-text">阅读次数:</span> <span id="busuanzi_value_page_pv"></span></span></div></header><div class="post-body" itemprop="articleBody"><figure class="highlight"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">备注:正确与否不做保证,但尽力保证答案正确,仅供参考!!</span><br></pre></td></tr></table></figure><h3 id="第3章-数值计算方法"><a href="#第3章-数值计算方法" class="headerlink" title="第3章 数值计算方法"></a>第3章 数值计算方法</h3><h4 id="3-1-常用算法和计算机辅助软件"><a href="#3-1-常用算法和计算机辅助软件" class="headerlink" title="3.1 常用算法和计算机辅助软件"></a>3.1 常用算法和计算机辅助软件</h4><h5 id="3-1-1【简答题】"><a href="#3-1-1【简答题】" class="headerlink" title="3.1.1【简答题】"></a>3.1.1【简答题】</h5><blockquote><p>试用你熟悉的程序设计软件设计一个三角追赶法的函数,求解问题为L*Ux=b,要求输入为L、U和b,输出为x。</p></blockquote><p>我的答案:</p><p>1、根据题意,所输入的L、U三角矩阵用向量a,p,q来表示。<span id="more"></span>输入输出格式如下:</p><p><strong>输入</strong>:(以四阶矩阵为例)<br>$$<br>L=\begin{pmatrix}<br>p_{1} & 0 & 0 & 0 \<br>a_{2} & p_{2} & 0 & 0 \<br>0 & a_{3} & p_{3} & 0 \<br>0 & 0 & a_{4} & p_{4}<br>\end{pmatrix}<br>,U=\begin{pmatrix}<br>1 & q_{1} & 0 & 0 \<br>0 & 1 & q_{2} & 0 \<br>0 & 0 & 1 & q_{3} \<br>0 & 0 & 0 & 1<br>\end{pmatrix}<br>,b=(b_{1},b_{2},b_{3},b_{4})<br>$$<br><strong>输出</strong>:解向量x</p><p>2、实现语言:MATLAB</p><p>3、实现代码:</p><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br></pre></td><td class="code"><pre><span class="line"><span class="function"><span class="keyword">function</span> <span class="title">x</span>=<span class="title">ForwardBackward</span><span class="params">(a,p,q,b)</span></span></span><br><span class="line">n=<span class="built_in">length</span>(b);<span class="comment">%n为方程的维度</span></span><br><span class="line"><span class="comment">%步骤1:解下三角方程组Ly=b</span></span><br><span class="line">y(<span class="number">1</span>)=b(<span class="number">1</span>)/p(<span class="number">1</span>);</span><br><span class="line"><span class="keyword">for</span> <span class="built_in">i</span>=<span class="number">2</span>:n</span><br><span class="line"> y(<span class="built_in">i</span>)=(b(<span class="built_in">i</span>)-a(<span class="built_in">i</span>)*y(<span class="built_in">i</span><span class="number">-1</span>))/p(<span class="built_in">i</span>);</span><br><span class="line"><span class="keyword">end</span></span><br><span class="line"> </span><br><span class="line"><span class="comment">%步骤2:解上三角方程组Ux=y</span></span><br><span class="line">x(n)=y(n);</span><br><span class="line"><span class="keyword">for</span> <span class="built_in">i</span>=n<span class="number">-1</span>:<span class="number">-1</span>:<span class="number">1</span></span><br><span class="line"> x(<span class="built_in">i</span>)=y(<span class="built_in">i</span>)-q(<span class="built_in">i</span>)*x(<span class="built_in">i</span>+<span class="number">1</span>);</span><br><span class="line"><span class="keyword">end</span></span><br><span class="line">x=x';<span class="comment">%转置向量</span></span><br><span class="line"><span class="keyword">end</span></span><br></pre></td></tr></table></figure><h5 id="3-1-2【简答题】"><a href="#3-1-2【简答题】" class="headerlink" title="3.1.2【简答题】"></a>3.1.2【简答题】</h5><blockquote><p>试用你熟悉的程序设计软件,设计一个二分法求非线性方程根的程序。</p></blockquote><p>我的答案:</p><p>1、二分法求解思路:</p><p>根据零点定理,若区间中值的函数值小于0,则根在区间右半部分;大于0则在区间左半部分。反复迭代求解直到满足所给误差为止。</p><p>2、实现语言:MATLAB</p><p>3、实现代码:</p><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br></pre></td><td class="code"><pre><span class="line"><span class="comment">%可自定一个非线性方程,以y=x^3-x^2+2x为例</span></span><br><span class="line"><span class="function"><span class="keyword">function</span> <span class="title">y</span> = <span class="title">myFunc</span><span class="params">(inputArg1)</span></span></span><br><span class="line"> y=inputArg1^<span class="number">3</span>-inputArg1^<span class="number">2</span>+<span class="number">2</span>*inputArg1;</span><br><span class="line"><span class="keyword">end</span></span><br><span class="line"></span><br><span class="line"><span class="comment">%二分法求非线性方程根</span></span><br><span class="line"><span class="comment">%输入:</span></span><br><span class="line"><span class="comment">% low:区间下界</span></span><br><span class="line"><span class="comment">% upper:区间上界</span></span><br><span class="line"><span class="comment">% TOL:误差容限</span></span><br><span class="line"><span class="function"><span class="keyword">function</span> <span class="title">BinarySolution</span><span class="params">(low,upper,TOL)</span></span></span><br><span class="line"> a=low;b=upper;</span><br><span class="line"> m=<span class="built_in">ceil</span>(<span class="built_in">log</span>((b-a)/TOL)/<span class="built_in">log</span>(<span class="number">2</span>)); </span><br><span class="line"> <span class="comment">% m为最大迭代次数与区间长度和误差容限有关</span></span><br><span class="line"> <span class="keyword">for</span> k=<span class="number">1</span>:m</span><br><span class="line"> p=(a+b)/<span class="number">2</span>;</span><br><span class="line"> <span class="keyword">if</span> myFunc(p)*myFunc(b)<<span class="number">0</span></span><br><span class="line"> a=p;</span><br><span class="line"> <span class="keyword">else</span></span><br><span class="line"> b=p;</span><br><span class="line"> <span class="keyword">end</span></span><br><span class="line"> <span class="keyword">end</span></span><br><span class="line"> <span class="built_in">disp</span>([<span class="string">'经过二分法求得的根为:x='</span>,num2str((a+b)/<span class="number">2</span>,<span class="string">'%.6f'</span>)])</span><br><span class="line"> <span class="built_in">disp</span>([<span class="string">'共经过'</span>,num2str(k),<span class="string">'次计算'</span>])</span><br><span class="line"><span class="keyword">end</span></span><br></pre></td></tr></table></figure><p>参考链接:<a target="_blank" rel="noopener" href="https://blog.csdn.net/xiaoye_dlut/article/details/111942170">数值分析常见基本算法及MATLAB代码总结</a></p><figure class="highlight"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">备注:正确与否不做保证,但尽力保证答案正确,仅供参考!!</span><br></pre></td></tr></table></figure><h4 id="3-2-线性规划模型的求解方法"><a href="#3-2-线性规划模型的求解方法" class="headerlink" title="3.2 线性规划模型的求解方法"></a>3.2 线性规划模型的求解方法</h4><h5 id="3-2-1【简答题】"><a href="#3-2-1【简答题】" class="headerlink" title="3.2.1【简答题】"></a>3.2.1【简答题】</h5><blockquote><p>用MATLAB求解线性规划问题:</p><p><img src="%0A6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAndSURB%0AVHhe7Z3rteI6DIUpZ2qgi2mCPm4HVMOv6YRiuNqykziO37byAH1rZQ2EYPmx%0AIzm2DnP7KIoAKixFBBWWIoIKSxFhB2G9Po/b7fN42beNvB73z+32oNL2wNT5%0AxsdeNhdej/7+6uP9ed5N+1vrcQmP9X7eP/fnm8VF/4jzfj52sRPk/fzcB9yI%0A7dibqrMCFxAW7p49vcbirSDmvXk9n5/nYR7LeKoR7W4T1uvxud2f1AkIT6Yi%0A8CrBweA70Hqa+bUTalI9CDsl10lgPYfbnnUbaRAQnqkf+ofBQu1FM0OhUNw2%0A4DZTHci+3+e19huE5d3R7gDYii3Vma71xDRdw8LJhDe6xjQmhrnLTLne0S1G%0A1NnzlraNT/IsqVrVQ+14GkvROZaYbQOL50HthW07rqt6VNhv81iugGKvJ/ic%0A77HMR5v3AdDYpK6qqRPiCx1tXxvwfbdOU3n+daDC1otCoC0zPnn3bQPvRt9Q%0AXgf0tVsG6rEuM2Cfx9CU5157cmGhIaEBc6kYvGpC9o29bYfn6pkGg+jXfyuU%0Are03eQ9jN+BdKzEeaykhLCzv3JumQfyC7Duh8dzCwufd4uggEIZfDxpIhHB0%0AIjqVP+4XlkvMY4VtL3Q/Na/GA0Jdl5e0T9+1kZxpEJZRLe6ox8t9jbLNBG9R%0A/fL5jTr+Mb1m8bmfhWM2yttdV+g4riMdjvE3n193+mPuSVlhpW0v4Iky1I9V%0AOO2f6pCzP3tbp9JtHmsntvObszJWWE3Q4O9+E65Y98EJhWUrSK714frhU3Ow%0AsOBRjlUV43rMkwqL3GokPJ6RORQcUOd5+uGFr72Y2+7ZPnUoVK6LCksRQYWl%0AiKDCUkRQYSkiqLAUEVRYiggnEdZbJr9IOYwTCAuiwkq7SmoE2Ne7B/YR54Vn%0AXsxcby6bzefA+Q6OF9altm7Oy/tF/UjCQTZIqDfdPH5eLZ+jg5PFwAIbszV1%0AvLAO3zyVBN5YOLwjM5cF9SSvb8/lcAW02mc0Xm3EeFxWWNMemcmXGj9HG1N+%0AXlg9dvi7vGFvT5QCYVkbXIYzAPBmfg5aC9f2WPbOk8oB7y8/Lyymw84bHovm%0AqM8adfE8zFwPYblCUmExNHAS+eczfvkAcxLzvfAAJOxEPZFnh4VmvlM6yDzH%0AKhIYQudSDxVWEDOI647AuTET0FD5dTnm9P2iOZZnB2m//GItghJYYMGnQsMm%0AeZL6X+dYHtL55/055mXCitohz5XQSDXwTouGpqdx3CDOU2GlkGNcUljS+efj%0AcszTwkrZmRPoEp0zX+Mfge9sr3Vuijn0Ouc6uXgoDDHOYyUZXu8QO7VFABVW%0AC/A08qpihvzlzQF8nbBmlz9oruDD6z5OSJHQlxu2dtLvcA4X1qE/GaSIocJS%0ARFBhKSKosBQRVFiKCCosRQQVliKCCksR4XBh/fv75/P3n33jsCxEjtu/KgMr%0A99MC5b62sTAquSAaz4df2NahrT/OKax5590KbMflZ9eD8gr4sBV8GqDUoNqN%0AYImm5vLhZwJ1aO2P03qsGb7LxgytgQa4IJWF4Y4ete+YFpbI77tX5sNn61DR%0AHycX1nYwphBpxAaR0Psqr1IpLKfsPtsJYdn9Uj8M9djj72Izvqxy0Tqs8Poj%0AxYmFhfwkE9s3HsveOW256BXCCnnLKttka56feMc8QIvggoPa0dbyfPhMHSYq%0Aosfhwso9FZq71ne/GDB3IjkNYMxNlwywD8JI6DPfNkjcBDPL4K3I/r57wB6L%0ALWdvIZsPn60DiPVHmNMLixsUFJbfqThXEv/pugKPFf9h3a3tsjx4+l5AWBjI%0AldA3Ygm0FenL/KJusGP58Pk6pPojzPmFRe7Xfyrsy3XPCwtecjZJ3sH9S+32%0APPiwsFxC3iJpj+qWKbKaUB1S/RHjlMKaJq18OK0ck+ueFtb27jX2xuXBx3EH%0ANWdvrqevAsu2HfaIXD/hCyvWHzkuEApLKRWWICSGzLgN5gRtjnC4sLLrWMUc%0A3MnwMPuqijlrTvzXCGt22RWT2VGsQjcd0vpyw9MBWi5CXFgIdam2j/NYypkQ%0AFRYeb3P/e1dOeMo16RIWRBFbqCtz1+knNOW6dAgLk+XUo2dqsZB4v0hUo54I%0AlbPRFwqxWBZzR8mnJIgqk8KhXJr+ORbWbjZuB94s88SiHuuraRQW5kY2zGFD%0A1H/ExzmEQWxB2FNhIECdY30jjcLC/GmanK/3kTgD8T8Kg3fyRtMWxHQ+4MHG%0ArbwrZ6I/FHYiLaxl8bJsj2sMZiqwl91ULvsx7f92YeHhwhbOHZyc9I3DbRMv%0AuwiF+2wu+0HtB1/vsWb4rh5lCHPMQrFM8037dgiVuezM0Pbn+RFhkRC8UDGF%0ACNPZEAq9L/YslcLyyu2xzd/FZntZRS3b9kvzA8JaHjQ2d6z1JvX55BXCinmK%0AZtv01eJcdpBovyA/EwqNl/BDEgmkOHd++ixwRL0NQlbsM982qBNBNpfdIdx+%0AOX5njsWDFhKWP4g4lxsAuqbAY6XzxLe2635DfiGWy76mrsxefmry7j8VtefO%0A54UFDzGbc57OJtpz5xsJtF+SrxbWNEnmw+nU/tz5tLBSeeK9ufPbsu0REE2s%0A/XvwQ6GwlBJhCUPi21kHw1FhbThYWDuHLClUWB5zqClcVxrJKnTRcWV9qbAU%0AEVRYiggqLEUEFZYiggpLEUGFpYigwlJEUGEpIvyUsF68MVxhjHOmsFhZsiEs%0Anz3AC6jJVVPsGkwLrGWb2MuirLN/OWBx+HBh7fujIO8Psgb4L4iyAjMbxNzZ%0ANikvPqTOtT783bJBTjELICEs9yYtyrV3si5Wos22N8+PCcvCfyybEdhqz854%0AgtiYYhCTjmQQeY/lUCsOau8qL61zz/JywpruXNMJSF+BQBpdN1J8uaxtB/qD%0ACPEEszoxgFH7NjQN2nesFlaxXarnpg9Q93ZPe02PZe/Gtt95N+TSejGIrpBi%0AwsoNtl/OghUdz2+8I1JelbB8DxTF3Fyw61/f44kvGgrTd1MyJbjwDxFqhJUa%0AwJGZoOXCojZWekku2wudubaluLCwIqEpASa3xU+FhXOsdOenBljOY9X+JrsB%0AnuvHhRXPF48LoB50tPU2iflKcrARjsZUhikRFq6ZL6F6b38JKEJgsv4zobAo%0AX5zmTrG+REfVeAgWFF+TCGcZ0bUOzAZu+1JfFhm9dsvftm+pd+j66Rwfm4qm%0Apxs5DhfW6AXSI36eOnxnY2BaQlIFJOrAA22cmusDHqyG7xIWXH9HZ7TjhE0W%0AFH5TgTyZZF0w8NH5W4Ca61H3qy+QosGjhDU09FQzeSgzz+PfV7CfXIvtJL6F%0A44WFhpAa2rVFA8l/47dD6FGKOYGwCPuzPK0x3Uxaj/RWis85hKV8HSosRYDP%0A53+ugqlMe8AgPwAAAABJRU5ErkJggg==" alt="图"></p></blockquote><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br></pre></td><td class="code"><pre><span class="line"><span class="comment">%1、初始化输入参数</span></span><br><span class="line">c=[<span class="number">-5</span>,<span class="number">-4</span>,<span class="number">-6</span>]</span><br><span class="line">A=[<span class="number">1</span>,<span class="number">-1</span>,<span class="number">1</span>;<span class="number">3</span>,<span class="number">2</span>,<span class="number">4</span>;<span class="number">3</span>,<span class="number">2</span>,<span class="number">0</span>]</span><br><span class="line">b=[<span class="number">20</span>,<span class="number">42</span>,<span class="number">3</span>]</span><br><span class="line">lb=[<span class="number">0</span>,<span class="number">0</span>,<span class="number">0</span>]</span><br><span class="line">ub=[]</span><br><span class="line"><span class="comment">%2、使用linprog求解</span></span><br><span class="line">[x,fval]=linprog(c,A,b,[],[],lb,ub)</span><br></pre></td></tr></table></figure><p>答案:</p><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br></pre></td><td class="code"><pre><span class="line">x=[<span class="number">0</span>,<span class="number">1.5</span>,<span class="number">9.75</span>] </span><br><span class="line">fval=<span class="number">-64.5</span></span><br></pre></td></tr></table></figure><h5 id="3-2-2【简答题】"><a href="#3-2-2【简答题】" class="headerlink" title="3.2.2【简答题】"></a>3.2.2【简答题】</h5><blockquote><p>用MATLAB求解线性规划问题:</p><p><img src="%0A6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAApHSURB%0AVHhe7Z3rsYO6DoV3OaeGdHGaoI/bQarh1+kkxeRqyQaM8RNk84i+GWYIAT/k%0AZdmxtdl/X0URQIWkiHB5IY3D6/v3N3xH+1mKcfj7DtKJRvl8368/qgeO1/f9%0AsZcfxKWF9Hm/vi+yOsQkavzP+/uiRu0lpM97mMsPAf+93iStZ3FhIaEXy3si%0AML7f33dXj+TAIm5RL7LXcJ5Ay4Q0DtyLRvIQcM/wEvAW07kP9zp243Rway2u%0AfRjH7xB5bgb5rZ4XhNJGkv7Qtq4PGoU+t/AcEJKXrkzeeSG1rGOBkEzDzwWw%0Aw8Jy7vUu11Cr75EOhiiqwLtAHNTgpsIpKK157uEdQQEueQfnSLa8b/JYEsYN%0AEqvX4bzzQmIa1bHMI7mCiJ37zF7F+Z7vL5vvoPeU3FfFSEOaTTM82YYw3Xwn%0AoYbqWCtiQJ0p6gH8vIHXiTckylCaD7eJeSbfceM0EJKtPBsT58731JAvqniZ%0Apwk1nk9dY66GXHusy2LS214rKUuecUils837Q17D3O/ZMQg9XzRH8vKhEcKc%0ApUSeR1xIPA7PjegYAPfydVQk423me9sR8kgjNcQITwqDwsBcRhkhwS5zflS/%0AwTNAOO+F/C/XMiFF86Eylcw4YhQIySgYvXcY3XNjHO7ZbouwuJYezwc1xIDn%0AzEP2+3jjrIzeCFdIHx6Gp4aC+Cn/2arHhbT1hIso0nkv4JdmWiRpIaXymct3%0AwOhlHqkz6SGgN8eFdBgSQeuOdbSeFxKSrUjA7Z/LyUKCJ2mvIibv9eJcTEjk%0AXg9M+Fowu/0TyjVPHezRQk/usHsk/UsObcr9UCEpIqiQFBFUSIoIKiRFBBWS%0AIoIKSRHhJCF9RGNhlPM5QUgQEVawayRkFyt54Sy3eakA7K29Iruw6431iWM2%0A7i+kHVsgvxDzLMVnJPuSIBA9EbJRcKOdOGrj/kI6ugHJ0QMnb6JWAy/cWPwf%0AxBNBQG/y9vZahLBHcthh43sKyestUy8zwVry86/j6eeFdCQPfpY3vO2FDEVC%0AerxH4rE/UEXbi5rFWx9Kv9AjHcjjA49Ec893gZqyQorZOMHNhAT3HTMyNdYc%0AeYlzTBpj7nn6PnBEC+emDxAcZp4JGz2RR1EdLCwu81xJ4/IcKSOotJBSNo5z%0AKyHVxTzjs+Rcap1+l3hqgHBYPqlrYBZU1a82w96gwtsICZWfn6Nemo95lhVS%0AKqa6eTw1oDpHdFFNTEg5G6e4hZDc4CtzLA0Xj0WWEVJJTHXLeGow1z9iuK19%0A7BG6n/Pafp+ycQn3m2wXI+uRojytPjtRIR0BvbtPZZgjMdWteayQZle94xdI%0ACTzPcIaCVnVyh5yOmq2mu5DcpXjlOaiQFBFUSIoIKiRFBBWSIoIKSRFBhaSI%0AoEJSRLiNkNwFwJJwCjmwQj4tCtbtP8nQLn+8XBbvvCohZ/+bCMlsZPJzHJ/T%0Ar0Hd8vIqc6OV8hht8zfvMEd0ZTogLm//ewiJCz/tmzmVOgz19oLwjplVOU6g%0AVf6fkeyQEFSB/W/ikax7x2bTuA4DnVyuuQZhwCCl4tghJCftY3nvwMsfiJYB%0A4bqcli/VuP0nbjTZNpUM7rbbHlMf61wppJARd+e9g0gjSpQhH6KbsD9xESFZ%0AxaOg/mELbp6z9216HK677nZKLzQMJPJK9mQyZPB7P29gjU5HsOFTZYg0VDx/%0A4JWBhWXSC+fvUPhHA2n732mONBfeVGZtb3NtbTRcy80n6J5CjxSPZd7mXRfP%0AXUZVvDrCdPkkJT6UEyE9BbXP2v+2k+11RcKxznJCwjxkzo/K4sYyJ+OsCYn/%0A7JTKH0TLQPeKxHln7A9uM0eaJpWuu07HOssIKRbLXBLLDY5GNcbyB6kyzM/5%0ALe6wTdsegWdC9ne50WS7lhIhNYYaOtGOHehng+5C+u/ff77//mc/NOVkIcFb%0AnKsiplec92OFNLvtxGSzFe4wgKO3ntwhq1feD/ZISk9USIoIKiRFBBWSIoIK%0ASRFBhaSI0F1I/RYklZ6okBQRfnRow6r3tGi37F09jWVhtH0df1JIrlfkVeAT%0AVr+b40QJsKAaL3GLCwmNlCry5SbbqxCJo+SjCU5hrH9LbS2iQkK4Zu7/9eeE%0A1h0IyfFI03BgDA9h0Odij5UX0rH090B5iAQlpakSEkQQC+Es2yi8YI8N9Vbr%0ApZrFgO9Kn9Ke53XeETW4CULDPRfySKhIatKGQie8Df/JS49fbDUGpzIHvYFf%0A1ynNUP0S+UU9TcCWLC7znHSjGy/YdiSoG9qoskNM/cn4G4go/E9WzqQmDttc%0AyzUG3VPkcQPpI0SWT1Li9oQ6HVG7T2Q6uQD1cyRE/W16jKlksj7dPFIZ6KVz%0AedFBnIK1jgHv9T7tmWQnl6FQSDCQNSJcsN9j2C3T93OvioHGyBu6NdtYZTPM%0AtI4BP/o+7RqmSb1UejkKhYRK20Kh8rNtzbg+/A+9C5NH+8V0PVD++65slwhJ%0Agl75yFI/tB1EhZTnyu/TjqFCKmQedhoNzWXLJ9dFhaSIoEJSRFAhKSKokBQR%0AVEiKCCokRQQVkiKCCkkRQYV0C9wtqmsuWqqQ7sA4rrZm9v5L9ZaokIKkd/HP%0A5Zple6yQnhd7bfls3yF5BZ7tkWyc1LVirwGlvzPa8aoevbuQ+v45Ehqsc+y1%0AMzGWjr3m/C465D58jmTE0TP2uuwd2+a5jWBxJD0SpXnRGJNHC+nU2GtC4h3b%0AKyivq8YqPVJIZ8deT0hHOl7xZ//Ew4e2ECVCEuDC3qMFKqQWwGP9koqInxNS%0A69jr1Z8B0fErevpBj6S0QIWkiKBCUkRQISkiqJAUEVRIiggqJEUEFZIiws8I%0AaeQXa1VkbF/Ns+yppUjt9MvAC53J1U2s2E8LofkyLwunzp7hgUXa7kI67/XI%0Any924/k9TllBmY1YNrANXos3oXOvDz9bIsQ0c6MnhOR2UF69T4mCyhV8B3e2%0ArnF+SEgWfgVhRlCrvTLT02NtiEZLOgoh8h7JoUYQVNdVvNbOfcLbCGnqlWIx%0A0iQoRDK+AuEffqNBLMFoRzRYtAx2qBHa06sWUlG+VMZN/VHuei96L49ke1p9%0AjPQavFh+wItRIx4JjeYKJyakXOP66SxYkfEcxTsi6VUJyfcyQUxHQp7+vXu8%0A7M2GtnxvSQZ/wQslBDRRI6RUg0lGSJYLiepY4QU5XW8YzNUrxA2FFBlmMmAy%0AWvyrrXCOlDZ4qkHbeaT6KEp4ph8TUjpGOt7g9cC41psk5hvJxsXwIlMYpkRI%0AuGe+hcpd9Pdvgcn1Y4e20hjpL819YraDcWo8AAuI70kMTxmR1TZGFK7/Ul4W%0AFZ276W/rt5Tbv3/6zMemkPnpQ4ibDW1pznitcLj3ojFqh5hKSMShvhSl9P6A%0AhyrhOUKCK99hgOM4wyALiIZfeKqWZUFjR+dfAUrvR7nvsiCJStW6zRJEh5Jq%0AJg9k5mlY7DytKLvZTrpr6C8kFJhaXEZL1HD892cdhhIlyQlCIrCeg54r4ELM%0AJPNMb6SAc4SkPA4VkiLA9/t/gISZUXjQIbQAAAAASUVORK5CYII=" alt="图"></p></blockquote><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br></pre></td><td class="code"><pre><span class="line"><span class="comment">%1、初始化输入参数</span></span><br><span class="line">c=[<span class="number">4</span>,<span class="number">-2</span>,<span class="number">1</span>]</span><br><span class="line">A=[<span class="number">2</span>,<span class="number">-1</span>,<span class="number">1</span>;<span class="number">-8</span>,<span class="number">2</span>,<span class="number">-2</span>;<span class="number">-2</span>,<span class="number">0</span>,<span class="number">1</span>;<span class="number">1</span>,<span class="number">1</span>,<span class="number">0</span>]</span><br><span class="line">b=[<span class="number">12</span>,<span class="number">8</span>,<span class="number">3</span>,<span class="number">7</span>]</span><br><span class="line">lb=[<span class="number">0</span>,<span class="number">0</span>,<span class="number">0</span>]</span><br><span class="line">ub=[]</span><br><span class="line"><span class="comment">%2、使用linprog求解</span></span><br><span class="line">[x,fval]=linprog(c,A,b,[],[],lb,ub)</span><br></pre></td></tr></table></figure><p>答案:</p><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br></pre></td><td class="code"><pre><span class="line">x=[<span class="number">0</span>,<span class="number">7</span>,<span class="number">3</span>] </span><br><span class="line">fval=<span class="number">-11</span></span><br></pre></td></tr></table></figure><figure class="highlight"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">备注:正确与否不做保证,但尽力保证答案正确,仅供参考!!</span><br></pre></td></tr></table></figure><h4 id="3-3-非线性规划模型求解方法"><a href="#3-3-非线性规划模型求解方法" class="headerlink" title="3.3 非线性规划模型求解方法"></a>3.3 非线性规划模型求解方法</h4><blockquote><p>编程求解下列非线性数学规划模型:</p><p><img src="%0AAAAmAAAI5gEAAAMAAAABC6AAAAEBAAMAAAABD4AAAAECAAMAAAADAAAJDAEP%0AAAIAAAAHAAAJEgEQAAIAAAAJAAAJGgESAAMAAAABAAEAAAEaAAUAAAABAAAJ%0AJAEbAAUAAAABAAAJLAEoAAMAAAABAAIAAAExAAIAAAAmAAAJNAEyAAIAAAAU%0AAAAJWgITAAMAAAABAAEAAIdpAAQAAAABAAAJboglAAQAAAABAAAUmqQLAAcA%0AAAAEaXBwAOocAAcAAAgMAAAA2gAAFXYc6gAAAAgAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAFdpbmRvd3MgUGhvdG8gRWRpdG9yIDEwLjAuMTAwMTEu%0AMTYzODQAAAgACAAISFVBV0VJAABFTUwtQUwwMAAAAAAASAAAAAEAAABIAAAA%0AAVdpbmRvd3MgUGhvdG8gRWRpdG9yIDEwLjAuMTAwMTEuMTYzODQAMjAyMDox%0AMTowOSAyMTo0MDowOAAALAENAAcAAAAAAAAAAIKaAAUAAAABAAATkIKdAAUA%0AAAABAAATmIgiAAMAAAABAAIAAIgnAAMAAAABAUAAAJAAAAcAAAAEMDIxMJAD%0AAAIAAAAUAAAToJAEAAIAAAAUAAATtJEBAAcAAAAEAQIDAJECAAUAAAABAAAT%0AyJIBAAoAAAABAAAT0JICAAUAAAABAAAT2JIDAAoAAAABAAAT4JIEAAoAAAAB%0AAAAT6JIFAAUAAAABAAAT8JIHAAMAAAABAAUAAJIIAAMAAAABAAEAAJIJAAMA%0AAAABABgAAJIKAAUAAAABAAAT+JJ8AAcAAABkAAAUAJKQAAIAAAAHAAAUZJKR%0AAAIAAAAHAAAUbJKSAAIAAAAHAAAUdKAAAAcAAAAEMDEwMKABAAMAAAABAAEA%0AAKACAAQAAAABAAALoKADAAQAAAABAAAPgKAFAAQAAAABAAAUfKIXAAMAAAAB%0AAAIAAKMAAAcAAAABAwAAAKMBAAcAAAABAQAAAKQBAAMAAAABAAEAAKQCAAMA%0AAAABAAAAAKQDAAMAAAABAAAAAKQEAAUAAAABAAAUkKQFAAMAAAABABsAAKQG%0AAAMAAAABAAAAAKQHAAMAAAABAAAAAKQIAAMAAAABAAAAAKQJAAMAAAABAAAA%0AAKQKAAMAAAABAAAAAKQMAAMAAAABAAAAAOocAAcAAAgMAAALhOodAAkAAAAB%0A///0EgAAAAAc6gAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJi%0AWgA7msoAAAAAtAAAAGQyMDIwOjExOjA5IDIxOjE5OjA5ADIwMjA6MTE6MDkg%0AMjE6MTk6MDkAAAAAXwAAAGQABI/dAAAnEAAAAKkAAABkAAAAAAAAAAEAAAAA%0AAAAACgAAAKkAAABkAAAPbgAAA+gjIyMjCgAAAK7IMwEAIgAAAAAAAAAAAAAA%0AAAAAAAAAAFIBAAD/////////////////////////////////////////////%0A////////////////////////////////////////MTk4NjAxAAAxOTg2MDEA%0AADE5ODYwMQAAAAEAAgAHAAAABDAxMDAAAAAAAAAAAABkAAAAZAAAAAoAAAAB%0AAAAABAICAAAAAQACAAAAAk4AAAAAAgAFAAAAAwAAFRgAAwACAAAAAkUAAAAA%0ABAAFAAAAAwAAFTAABQABAAAAAQEAAAAABgAFAAAAAQAAFUgABwAFAAAAAwAA%0AFVAAGwACAAAABEdQUwAAHQACAAAACwAAFWgAAAAAAAAAGQAAAAEAAAAyAAAA%0AAQEOPxwAD0JAAAAAcgAAAAEAAAA2AAAAAQKU/zMAD0JAAAAAAAAAAGQAAAAN%0AAAAAAQAAABMAAAABAAAACAAAAAEyMDIwOjExOjA5AAAAAAAGAQMAAwAAAAEA%0ABgAAARoABQAAAAEAABXEARsABQAAAAEAABXMASgAAwAAAAEAAgAAAgEABAAA%0AAAEAABXUAgIABAAAAAEAAA2YAAAAAAAAAGAAAAABAAAAYAAAAAH/2P/bAEMA%0ACAYGBwYFCAcHBwkJCAoMFA0MCwsMGRITDxQdGh8eHRocHCAkLicgIiwjHBwo%0ANyksMDE0NDQfJzk9ODI8LjM0Mv/bAEMBCQkJDAsMGA0NGDIhHCEyMjIyMjIy%0AMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/A%0AABEIAGoAoAMBIQACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUG%0ABwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEU%0AMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJ%0ASlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOk%0ApaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy%0A8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1%0AEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJ%0AIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZ%0AWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqy%0As7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/%0A2gAMAwEAAhEDEQA/APY2kqBpKQyJpPeomegCut0kv3DuXAYMPukHpg96aZ18%0AzZn5iNwGevr/AE/MUgEMoHBI5qCW8EU8cbI+JMgPxtBAJwec9Ae2OKAHrMrj%0AcjBh6g5oEwLlM/MACR7HP+BoAhjv4nMoZ1Ty32Hc464Bx9eamjlc7i/97jjH%0AFACpcrIjNEQ2CR6cg4/mKZBqCSrHuIV3JAVTu6HHp/nn0NAFozBFLMwVR1JP%0AFEd7E9v56uDHtySOf5UASxTM77gW2Y4yP8mpkuozL5W9d4GcZ5pgTJOpkKA/%0AMBk8VZSTmgCm71Cz0AZZ06MMW3DkbThccfJ/8QPzNO8gxJN5TKJJRyccZ9f/%0AAK3+JouAxoE8uWEYEUgAKgdOMflgCmiFVmjk7xoUTHHBwT/6CKVwGyRRyTLK%0AwJdeh3EVHJE0k4lFxKoC7dgC4/UZ9O/agBlrAbTESOTAkSRoGbJGM/0I/KnR%0A21vFcvcxwRrM4wzqoBP4/wCelACPbJIuJJJHO4Nuzg8HI6Y6VLCGjjKu5fLM%0A2T6EkgfhnFACpFHHG0aDYrEk7TjknJ/nS+RH1UYYZ2kk4yc54z6n/OKAJ4f3%0AcSoSCQMZAxmnhE8oRbfkAAxnt6UAOhjETsV2gEAAAc8ep71ZUjdu7kYoAdsQ%0AkkDDNwT1NWoyN+7J5wOtMCqzVCzUgK8kjAqFXOTzk4wPWoY7lJ0LxkkAlTkE%0Acg4PX3oGQrexveyWoz5kaK59MMWH5/L+oqsmofPsmADNMYozGGYMQuTzjsdw%0A/wCAnpyACHxM8VsDcSFnGSzHHr7flUbX8K2qXLFvLfaBhST8xwOB7mgZN5gK%0A5z9aghvVureSSE7drMmZVIAKkgn6cf8A6qQEUd85jjimULcOjuMAqpCnGeeV%0AzleOoz7VPLc/YrEzTF5PKjyxVck4HPQUAPlvI4YFlYPtZlUDbzliAOD7kVOk%0AgZcgg4689KAILbUlunQIuxWJA8xtrNjuo/iH40+a9eGeSMBSAIscdC7lefpj%0ANMRatJ2miLMACHdeO+1iM/pVtWoAlVqnRuRQBVZxmoGcUAVpJMXMaeqMfyK/%0A41AtvBDKrxRrHgMNqKADuIJP1+UUDFwgkaQKA7AAtjkgZwP1P5moEt7WL/V2%0A8SYO4bUA59aQCRBYYEiUkqihQT1IFI6wyoI3jRlHRWXI9KAGxIsJk+YsZHLE%0AkD6Y4A6AAUrRwvC8LxI0T53IVBVs9cj3oAiFjaRxhYbeKDaCEaONQUz6ccVO%0AFQQiIgFNu3BAwR9KAFeOKYASxo4HZlBp0KLE0hDEmRtzZPfAH9BQA9YoRMZh%0AGglIwzgYJ+p71LtiLMxRNzABjgZIHQGmBIqR7kYKoKAhcDoD/wDqqdW5oETK%0A1To3IoAqN1qFqAM+d8avbqTgG3mJ/Bo/8aWG4W6j3qCvbDEZ9OxNAESXayXU%0AluEkBQZLNEwX8CRg/gapQXq39zG0X7tFMqFHkwzFWCkhRkEA9zg9Ox5Bkv2y%0ANr9rPbLvVQ27ym285/ixjt60yHUIJbqW3zskjfyyGYfM2N2Bzk8c/j7HCAfL%0AcolzHCyyFn6FY2IH1IGBUF3dndNbRMEmVFbe7bFG4kDnn0Pb2oAtSyhMZDH/%0AAHVLfypklysLwIytmZtqYHfBP4cA/lQBM86RwNMclAu7KjOfpjrUdrerdSFF%0AXYVUFkdh5i56ZUdB9aAIX1KdJZojEFkQM4DrgbAM5yCQc8emOeK1Y2LIrYIy%0AM4PUUwJU4qZTzQIlUnNToeRQBCxqFjQMzJ/+Q9aen2Wf/wBCiqyQAxYDk0gI%0AyartbxfaEn2ASIjIpHYMVJ4/4CPyoAccZzjk8ZqAwJvRk+TaclVAAbjHPFIZ%0AIcZyRyO9QT2sUyOMCNnGGdVXJHGRyDwcYoAsZpjwxSsGeNGZfusVBI+lMQ6G%0AJYovLBJGSTuOc5OT/OnQ28MBPkxrGD1CDA/LpmgBwtrfyxH5MewdF28DjH8u%0APpUyRqsryDO5wAeeOOnH40ATKalU0ATKanj6imIheoWoGZ12MXscu51CW03z%0ARruYcoeBg5PHTB+lUo9Qlt1QXKStCY5ZnneNgY1ViQrAL12+/O09cjIIl1K7%0Ams7dZIbZ7hmljQqmOAzAE8kdj/jxmory7dJEt41AklQ/McnYe2QvX+I9R936%0AkIYk0r2OlNKFa4aGHPBwXwvue+PeotQuvIFuBcRwSSyKFSQj5uRkdewz074+%0AhAJLe+iuc4+Q7yihmGWI9MH05+lD3ix6hFaFJC0iM4YIxAwR3xjv6/zoAPt0%0AH22S1LbXRVYkkAfMcDvnJIP5e4yt5fR2XlB0kdpW2qEGT9celAD1uwLQTMYs%0AklRtkyuc4+9j86qWGrSXbw7o12uwjOznDeUJC3sOcY+nNAGxUgoAkWpVoETL%0AU8fUUwKskUn2nzRK23bt8s/d6jn6/wCfXMMcTxPLzlXctksSecevTvxQBEFf%0A7XIzkFdo2AD7o75+pA/w4yWSNFKZIG2SfL88ZweDnqPQ80hiHmmMNykeoxQB%0AHwoCjoBxRSAieNWlR2zuTOMMcc+3enZGc4oAa0KP1QDPJwBzzn+dPdUlQpIi%0AurdVYZBoAdGiRoEjQKo6ADAFOWGJW3LGiseMhQPQf0H5CmAsMawxJFGMIihV%0AGc8CpwKAJVqVRQBMoqdByPrTENcVAwoGVXYrLNtQuwRCAMZ6t6kVWtHlkUG4%0AjMdyY1aRMjCk54GCfQ96BEMLXfmXZuI0VA/7na27K7R7Dvn/ADim2ss0kUa3%0AKbJjGGcAYAPcDk9D/MUhiGS4+2eX9nPk/wDPXcPT069eKgaQjUnJlkWKOIl1%0AaM7CflIIbHYZ79/bgAt8HkYINGKQBtpQKAHAU8CmA4LUoFAEgFSqKAJlFTIO%0ARTEDrULLQBQUH+07hfSGM/q9SMpoAik2xozuwVVBLMTgAetRqEcCWMqyuAQ6%0A87h259OaQw28mo2TOQRkH1oAaUOaUrzQAFTmlIoAUA08ZpgOGelSrQIlUVKt%0AAEq1Og6UwHutQMKQGbLbmW+uk3FQ8ESkjrjc+ce+KkiR0VkccKQFbOdwwOep%0APXNAFZba4hgk2zm4lPKCfaqg5JH3V+n5VT8q8tITJsTCIf3SMW3Mcc8IDyS2%0ASB749AZNfQzSIiwZDhtwbJAGPXDA4/P6VG0FydM8uYebOR820g559cKP0pAT%0AhszNHscbQDuI4Oc8D34/UU7bQAu2jZmgBwSnBOlMBwSpFSgRKEqRUpgTKhqd%0AE5FAErJUDJSApyeXFcyO7Kg8pcljgYBb/GlKggMORjPFAEEckcxIRvmABKkY%0AYZ9QeR+NRwyx3KbozkEAjI6gjIP0IoGOZKaU5pAMconLsqjpljimoYpE3pIj%0AKDjKkEUwHqoYZBzShOM0CHBKeFoAcI6kCUASBKlVKAJVSp0TmmBO6VCyUAVr%0Ai2SeJ4pASjjDAEjI/CohblPM+diHORk/d4A/pn8aQFeKwihmMwBaZl2tIeCw%0A98YB+uKjisRbIiwnCjap3c/KFwB/n1NAEcFkLU7Y87GLM3A5JOfrTGtbjzUm%0A81SyxlSiggMxxz146e/U0ATSQsyEZIyOdvB/PtUE1mxtRDGe4x2AA7cY9Ova%0AgBI7WWO1mjTeGJIiLMSRwADyfWlsop0hHnlndjnO3aAMfX/6+T6UAXBHzThH%0AQA8R81II6AJBHUqpzTAlVKnRKALDAegqFlHoPyoAjZV9B+VRsq4+6PyoAYyr%0Aj7o/KmFVx90flSGN2Lj7o/Kk2Lg/KPyoATYv90flQEX+6PyoAXYv90flRsX+%0A6PyoEOCL/dH5UoRf7o/KgBwVf7o/KnhV/uj8qAJFVf7o/Knqo9B+VMCUKPQf%0AlUqgegoA/9n/4AAQSkZJRgABAQEAYABgAAD/4TGwaHR0cDovL25zLmFkb2Jl%0ALmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49J++7vycgaWQ9J1c1TTBN%0AcENlaGlIenJlU3pOVGN6a2M5ZCc/Pg0KPHg6eG1wbWV0YSB4bWxuczp4PSJh%0AZG9iZTpuczptZXRhLyI+PHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3%0ALnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj48cmRmOkRlc2Ny%0AaXB0aW9uIHJkZjphYm91dD0idXVpZDpmYWY1YmRkNS1iYTNkLTExZGEtYWQz%0AMS1kMzNkNzUxODJmMWIiIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNv%0AbS94YXAvMS4wLyI+PHhtcDpDcmVhdG9yVG9vbD5XaW5kb3dzIFBob3RvIEVk%0AaXRvciAxMC4wLjEwMDExLjE2Mzg0PC94bXA6Q3JlYXRvclRvb2w+PC9yZGY6%0ARGVzY3JpcHRpb24+PC9yZGY6UkRGPjwveDp4bXBtZXRhPg0KICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0ACiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0ACiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0ACiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFj%0Aa2V0IGVuZD0ndyc/Pv/bAEMAAgEBAgEBAgICAgICAgIDBQMDAwMDBgQEAwUH%0ABgcHBwYHBwgJCwkICAoIBwcKDQoKCwwMDAwHCQ4PDQwOCwwMDP/bAEMBAgIC%0AAwMDBgMDBgwIBwgMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM%0ADAwMDAwMDAwMDAwMDAwMDP/AABEIARsBqgMBIgACEQEDEQH/xAAfAAABBQEB%0AAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0B%0AAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUm%0AJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOE%0AhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU%0A1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAA%0AAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEG%0AEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3%0AODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqS%0Ak5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri%0A4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/AP2nu7w72+Zup71TkvW7%0As351Fd3OZG/3jVOe5IrM0Jpb1gfvN+dVbi9Yj77fnUEtyeaqTXFAFmW8YfxN%0A+dVpL5j/ABt/30arzXGTVeW4yaALUl82377f99VWe+cD/WSf99Gq0s/H9arv%0AP70AWptQkB/1j/nVeS9kIOZH/wC+jVeSfFV5J+T39KALTaixPEkn/fVR/wBo%0ASY/1j/8AfVU5J8fjWNZ+PNH1Nr9bXVtPuG0vIvBHcI32TGc+Zg/Lja3XH3T6%0AVIG/JfSH/lpJ/wB9GoZdRkI/1kn/AH0azbHWo9W06G6h3+TcIske9CjFSMgl%0ATyMg55GaGuMnGf1oQFw6lIf+Wkn/AH0aYb9yc+ZJ/wB9GsSLxTa3Gu3Om+Zt%0AvbWNZWiYFS8bcB1z95c5UkcAjFWmu+2aLgXJNRkH/LST0+8aa1/ID/rJOP8A%0AaNUPtGT+tMNzz/nipuwL7alIf+Wkn/fRpjanIOPMk/76qj53/wBesfxp4/0r%0A4eaDJqms30djYxMF8xlLMzHoqqoLOx7KoJPpQB0janJ/z2k/76NNGoyH/lq/%0A/fRrgfhZ8ffCvxphvP8AhHtU+2Sae4jureSF7e4tyem6OQBgDzgkYOD6GuuN%0AzxRtuBebUpP+e0n/AH2aT+0JAP8AXSfgxrOM+0037RQBpnUZcf62T/vs0v8A%0AaMhP+sk4/wBo1lm53UC596ANRdRlDf65/wDvo05dRkP/AC0k/wC+jXP+IPEV%0Av4Z0ea+uPOaK3GdsSGSSQkgBVUcliSAB6muI8L/tBT6h8ToPDGteF9a8N3Wp%0AQPc6dNdvFJHeKn31/dk7HA52knj04BdmB6wNQk3f66T/AL7NMm1f7LFvluWj%0AXuzyYH86o/aPlFcf8YE8PzaTCuu29nfPcB7aztLtl8qWRxycN8uQBksegBx1%0AwUB6Gmpu44lkx6hzT0v5Cf8AWSf99GuP+HFlHofgTSbOG8GoR2dskIuQ+8S7%0ARgkHnP61ui6we9LUDVGoOP8AlpJ+LGpF1GQf8tJPX7xrFGoIZdokUyKMlc/M%0AB6kVOtyWGaNQNUao4/5ayc/7RqRdSkI+WST/AL6NeZ+Pdd8ZSteHwzDosUOn%0AoWL6kJM3TAZIQKRtA6ZJ5OfrWt8JfH0/xD+HOk6zcWv2G41CASSQZJCN0OCe%0A2Rke1OwHcLqjK2PMf/vo1MuoyA/6yT8WNYdvP5x8zO70qw1xtT+VAGtHqkmf%0A9bJ/30amXUpB/wAtJP8Avo1j28uF96c8/wA2PxoA3Ir+TH+sk/M1OmoP/wA9%0AH/76rmtB8R2+v2f2i1lWaDeyBlPBKnDD8CCPwrUS43UAayX8g/5aN/30aoeI%0APH0fhmJmmW9nWNTJJ5CNIY0HViB2/WohfAOV3DI6isHxp4pktI47WCxvrqO8%0AUia4tYfM8pO/4npVAdzpviBNRsYbqGZpIZkDowY/Mp5Bq7DqDN/G3/fVc7ob%0AJFpduscTQRqgCxNwUGOAR2q9b3GGqgNyO9b++/8A311qxHfuD95v++q5k+Jb%0AeHWYtPaT/SpojMiY6qCAT+ZFakFzzQBtRXzZ+8//AH1ViG9Y/wATfnWEdQWF%0AdzMqr0yTirMGoICF3ru64zzQBvQ3bAj5mP41ZivG/vN+dYcV01W4LncKANqK%0A9OPvN+dbkF2fIT5v4R3rkYLiuit5c28fP8I7UBocZd3H71/qapTXFNu5/wB8%0A/wDvH+dUp7mgCWa56/zqrNcc1HJcf5NVpZ/egCWWfj+lcz4o+J2l+E9ds9Nv%0AZJ473UEd7WNLeSTz9oJKqVUgt0AXqSygDkVszT4WvPfHFvdXPxq8G3a2N5NZ%0AafDe+fPHCWjgaVVWPJ9SVPTp1OMigGXG/aF8NSafDdC5uvsr3QsppPssm2xm%0AL+WEn4/dksCBux69Oat+L/ixpfg+7vLeZbq4m021+33iW0Jka1t8kea3t8rc%0ADLYGcYryXVPD2tXfwT8QafHoeqNqWoeKWv44BbENJAbtJQ/PH+rQ8E5BwDgn%0AFXPizZ634q1zxtato2tTLc6SsOhtYp5Md4XibeJ5RhvlkI/duwXaCNpY81yo%0AlM9E1f4vaTpOraJZu14zeIwP7OmS2dobglSwG/GAdozg44Iq54W8Xw+MtFi1%0AC2iuobeY5j8+IxtIvZgD1U9j0NeW+LfDF58Vfg5ofhS60jVNMkazikkvXgBO%0Any28fyFec73dduAOELdCVrtvhZ4i1bW/A9g+vaTLousQwrFdQFVWMyAY3R7S%0ARsbGQB93OO1Q9rlGF+0t491Dw14Ng03SYL5tU8SXUemW09uo/cFyPMIJOQ/l%0AiTbgH5gDxis/xZpGnX3jPwl4ZtNNj0+11C3+3ajEI1WWS1sgght5CMjb5jxg%0AjJ4QjvU3jMt4t/aD8K2Kgtb+GbSfWrgZ4Ekn7iAH3/1xHsDTfiRL/wAIr8Yf%0AB3iOVsWE0c+gXUhHy2z3DI8Dt6BpYxHn1kX1oCx3usa1Do+nTXl1II4bdDJI%0Ax7AVwPgb9omx+Il3Db6fo2ufbVvJLPUbWSKMSaKUZl3XBDlVDFeApZjk8cHH%0AR+N9avtL0VZLDRzrlw08afZvOSEAbs+YWfjCkA9z3GSMV5t8G/APizwB478U%0Aw332aTTtY1o63JqUYRVufMgRWt0jyXXbIOGb+FOu5qSs0Vd7HRfHe+/4Rh/D%0APiaH5bjS9ZtrOZgOZbW6kEEkZ9RuaN8digNd0823PSvN/jBA3jnxH4b8LxfM%0AP7Qg1vUW/wCeFtayB0z7yTBFA7hXI+6cd48+OaXQB+oXpsrOSQRyTNGjOI4+%0AXkwM4Hueg968yuP2hteB/d/Cvx9IOvzLZp/OevQNSVr21kiWV7dpEZBJGfnj%0AJGMjIxkds+lecv8AAG4Zfn+IXxEO7supxrn8RHmkrdQ16HoXhPxDceIfDlre%0AXWn3ej3FzGHezuSvnWx/uttJXP0JHvT77RLTU9Xsb6eJZbjTd5ti33YWcAFg%0AOm7aMA9QGPqapeGdJ/4Rvw/aWH2y+1D7JEIjc3kvm3E+P4nbA3MfXArj/wBo%0ADSfGfijweumeDW0m3lvH23s99cyQkQd44zGpYM/ILAgqM45IIOoWKHw30a21%0Ar4++MvHlqoh02a1i0eGZfu37QkmeYY6qGAQHuVb2qpH+0N4k1j4gax4TsfC0%0AC69HbRajppuLlktfsb8eZcvtyjhuNiBiSw9GIPA9h8VtOt5U1GP4e2VvptgY%0AtK07ShcxwSTDAQTO2SsSqDwgyS2ewBoxfA7xYnxZ/wCEmbXrHztc01LDXWXz%0AVa3CTeYq2YxhVCkx5Y7sHecniq33YvQ9oSdtvzbdxHzY6ZoNz83f8e9eaw6h%0AcR/tPXFub6+ks/8AhGY5ltGmbyI5DcspcJ03EKBu5OBjOOK7wXG6o2BnJ/GP%0A9oLw38J7WS11a81C3vJrR5ohb6bc3WBggEtFGwXkfxEevvXPfsu/tA6X8QfB%0APh/S1uNevNZ/sxJbia70y6RJGVV3sZ5EEb5J4IY57Zr0TXoJNW0G+s45jC11%0AbyQhuyllK5I9s5qp8P8AQpPBPgXSNHkuDcnTbOK2aTG0OUULkDt0p8yt5gdF%0AJL5i/Ng45GeeRXhWt614w8JftX+FbrxNZaHqGh67HPpmly2Jk8zSpNvmMzbs%0Abi4QKTjpjHfPpvxL0zX9f8IzW/hnW4PD+sb0eK7mtFuo8A5KMhPRuhI5HbB5%0ArH0DwBq2q+JNK1rxdqWm6lf6Kkn2OHTbSS2tYncbXkIkkdmYrkDkABjwTzRG%0AVkOxm/Gf4reKvAHjrw49jDaT6Tq2oHSRYyoFknlZCUmMn8KBh0A5UHuRXW2/%0AgO31vQoU8ZDRfE13DM7JcT2EaRxhmO1FQlgMAhc5ycZrjPGfwHv/AB/Zw3Gq%0AeJmk17TtSS+0u+SyVY9PVH3CMRBsNkcMxOW46YFQ/HHQLXw/8OPDtjvkuJI/%0AEWnbZZT880hulZnOOMscn+lG9kgPYLG2g0mxitbSGG3tYFCRxRoFWNRwAAOA%0ABVXxT4im8PaJNeW+m32rzR422lpt86XnHy7iq+/JHSiK53ovzfWpPO/Ws+od%0ADw/SfjdrjfHXxBNH8OfFUky6baRtbiS1WaJd0hVmzKFw2eMMehr3jR7+S/0m%0A3nkhktZJow7wyYLREj7pxxkdOK5vTvBdvpvjnVNcWaZ7nVIYYZI2xsjEQYLt%0A787jnNdAk5UVo7dCTB+Lngm++IfhS80ux1680JriNlaS3RWL5HQk87T3xXP/%0AAAA8Ra74y+ANot5JDb6hbyS6fJdoPLVoopGj81cDGSq8HpnnpxVqH4RXcfif%0AUr5fGnij7Dqjl5NOaWN4YsjBEbMpeMeykVtah8M9Pu9E0vTbea70/TdMYYtr%0AWXy47lAMeXJ/eU9SO5+pp8yDU89/Z41W68Z2morqnii9uNP8Pa9LZaeUucPe%0AbTuHmv1kGGwBnoOc167pXxK0PxHrU2m2Op2dzfW673gST94FzgsB3APGRwDX%0APaJ8H9B8L+KNQ1m3jkhbUG8+aDf/AKOr7NhkCdAxUYJ9KxPBPjbw78QPihFJ%0AYyr5mi28tpZwrburKpI8x2YgAA4AUZ9TSclcqx6zFdblFYXjXVfE1pMv9hWe%0AlXUXlkyG7uWhZT6KAprRifDE/pUsu24jKt/ECDiiL1FynnP7ON/4ubwdpvnW%0AuiDSZJpnaQXDm4ALsT8u3bndnv0r12O+B3c84zz2rB8L6Ha+FNHh0+xTybW3%0ABCLnOBnPX61d1LT4Na064tZ95huEMcm1yrYPoRyPqKbd2I8u1by7P4/wWP8A%0Aa12sOpadLJqm1zsnaM52g/w8Ht0GfWvRYPiFofgPRLOFTcR2KxqVKwvIsEZ+%0A6znB2g+pqCb4Y6FeWunwyWKuNLJNuxdty565OctnvnOaofETxXb2d2mitZ6g%0A0N9GDcz21o0qhAf9XkAjLdMnoKq6egHpNveLMiyK25WGQRTL17prKX7G0Md1%0Aj5DKpZAfcCqWnOotIVVTGoQAKR90Y6Vcil2moTA4GePxZP8AFmH/AErSFuId%0APJDeUxj2FgCMZzuyAc5r03QpbqOwT7c0L3GMSGIEIT7Z5qhFYW41L7b5a/av%0AL8nzO+zOcfnWhHPxVcwrGT8UVgu/CV75zlmWBzFEp+YydVIxzxj8KPhpeWsm%0AgWOoTSSXWoSWaPJLyzYOPlx+HStKPQ7M6o94YEa4mXYznnI9KWystP8ABeky%0AfZbUw26nJWJCxGfQU+YLGxoXiiHXBMsazRyWz+XLHKm1kOM9PpzxWqNQjhKh%0AnVSxwAT1rj/BVjLa32qS+ZNJbXMwkhaUYc5UZ98emaueLPCsfimSx3GRZLWZ%0AZUkVsbcEEj8cUw1sdhb3HHeumtZc20f+6P5Vx8MuF/rXTWjD7LH838A7e1AW%0AOFvLjMz/AO8eaozXHFOvp8Tyf7x/nVGebmgZJNMADVaWf5TTJ5siqs83vUsC%0ASWfg1Xa4wKjklzVeScjp0qQJ2uNoz+lQS3OBioTPz7VDLNQUl3JmnzWb4ksF%0A8QaJeWLTXFul7A8Blt5DHNEGUruRhyrDOQw5BwakeYkVBLcY+gGaB2MrwT4J%0AtvBcUzLc3moXlwkUc15dvvmmWJNkakgAYAz2ySzEkkk1e1ezt9bsJ7W7hiuL%0AW4QpLFIMq49DTnnz/Womnz/hUtiih8OLe3jjUsyxqFBYlmOOOT1J96bJN71C%0A8/HWoXmqSiKy0i1029vLmGFVuNQdZLiUks0pUbVBJ/hUdFHAySBkkmZ58/8A%0A1zUUlzkf/XqFp8/41VybIkaWmNcc7v7tRSyMvXcPrxUBn4pXGWfN3D/Gl8/3%0Aqn5+f9mkM2KQy59oHqPr603zsCqZmyKGnxQBRPg/TB4yfXvJk/tZ7cWhm+0S%0AbfKByF2btmAST93OTWoZMDr9KqrKSW54z2oM3z89qALXmk4oE238KqiXB+tH%0AnZNArFxLggdvantJlfr61SEh/WnGX8TQMsibaOapa1oOm+JoY49SsLO+jhcS%0ARrcRLIqOOjAEcEeo5pzy7Y2Zm2heT6VQ8M+MtJ8XwTTaTqmn6pFbyGGV7O5S%0AdYnHVGKk4Yeh5oJZtpJtCgdvTtUnnZ71R807akSQbaBloT5b8MfWpRcqKogn%0ANPWXFFwsXknz3qSKXis9JDn0qRZ/0oGaKT7x14qWNlGOF49qz45938xU0cua%0ABWLyT8VIk2fwqiJKlimLUCNBJvlqVZ8iqKTZ/wA9aljm/wA+lVcNC/HNxVmK%0Abn6VmpLg1NFPiqJNFLnJqaOfis2Kfmpkn20AakU9WI5hn1rLjmyKsRXFAGpD%0AP71ahuOP0rJimyasw3FAGtHNirMVxismGf3q1DPx1oA1o5uP5V1VnJ/okXX7%0Ag7e1cTHN/KutsnH2OH/cHf2q7geeX037+Q/7R/nVWeXFOvnzNJ/vGqcsvBqQ%0ACV6qyy4olkNVZZ8/nSAfNNmq0su2myy4NQSyYHX6UFIV59oHtXP6H8SdH8Wa%0AxeWOm3X26awYpcSQxs0ETggFDLjZvBPKg7hzxwao/GzxFc+Fvg74q1S0k8u6%0A0/R7u5hcHlHSF2Vh9CAfwpvws8PW3gz4WeH9PsYlWCy06BVVRjeTGpY/7zEk%0An3NO2lx9TopZaheTJNeGaJ8QPHuvfF/xR4Lm1jSdPezgs9b+3G3SVtIgm3br%0APZkCRsoB5jdAXbHMYHtLXkZmZFZfMChim75guSAcfUHn2NK1twuTSy/KRniq%0A/n54qOaTI9fXNfPv7Xfxi1jSPDqaba+CfGc0Nv4h0n/iZW6wfZrpFvYJCkWJ%0AvMZpMGNVKgFmweOSlFydkK9lqfQjy+9ef/Fr4u6r4NvV07w34S1LxnrRg+1z%0AW1tcxWsdpBuKq8kshwC7K4RVBLbG6AZrV+HXju98c2F1cXnhnXvC7wz+WsGq%0ArCJJRgHevlSONvJHJByDx3pPH3jfT/hrok+qXMMk00zxwQW1tGGutTuDlYbe%0AMfxOxJCgnABJJChiFs9SlqYv7P3x70/9oPwTNqtrY32k3mn3sum6lp94B59h%0AdR43xtjg8MpB44YcA5A7LUI/ttnNCks1u00bIJYiN8ZYY3LnIyM5FeX/AAl+%0AFmufDP4WapHH9jHjbxdqkusalIrCS3s7q6kUMyg48xLePAA48wxdt1cX+y94%0A58YfGvTpDr3ijTZ9J8L6zqPh68EVtA8ni949675CAFhVVZTshX5yjkkIQKco%0A9UT1Oq+A/hvw/pPxA1y/8LTQw6DeWsVtHEt4Z31S4ikk8+/+ZmZgS6R+aeZC%0AhblSjN6szAH2rl/Anw68HeA3vpPCuh+G9JklcW94+mWsMLEpnEchjGcruPyt%0A0zW875GM4zUyd2USyzhBTWnznHPrXy9+0b8dfE3/AAsD4exr8LPG3k6f4qaa%0AE+fYltUKWlygWJROcEqxf59oCqeh4r3z4d+LtS8ZeGVvtS8O6p4TunldDYah%0ALBLcKqnAYmF3TDDkfNke1OUbJMXWx0Rn2/jSGUkfz5rxD9t/4i+JfhL8KZ/F%0Ami61Fotn4ZeC8mjbyv8AickzKrWjF1OxCmeVwxJ4ICnPUeBtZuPAfh/Vte8c%0A+NtNk+1SRTzRzyQWmn6BvRdtvG5wxU5GGlYsxOeAQKnpcZ6MXxnFJ5/FVLPU%0AYdStI5reaOaCZQ6SRsGR1PIII4INUfFut3mheHLq80/S7jWry3TdDZQypFJc%0AtkfKGchR65JxU63sBrDUIzceSJE87bu2bhu2+uOuKm8zOOea+T7P40fEI/tY%0A6heL8INWkuU8MW8DWY16y8yNDcSsJC+7ZtJ3KADnKknqK+ntE1G5v9GtJrqz%0AbT7qaFHmtmcSNbuQCyFl4baeMjg44qpRcWJM8r+MXxw+JOhWmqav4J8G6Hrf%0Ah3Qw/wBpl1DUngur7yziT7PGqkYGCAzH5iMgY6998E/i5Y/G/wCFmieKtPhm%0AtrXWrYTrDNjzITyGQ44O1gRkdcVi/GLXrrVNLm8H6Ay/2/r1syF9uU0y2b5H%0AuHx6AkIvVm9gSM/xH4F/4Qv4ER+G/DusSeHdM0TTntpNRhuFjntFii+XaxBA%0AdmwWbqOe5p6NJdR67nonil9Pl8M3w1Zok00wt9qMr7UEYHzZPp6/lXm/7Puu%0A+C/GXjjxF4k8J3+hytqkFvC9rpkiExRQ7wkkyp92R9zcMM4UDnBrlf2RvE+r%0AfFT4Y+GvGXi7xctzLdaXLGdNjdI7G4ijYI1xMrDLS5XLMCFXfjGOvsHgDxN4%0AZ8VadNd+GbvQ760WUxSy6a8bosgAyrFP4gCOD2IpSVtATOjE2P8ACo9Q1q10%0AeFZbu4htY2dY1eVwilmOFXJ7kkADvTDJ81fO37V3xD8f/wBkWNhF4DtfsMvi%0AKxjtbv8At6L/AEllnVowybMoGYAZJO3uDRG70A+lkm5z7U9Zdx7GuN+GHibx%0AJ4hsbhvEnhyDw5PEwWGOLUlvhKuPvFlVdpB4xVn4kWcuq+Ebq3GpyaPatG5u%0A7yKXypYIgp5Rv4TnHPpnvR1sB1M00gUCNQxzg57VYjfH4V84/sgeI9Q8f/Dr%0Aw34k8ReL7q8ubE3lnaxJOY47qOB2iaW4B/1kmFDFjwMg8Hk+2eEviNofjlrp%0AdH1Sz1FrFxHcLBIGaBiMgMvUZHIz1FHK0wOmWXHNSJPxyccc89KpJLx6183f%0AHe3XxZ8aLi0j+JmnW7Wu1W8J6xPJY2s+VBG2VCrPng/xDsR1FVGN3YD3fxZ8%0AePCfgiRo9Q16wjuV/wCXeN/OmP0RMt+lb/gnxdD410CHUreG8t4bjOxbuBoZ%0AcA4yUbkZ6j2NeJ+C/GDfB2JY9Q+EtxplvwTqHh4RalC3qxI2y/8AjpPWvZvB%0AfjCz8b+G7TVrDzvsl4u+PzoWhkHYhkYBlOR0IzRJW2A1NVnvItPkazW3a4VS%0AUEzFUz7kAmuQ/Z0+J2pfEb4Zya1rS2sNyLy5jYQAiJEjkZBjPXhetdZqV4tt%0Ap1xIzbVjiZifTg15F+y1DJefskR/Z2ZpLqC/kjI6ktLKRj604xTV/Ml7nReF%0A/iB4g+LPg3VvEmjX8On2sEkw0qBoRItysRILSE84cqRgYwPWuz+DvxLj+Knw%0A603XI4/JN7H+8iDbvKkUlXXPswIrzL9ljV4NC/Y702eSTH2KwuftDE9HVpA+%0Affdmtr9jzQbjw3+z9okd0GWS7M15tP8AAJZGcD8iKqdkB69HLg89TU0cx/8A%0Ar1nw3CuvysGA4yDVhJuODSQi9HISasQzY5rPjkx71YjlxQI0oZdtWIpazo5e%0AasxS0AaUMpNWYZc1mwyc1ailoA0Y5cj6V19nN/ocP3fuD19K4iGTiuysZP8A%0AQoeP4F/lVcwHnd62bmTn+I1Ukk+ZvrT7+6VbqTn+I/zqlLdBe/XpUjEnlyMe%0A35VUnk5NPuJ1C9frVOS6XYfmwPegpDnlwtQSS80x7lfXp71CJ943flQM4r9p%0Ay8W0/Z18cs7bVGhXgJ9MxMM/rW2dLm1LwBDp8N5caZNLp6Qx3Vvt862YxgB1%0A3AjcOoyCK4/9r+/W1/Zj8dlj97Rp1H1ZcD+ddtZzeRpVqrcHykHH+6KOgupw%0Adv8As2aNZ+OrfxB9u1R742a2mp7pExrZWZZ1e4wuSwdQAFwNihPuDbWf4Eub%0AQ/tW/EdYfs4uP7H0YzBCN7Pm8zu7khdo55A2jpivTXnqk81vbXO4JGssv8QQ%0Abm6d+vpSbYWLEsmUrm/iH4Fs/iLpdlY30lxHDZ6jaamvksFLSW06TIpyD8pZ%0AFBHXGcYPNbVzebcKe5qBpNzc/lUX1uBO0275ux5ry34zfs2/8Lk8Z6ZrTeNv%0AGnh6fR4Xis4tGuo7eOAvkSSDKMd7rhS2fujAwC2fSDLgD+lN+0+9HNbVD3PM%0AdG/Zdj0bQJrNvHHju9ur69SfUdRudRV72/t0jaMWTSbMpbgO5xHtYM7MGDHN%0AXPhr+zd4f+E3jHVNU0mS8htdQupLy20oeWlhpUsscccrwIqggssarySFG4KB%0AubPfPcYNRyXG4ckcdqXtGFjyb9kWXT/+EZ8ZLpv2NbVfGOrhIrZl2RqLggYC%0A8AHbkdsGvWPM4B9u1VI/IsA3lxQxBsA+WgXdgcZx6dKJbkMB2HtRzNu4Ix/G%0APgSz8Z+IPDt9dSXEcnhq/bULdY2AWSRoZIcPwTjbKxwCOQO2Qd4zZFVGuVB5%0ANI10FWk7gcN8SP2cNI+LtzrjeItQ1jVLDV7JrODT5JlFrpRZNjywJt4lYfxt%0AkjJAxuOec8d2/gn9mX4U2beI7yHWJFuPLtrnxBOjNfXki+WrSEqEAVABu24R%0AF4GevrhueF5qC7hhvNvnQQzbc7fMjDbc9ev4UczSsByn7N+m6PofwU0G00PU%0ALfVNLgt9sN3bAi3mO47jFn/lnuJC442gYrti3NVoXEUQChVVegHAFKswb3pO%0A/UDPg8E2Nr8QbrxKvnf2jeWMWnuCw8sRxu7rgYzkmQ5JPp6VtJc5H6VWM2BS%0AGfBpAeO+Jv2GtD8VeOtX8RSeNvidY6lrkge6/s/xFJZxMF4RQsYACqDgDt+J%0AJ67RP2ctC0W00G0F94gurDQ0ZRaXWoyTRalIzbzNdBuZ5N3OWPU5xXbLOc9v%0A8Kd5245/Kq9pJ6Aec6N8GvBP7PXgbWbiZ7ptCiMl1Il5L50dlF5hmMUSgDCG%0AQltvOScegqv+zX4k8L+ONQ8TeI/D91Zzza7dxS3kVopEdttjCxqxwAZSoBbG%0AeT6Yr052EoIZQwPUHoajjSOHISNUX0UYo5tNQLqyc/55rL8X+DrHxxaWUV95%0ArLp99DfwiN9v72Jty59RntVtbkf4U7zsnmknYC4sm0VheJ/h5Z+Mdc02+vLj%0AUMaaWxaR3LJa3OSCPNjHEm0gEbuhrTR6kSbHrTjIDj/CXwY8IfBG11zUraOS%0A0sbqWa9uVuJmlgtA53S+Wp4jUnkgd/pWf8GIWu/i74v1e1vbHWNH1a2sntb+%0A3iEe3aJF8jK8OqDawPX5yDXohlDqQRkHgg9DT4diBdirGPRRgVTk3uGheSTB%0Aql4k8HaN43szbazpWnarbkfcurdZR/48KkjnB9asLJzQB5vN+yrpWiTmbwjr%0AniXwXN1WPT70yWYP/XvLujx9AK9I8IWN7pHh+1t9Rv8A+1L6GMJPd+UIvtDD%0A+IovCk+g4qQS7qmV6L33APEGjR+J9Kks5prqGKYFXMEhjYgjBGRz37Vn/C/4%0Aa6b8I/DcOj6L9qj023J8qGaYyiLJyQpPIGTnGa1Y5uP/AK9Sxz/IaA8jmx8D%0A9BZby3WO5h0zULg3VzpyTFbWWRiCx2ejHkgcEk8V2Bgji01oFVo4RHsAj4Kj%0AGOMfpUEc5J4//VUqSbgBTv1F5HI/AP4YzfCzRNTt3vL66h1C/e7hS6l8ySBC%0AANvt0zgcc16FHLjiqMUmDipkkyKExF6OXJqxE/8AOs+KTbVmCTHfmrBo0IJe%0AKswyYNZ8UnNWoZOKCS9DL0FW4JMGs6GXFWoJf1oA0YpcCuzsZ/8AQoeR9xf5%0AVwkT8V29g3+gw/8AXNe3tQB5fqb/AOlSDn75x+dZtxLsPcD1q5qXy3Un++ef%0ASs2VvM2nHfrWgBJKTbN+vNU5n+X6dqszFkhP9309KozknGM4xU3QxkkmN/y5%0A4/OiKbdHwCOBxUNwzIG246U7zB5Awe1ToUjzH9sebzP2Y/GSt917Hax7kF0G%0APxzXfytts8M2fKAA/AYrzD9taVk/Zk8TA5xJ9lj46nddwD+tenXSAiZf7rEG%0Aq6C6gX8+3HbjFZt3iC4Tb/DkdatSP5EHy7m9sVTuX3ure9SUMlbfOu7duY8Z%0APSpgdvf86pSzqLlXG8bR0xUwn8wN97uenaolcBzyfL1/+vVG9l3yr821eT9T%0AVjzln4DfUelNcB4wvGMdxUKVgZWiuW8l2H8OQKpy3gkhXazeax5PpXHftF6U%0ANQ8Ey3E3iLxJodlZRSkQaFN5F5qV0wC28SsAXY7shYkI3sw3ZAxV/wCGVjrW%0AmfDTQV8TXEd14jjsLcanIgAR7nYvmkbePv56DHpgVppa4vI6GWVpZdvZRzUM%0Aly0DFeW4ytOWXyrv/eFV3Yz3TKNxC+nagY4M09uG3srdSM02S4aTa3zYz1FM%0AjBmTacA9KnuI9kKjcfl9KGTZgqMki/MTu6irG/OO461BGVmXPOKV5Ao9vSsm%0AzQi1a++zRr82C52gUyO4+z7fm4bg1HfqHuY2PzL0z6Utw+VG0bjmr6El4PgU%0ArTBapythepHuDVfUHdraRYZFSYoRGW+6GxwT7ZqeUDWjlBp/mdO/evJPhNZe%0AJNF+L+tWt14p1DxRof2KKSX7XBEq2F6XbdHCyIvylNpKtnbxzya9S+04+9RY%0AB0t9skxx81NjvfM+Vuuao3U226HPfjNK0pSZWPOeB6VXKgNCa48uNmz0FJYX%0AXmRAsct/Sq1xIZHCr16mnoyxOv8AdxigDRD7FqRZOcVAg4+b8KkU8+tSAxpm%0Aabrt2/rVlLlhbs1QmFZGzjpTpZVt4+ePSmgJY55E2Nu+8elWWlYpuDfhWcgk%0AEWWwAtVPGfjrSfAHh2TVNa1C10vTYSFkuJ22opJAAq0B0FpdMThufSpzOS5C%0AmuO+HPxg8L/FG5uV8O6xa6t9iUNNJb5Mce7plsYyajtfjh4Z1TXbeyt9Xt2k%0Au52tIHwyxXEy5zGkhG1m4PAOeKfKDO4gutzkenWpIp2kk46VUtZQYW/vDqal%0AtmY4bOKQi6LkrF83yn0p63bRKv8AEW44qtI/7rtSQAmQM3TsDTshGxBLhcVZ%0AjkqhC/GasI2agCwLomQqKs2kxbrVBfkf9KtQnAFaB0NKOTGKsQS1lh2wMVYi%0AnZcdKCTVhfjPvVmGTFZ0EnHNW4n5FAF5bjYvvXcadPnT4Plb/Vr/ACrz5n3Y%0APpXdaeQdPg4/5Zr29qrlA83v0JuZOf42/maz5ImX860b9t11J/vn+dUZeTil%0AcqxXmy6bW/SqxXYe5+tWZX5z+lVpXz1Oam4yvdR5x3/CoJYi0LBTtx0qxM3+%0AfSq8j4UilzDPI/2143H7Nusq3O+80yMf7ROo2w/WvSPFE11pej6jNZ2jahdw%0ARSSQ2yuENzIASE3HhctgZPTOa87/AG0WD/Ap425E2uaJGQRnOdVtBj8eld38%0AQfD994r8OXVjp+t33h68mkQpf2ccUk0IWRWYKsqsh3KChyp4YnqKd9Cep4j8%0AIPiX8RfHnxB8TeE77U/DscngDxBHDq2qJYnbq1tNFHLHawRb/wB0wDSAysWI%0ACRjaxLke1xKrOysys0ZGQD93PPPpxjrXnnhD9lPQfAfxPvvEWn3mpLa6g1pd%0AT6bIytDPfW8Usa3jtje8hEzu24kNLiQ/MorK/Zoa1/4WV8bFt/IwvjcAiIg8%0A/wBlafuz77y2c98+9EmnsEbrc9UuLXzTlcKx718x/H79rSHT/iL8O7GHR/iR%0AptvZ+KZBqOzQLpF1OFLK8URRhQftAaXy3CDsm84C5H1A7cn29+9cf48+GUPj%0Ajxh4P1Z7qS1bwjqUuppGqgi6L2k9tsJz8oHnFsgE5XHGciIySepVrjvhj44g%0A+IvhiPV7Wx1jT7e4d0EWqWEljcjaxUkxSAMAccEjkHIrzn9rP9oTxN8AoNJ1%0ArTdFh1Hw7a6lZWerI0bNdX/2uXyUjtMMFDodrMX4YyIox85X2hmyDubnpXi/%0Ax4/ZYu/2hLLW7TXvFNxJYvNFc+HbWOySOHQZk2N5zYObiTKMAzkbFlkCgE5B%0AFq/vbA0zQuPgjdfGrRIm+Kllpkl9p99Ld6baaHqF5bx6ZG8YVVeRXQzTqDIp%0AlCqpDHaqgnPeeGfClj4Q8P2el6fC1vY6fEsEEZcvtVemWbJY9ySSSSSSTXjP%0A7UXhGbwj8ALGO61K6vtUvPGOi3N3eLI1uLqebVLYP8itgRBTtWMlgFRc7mG4%0A+6z3ALNt9eKJN2vcZyXxd+J2g/CfRYdQ16S+jt5pvJjNpYT3jl9pblYUZgMA%0A8kY/EivFf2Y/2zvC3jPxN4i0m41jXrrUL7xXdW+lw3Gi3vyW5KCJGYw7Ylzu%0AIEhUgHkCvpJJ/LLcsPXB61xvwl+G7/De28QRve/bP7c1y81kkLt8rz3DBPcg%0AAc0RkrNMdnc6XU/Lt7eW4bcohRpG2ruYgAk4Hc8dK8I0H9pDx94p+JHibwTb%0AeENITxJpZtNQtpLi6kSzt9NuACpuXALfaRh12IMEjqApJ9s8WjVZvDN4uhzW%0AFtrDR4tJb2NpLeN8jBdVIZl9gQa8g0n9lfXdF+Ndz4sj8VFv+EmsLa38Sna6%0AzXElvKZI/suDtijIYx4OSE9WJJmMujCx7XGvkxhc5P8AOm3K+aNuSvPavHdK%0A8CLp37R9rqWi65rN01qlyPEr3GpSS2szSKptrZYSTGkiY3DywCqL82TJz7Dv%0Az/jUy0H5njX7V/7VPhT4MeAPFWmyeJrfSvFdro8s9jAEZ5xKYyYio2lSS2MA%0A9a6H9n39oTwr8atBtYtF8SWWu6lb2UU14sOQyEgAsQQP4sjj9K1vjl8PJPip%0A8IfEfh20e0gutasJLRJp03IhYYyeM8V0Ph7R4dB022t4oYI2hhSIlIwudox2%0AFVzLlt1Ah8deILjwz4deWysW1HUJGENpbZ2iaVvuhmx8qjkk9gD3ryn4AftE%0A6/8AtF6DYz2/hX+yo4J7nTfEU8l2V/s25j3qVtsp+/wwU7sAAN6givRfiKvi%0Am9Fhb+HJNMtY7iUx6hc3O4y2sWOHhUDDSZ7NxXm3wG/Z08SfB6HXdFXXo4/D%0Ax1G9v9LmRjJdM10wc+cGAU7HMhGOpYenJpy+YuU7b4TfAay+Ed9cSWmt+KNS%0AW43AQ6lqTXEMJZizMq4GGJPJOeAO1ddetJJPtXKrivNfgT4WvvDvj7xS9v4i%0A1zXPC8i26Wo1S7+1Ml2u8XDROfm8o/IMfdDK2Mc59SaFXBz696QO7PPdW/aS%0A+H/h66n0/VPGXhywvrNzHLDPfRpJEw6hgTkEe9bngH4l+H/itFNL4f1zS9ci%0As2CTNZXKzLExGQG2k4J681qz+DNGu5mkm0nS5ZW5Z3tI2Zj3JJGataXodhoa%0AMLGys7NZDlhbwLEGPuFAzV3VtA5TnPip4q1DwH4WvL7TdPbWNTELva2Yk8vz%0AyilzlsHaMDGcdSB3rm/gh8frz49WGj6rpHh+4Tw3fWjPc3884ja3uhjMCxkZ%0AkCtvUuMDK8ZHNdV8RLLxJr91b6VpS2drpN9C6X2otL/pFrnjEUeCGJGfmJGM%0A9DXCfst/B3xh8JvhuvhfV761gs9GNxb6fPbv5slzHJM0iyuCMKyqwUL2wT3x%0ARzaCsezM7fZtufmqey3LHhj82a8j/Z98SX03xH+IWi319r00ej3ls1pbauoM%0A8MUkOS6SAfNE7q20HJUqw6EV64p2Acc5qXvYHHU8F+Ln7btx4A+J8vhWHwvJ%0AprRNtGta/ObLS5fdZAG3D8vrXR6Z4M8Y/GTTBcX3xJsbfT5AD5fhWFFU9f8A%0Alu5dvyA/lT/HPwR8aT6rfXnhvxzHLa3jmRtE8Q6bHf6eM/wqw2yKue24gV5P%0ArPwjuvC17Lc618KtT0W43b5Nb+HOrNFuP942+5G/DDfjW3u2uhdT6q8NeHP+%0AEd0Gx09bm6uUsolh825k8yaUKMZdu7Hua89/ad+Fnjrx6miXngzVNAgl0OSS%0A4aw1W1M1vqDlcBW7DHY9ic16F4PKt4U0zE13cA2sZEl0u24k+UcyDAw/qMda%0A5XxP8R/Gnhz4nNp9v4Hl1rwzNbq0Gp2d9EJY5e6yRuRhc9wScdjUxk07hy3P%0ACtf/AGotSvv2PfiY83h6Lwf428KONJ1S1tUCxJLKVRZoyOQrBj1yRjqRgntf%0A2ofCNv4I/YCu7azUQtoWnWVxayJ/rIZo2jKyA/3t3OfetvVf2XZfH/w4+I1n%0Aq0sNrrHxGkFxK0Z3JZMkaJAmf4guwEnuWbtSeLPBvij42fCTRfBOraPLpDSv%0AbJ4guWkVoTFCQWEBB+bzGRcZAwrHIBGKvnWhKiz1r4e6jPrvgbR726UpdX1j%0ADNMuMYdo1LfqTWvCskPycNiuc+Jfi64+Gvw31HVrDSbnWptLg3x2NucSShcA%0A4+gyfwqb4R+P1+KPw10PxF9iuNP/ALas47v7NN/rINwztP0/Wo6FHRbHZN1T%0ARBmK7uKA2BjrUivlvx6UuYViyn3fpU1u5zzVaJs1YjPPFFxkoLuat2wZOtV4%0AuRxxViNsYp8wix5e5etTQwZbrUMTZqzFVXFYuwHpUpfkVWibC/55qbZuNBJc%0AiO4H9K7nTj/xL4OT/q1/lXDQD5K7zT0zp8Hy/wDLNf5VXMB5vet/pMn++T+t%0AUZ+tW784uZf95v51SnqSyGVsVTnkwDViVye9VZgD/WpYyNj3z+VQOd1SNzn/%0AADmo2OOKkDyL9tDMnwl0uLPNx4s0BPTP/E0tj/TP4V6tNJudvTP515R+2MjX%0AXgXwvCrKv2jxtoCc/wDYQiP9M16m7/Mfrn603siepXkARmwfvHJ9u1Ubaxt7%0AKSSSC3htzIcuY0CmQ89cDnqevrVyQ4c+lV5QFGPzNQUQsePx5qGRsEn8sU+V%0Asg/XFV7mXyV/vc8VIxH681HvIaiRgsoH5UyRsHP4UBczvE3hnTfGFlHb6rp1%0AnqUMUizJHdQrKqOucOAwOGHY9RVroFHQLxinv0x6moZDjLfzoGgd/wDJ71GT%0AgUjswY9OlRtLyaBi5Un6Uhlw3X+tND5X603dz/WkBx3h/wDZ88F+F/HU3iaw%0A8PWdvr1w7yS3wZ2kd3GGY7mIyRxnGccV2LPx9KRjzSYxS8xgHUf1oMwB4qOb%0A6/8A16aKaAmL5XrUOo2Eeq6ZNazGTyrhDG5RzG2D1ww5H1FOY03eGPrTEzl/%0Ahd8EPD/wcE0egw30MdwoVlnvprlUA6BBIxCD2XFddkjJzUXm4bpml8zPajUG%0AyQFs07zM00nIpDzQJSJ1fd71W8QaQNe0W6sWuLqz+1IY/OtZPLmiz/EjdiKk%0AU7B+NSp+9IqugX7GN4L8BWfg1rmZZrq+v77Z9pvLpw80+0YXJAAGB2AA5NdD%0AG/NV1bZUqnC0w9Swr5NTRvxVaI4FTBuCfSgCZDhutSq+O9Vg3HzVIr4FKzDm%0ALUcmBj8KmD4bn61UV/mqVZeTmjlFcNV02PW7OS2m8zyZcBwrlSw9Mjt6+tWr%0AKCOwt44YY0jhhUIiKMKgHQAVDG+RUyvzVCJ1bFTRn8arA4xU8T9aALKNk1Yj%0AbDfyqrG1TxttH496ALMb81ZjbiqkbGrEZ5oEW4n4FWY24FU4zmrEPAqxNl6F%0AsgVaiORVGLpVuA/LTJLsTYWu70450+3/AOua9vauCiPyn867zTT/AMS635/5%0AZr/IUAea3xxdS/75/HmqNwcDpV+/G2eXv8zfzqjIKCypL/Lmq8zZ/Pmrcq4H%0A41VmGD6evtWYyCRtik+lV3Of73NTuNrH61CyYH4UAeRftZjfpfw9j6LJ8QND%0AB98Ts381Fdt8R/iBa/DXwtNql1b3l6d6QW1nZw+ddX87nakMSfxOx9wAAzMQ%0AqkjiP2rV/wBL+FMW3In+I2kjk/3Y7l//AGWvT9Qs7WXybi4jgkNgxniklA/0%0AdtjIXBP3fkdwTx8rMOhNN7E9Tyf4P/tT2PxV+JWqeDdS8O+IvBni3SbRdSbT%0ANYjjD3NqW2edG8bMjKGIB578ZwceluTn9K8o+G3hP/haf7R2qfFqSNrfRU0J%0APC/hjepWS/tTMbi4vyvURySEJEDy0cZkwBItcf8A8Lk+KesfH/xF8PoG8N6Z%0AqGpeHbfxTpV3c23mxeF7Vp54HguUWQG5mZkgGQyqGeZvuoqsSjd+6NeZ9ASD%0Adxn3NV2bLfy96mdlVwhZTJjJ7bh3OKrszbmG3bjo3rWQxjNg4qJz81fPX7a/%0A7Xmk/DXwHrel6feeJtN8RafqWmxG5g0a78lEa8tzLtn8sxMphMinaxJyVHzE%0ACvXvhh8ZPD/xktby68Py300NjKsUputPuLJlLDcMLMiFuO4BHbrVunJR5mHo%0AdGTkHiuf+IGnapqugNDpurxaDI0itcX5hSZ7aAZLlA/ybyBgFwVXJODjFcr+%0A1N8a9W+A3wv1DX9G0KPXJNHtpdTv0mmaGKCygAaZtwU5kIICL3+Yk4U1nw2+%0AoftUeCL6HUrPUfDPg3Wora60qe0vvJ1S+iJ3kzJsIhRsIQuSWVsMBkrS5dLl%0ALsa37Peua54i+F0F3r9w19O93dLaXjQCCS/sxM4t52jGApkjCtwACCDgZwO1%0AY4XHesrwD4ITwF4cXT11TWNY2yNIbvVLo3Nw5Y9C2BwOgAAAFWvEniLT/COh%0A3GpapeWun6fZp5k9zcSiOKJfVmPAH1qdwLDNkUN/kV4X4d/bR8H6x+0L4g0U%0A+OPCo8P6fo9jcW0jX0SK9xJJOJQJCcNhUi+UdM+9e5pKt1bLJGylZF3I685B%0A6EfzqpRa3DQ4rWv2iPAvh3xxH4XvvF/hu18RTOsaafLqEa3Bdui7Cc7j2HU8%0AV2Wdy5HT+dfNv7bv7OnhXVP2Z7zwrZaLZz+KvE15Hb6PdiBTfvfu+83PmAb8%0AoAzs2eAK9L+Jfxpsf2a/h/pcmtx6hqUdnFbx6hcwqGFrESsbXMxJ4QMcnqcA%0A8cU+VNK24XPRyu6mgbOf0rmvhx8T4fia19Naabqlvp0BT7LfXMYSHUlZd2+H%0AncVHTLAZrpWOB+pqLDGs2aRT+tEgUIWY4Veck1xlv8VTcfHibwmsdq1rDose%0AqfaBJ84d5nTYR0xhM5otcR2pXA9qarZHpTlfcny859O9cZ4z+P8A4V+H3jjT%0AvD2sakLG+1NZGhaRCIN0cfmMjSfdDbAWCk5I96ASO0xtHFOQ5NYfgHx3p/xI%0A0D+0tN+0rbedJB+/geFiyMVJ2sAcccHoRyK3IxjFBJIqZWnL8prM8XeMdL8A%0A+H7jVta1C10zTbUZmuLhwkcY9ya83sf2vNH8aRBvBmi+IvGSMSEuLGzMdo5/%0A67SbVx7jNOMZWuVZ9D2BMP8A5609Gwa4D4c+IPiB4g8SCTX9B0PQdFaJtsUd%0A81zeF8jaThQgGM5GTzivQcrEMkjavJJ6Cnrewh+3A3Hj0p5+UZr5r+O3xP8A%0AEPiD42fCePSbp7PwjqHif7M5QlZNTMcTOW/65ZGAP4gCfSuj03xbN8c/2rPF%0AXhia6uofDvw/s7dZLe3naL7ZeXALbnKkEhEUgDpls88Yrle4HuYHHvTkGK8Z%0A/Zh+IupXfxD+JXgTVLubUW8D6pF9gu5zumls7hC8aOf4mRlkXceSMZ5BJ9oX%0AlaVnsxEiv8o5pyyZNQr91u1OjOHpgW4jUqVDEcVIGoAseaQcVMjZ9feqyrvx%0A9c1ZQYX60AWIz2qZDlqrRHaOKnQ+9Ai0jZFWIGzVWDg81YT7mc9qpC6FqI1a%0AhbuKpwE8VaibIqiS1C2G/lVuE81TiPP9fSrMbfOKALkTZFd9pxP9nwf9c1/l%0AXn8fIrvtOBOn2/8A1zX+VAHnuoL/AKTL7Mf51TmiIxkEc8cVR+LN9/Z3gTxF%0AP/aCaT5NjcyLfOhZbMhGIlIHJCfewOeK8f8AgHDrngrx5cWPiTwvo+gNc6Q1%0AxDqOiXvmaXqaRvHumaNiSkuGU+Y3Lq3PQUct1crm1PZJlwDWDpnivT9c1vVt%0AOtbpZ73Q5Y4b+IKw+zvJGJUBJGDlGVuCevar3h3xNp/jTR7fUtKvrXUtNvF3%0AwXNtIJIphkjKsODggj8K8Y/Z50Gx0z4xfGLU1aeNo9fjh3SXkpjVBaRsxKs5%0AU8knJGVHAwoAByb3DmPZZDiq8jHA/LNGm6vZ69pEF9Y3VrfWV0gkhuLeVZYp%0AlPQqykgj3BpJGBfGV5OBk8VDC7PIv2o9snin4NxsA3/FwrR+exWxv2yPxAro%0Avj98Hovj38Obrwvc65rWhWF+4+2PpjRpLdRjOYWLq37tjjcABuA2n5SQeH0z%0AxGv7Ufxy0W5sYZbLw38K9RnurqO+AhvdQ1NoZLeD/RyfNihjSSZw8oXzGKbV%0AKgsfaZiI49x6CnK6sC1PHPDv7LOpeH9QlvLj4nePtduobG5t9MOpzQSw6Vcz%0AQtCLxI1jVWljR5AofKjzG4rPuP2MNLuvHth4lufEGsXWpyaZLpPiKWWOLf4p%0AgkmhmZZyqjYu6BIwqAAQ5jAA5r2ppFKe9QyncB0XAqeeW5Vjxfw7Hbn9v3xh%0AIsimZvAulGVfM3HzDf32TjPB2KnAxxtPfJ9Ylz+tMbSLODUWvks7Vb2UbGuB%0AEolYccF8ZxwO/YUsjYP9alu5XKcf8a/hsfi54E/sP7a2np/aWn37S+X5m4Wt%0A7DdbMZH3vJ257bs84xXUPK0km5mPryabdSHzFVfTJoK5BA/E0tdg9DzX44/B%0AzVPjtbat4b1DVraz8D6vpL2tza28TrfXFwwcfNLu2+R80ZKAZYoQTtYiuR1j%0AwD4m+EP7Hni6PVvEstzrmk+FZLe2u9Od7ZLZbW0ZY3jzkrIzAuzDnJAHCivd%0AX4Ydax/GOgWfi3QbnSdStY7yw1CNobiBydsyEYKnBGQehHfNNTa0D0Knw+eS%0AX4e6G0sjSTNp1szuxyzsYlyST1yec1oajZQ6lZvDcQw3EMgAeOVA6tjnkHg/%0A/Wp2nabDo2nQ2tupjt7dBHGpYttUdBk805myuRxUgeW+HP2cdJ0744+LPEVx%0AougyabrVhYWtrEbSNmjeHzfMYgrhd29enXb7CvTiPstrtSMYjXCqPl6dhThy%0AfrTPO/fbe6+lAeR81rL8etN+Jupa9cfD3wZrkkzvBpTP4jaEaXafwpt8o/O3%0A3nYdeB0UZ6H9o74b+PPjp8H/ABL4MWGx03+0NH8s6qsyM2oXBXPkLHj92m/g%0AsSeDwOte6NwM96juJNqjp1rR1NbpBujzPw1p3ja4+GcH9pX1n4RnVE84JHHc%0ANp8McYHyn7pZmG45yADitr4D6zr/AIi+FumXfiTy21aTzN8iReULiMSMIpNn%0A8JeMIxXsSRVz4m/D9fif4fXTpNU1TS4llWVnsZFRpNvIB3A5XjpWh4K8MHwj%0A4dgsWv77VGh3brm7YNNKSSckgAd8DAHGKzvpYCbxF4ftfFWhXWnahCtxY3iG%0AKaIkrvX0yMH8jXgdn+wl4Ll/aE1XUJPDs0ei/wBh28FuUvp0UzGWUygEPn7v%0Al5GcdMV9FOQ3AO38KRUb7xx+FNSa2Boi0bSodH022srdSlvaxrDEpYttVRgD%0AJ54A6mvmv9prRtY+KknhbWNP8G339k+EfGFtf6hBcW2by+VXxJLGgJ3IoCsO%0A5I6cc/TQbnp1FDS7TzSjKzuHoeXfFf4meJvAPwqbX4YdDsbqCMTfZL52AmJf%0ACwBhwjbON5yAewFen6XcNd2MMzLtMkYfHXGQDXL/ABL8Baj8QtOutNW/sYdD%0A1K0e1u4JbXzJju4LI2cA7TjkcHnNdPpFjDommW1nCNsVrEsMYz0VQAP5UDML%0A4v8Ahu98V+ALyysNN0PWLiQr/oWrZ+zXCjqCQCQfQ49a+aYtEm+Eu5ZtF+In%0AwpWE7zNos51nRH7n91htozyRsXvX18DmnKnX0rSM7KwjyH9m/wCJeteNtauI%0A5vGPhHxho8cRZJrCFrXUIJNwwssJJULgnnjntXoPxa8H33xD+HeqaLpupf2P%0Ad6hGIlu/L8zYuRuGMjqOPxq5ZeCNH0zXJNVtdKsLfUp4zFJdRQKksq5zhmAy%0AeQOtbKhgi/Wk3rdB5nyX8dfhJ8Trb4pfCGzj8XaNcSW2q3DWckejbIrIpbHl%0A0DYZSuV6jBOa7H4F+Hrj4P8A7WnxKg8Q3EazeMLSx1i3vCvlwXPlq8c4XPTa%0AzLxnODX0KhSeVflVtnQkZx9Kj1HR7PWkVby1trpVOUEsQfYfbIq1NtWYjxn9%0AlPwfdXPxR+Kfju4hkt7Txdq0UWmh+DLa2yFVlA9GZ3I9hmvVNG+J2ga74w1H%0Aw7Z6tZXGuaSgkvLFJQZrdT0LL1A962hEtrEsaKqrjAVRgAVyWh/BXSdJ+Mmp%0AeOBa20WtahZDTjJCu1mhDBiX9WYquT6KB65nmvuKyOzxmP8A2qci+tGd35VI%0ANvX+dAEsQxUyHJNQhix/rUsZ3f4UATxjI9qljG41HFw1WIk4JoAkiG4fjU0Y%0AwajiHHy1NEv86AJ4xk1Zj6VDAMGpoF4oEWIxtNWYl/8A1VBCMCrMQ3CtCCeA%0A5b19KsQjnmo4U+X0qxCvNAFiEcV32mgf2fb/APXNf5VwcQyP0rvNOb/iXwfL%0A/wAs17+1AHmmuWEOppdW9xDHcW9xvjlilQOkqnIKsp4II4IPBrC0L4faD4RF%0Awul6Ppunx3QPnJb26xrIP7pAGNvXjpzXUX0WbqT/AHz/ADqnNGAO1BWph6B4%0Ac07wfpUOm6VZ2unafaqVhtraMRxRAkkhVHA5J/Ouef4PeF7fxHq2srotn/aW%0AuoY9QlO5hdqY/LbcmdmSnykgAkdScnPZSQgGq0kW/JP5UcwjnfDPhDS/AHhS%0Ay0XRrGHTtL01PKtraLOyJck4GST1JOTzk1YkjDNz7fjWjPAD9c5qA2/GcZqX%0AIrY8Z+NS/wDCO/tP/CHVbNfKvNam1PQdQKHH2u0FjJdIr/3vLlhVlz03Nj7x%0Ar1a4G+DBHUcmvMfjXafaP2mvgjGwUr9v1uXk8/LpTj/2avVJI/kPp/OiWyFE%0AzvJVB/tY49qpXjt5h9B0Gag+JWm2d14I1Rb/AFafQtOWHzr2/iuvszW9uhDy%0A/vePLBjVlLghlViVKsARxn7Pfhe40fw/rXmXWoNpN9q0l7olnfXL3F3p2nvF%0AEscchkJkXfIk0yo5LIsyqcFSonTdlHalG2MG6Y4OelQpFvTB/hNX2t9kO0Co%0ABFsPHToakZXki2n7v0qE5VuemOKsucZ5qvcwGXGNwAPbvUgRtyOM+tQtHvOe%0A61YwEH97b61DIMbcMd3U8dqBkco+U+vpWeZzmRCrLsPDHo2a0nXcBjOKqy2y%0Aylm9elAEcK4XrnvTvK+cN0oitSsv3uAKzfE/jfRvB0kI1fVNO0z7SSIvtVyk%0APmH23EZoBGgxyf8ACmSRBj82euajMn2toZIXEkTAMCpypqdzhefWgCpcMWba%0Avyg02ORlb+9UskJZ89AKaLfa2cZpiITNuPpR9qMhx93B5qT7Mwc7f4jnmnfY%0A18rnqfajQNSMXW7OOxqZwSnPWkjtlib6Cnhhj1pBqOUfL9KamfM5pyvx9ajI%0AZmP8qBkzArjb3NODsrfjimFd6rTypUDFBJIZPm/Qe1OidmUVGY8/NjtUkCbe%0A1V0AniTYOKlXoPWmocD8KbHcsz9KNivImaPc2c96WfKqMfLngUq8gU2ZWY/L%0A271XmSCZyoqaNWkY56Z4pIYcgflU0Q2t7UASxQtuNWIYdme/9KSFcj171PjD%0AcdKAGn5Zh6dKtRdOc1X27n+gq0q7Up6CJI5MtgdqsJz0qtbAE5X8auRDcaQy%0AWIfLViFP1qGNatR8ECgRJDwatIMnioY1qzEuSKsWhPCMirEK8fpioYl4q1EO%0AKZJNEnFd9pw/4l9v93/Vr29q4WNciu801v8AiX2/P/LNf5UAefX0W65m/wB8%0A/wA6pTL81aV+mLmT/eP8zVOVM/nUyLM6VaryD8utXZ48DjtVWZOakZUlTJqK%0AWLcOvt1qxIKif7v480ahc8e+LkDH9q74LNu+VI/ERIx/05Qj+tdL8bV1uT4e%0AahHoOpQ6HdGGV5dVfyz/AGZEkTyGULIChJKKnzcKJGfnZg4XxHxJ+1v8KV2s%0AzR6T4ifg8D5LFcn88fie9dT4z+Gdj431/R7y+utUaHSHd/7PiuzHY6gzNE6/%0AaYhxMEaJWUNwDuyCCRVW2uSeQfs6apq37T3wg0PxB49vNDvtD8UeH1Sbwu1j%0AFJFcSRSRrJfSyMcndLHIfKChEWSMHLKSfUfh74C8M+BPD3k+E9L0fS9Jvn+1%0AhdNiRIbhmUL5nycNlVUZ9AK5jwx8A/Cv7Pvw18QR2bXU+mx6fdKP7SlWdLC0%0A3z3Jto/lGIVknlb5tzHcMsQqhY/2MreO2/ZB+F8MUiyfZ/C2nxSYOSki26B0%0APoyuGUg8gqQeRRLVXQzsvGHiGPwj4cvtUlttQvI7CIytBY2zXFxLjska8s3s%0AK+c9E/a+0+L9pnxTJeWPxEh0dfDelC30+Xw5es8E/wBovzLL5CoSm9PJUOR8%0A/lkDOw19PXB2LXI6T8O00T4teIfFq3csk3iDTrDT2tigCwLaNcsGDZySxuWz%0AnGAg9amLSTuM3ImF2quuQsgBG4YOCM8+nWvDfEH7SHinTfjlN4LtvClpcXWv%0AaLNqfhnzJ5Ii5gnMMpvW2nyoz8sgKgna6rgscD3TUlkkspPJZY5NhCsw3Kjd%0AiRxkA9s814Xq/wCyn4m1n4ieH/Gk3jKI+LLfT7vSNXvIrExxTWlwkahbWLeR%0AC0bJvUktl3Zj2FFPl+0Vc9f0/wC0NpVub5Io7toUNwsTFo0kwNwUnBKhs4JH%0ASnqnzbq8r+K+lXXhX48/Dm8tW1YaffarJYXdzHqTGMg2U/lWr22dpjLIrmTl%0AlZf9o161jn2WoYjmfiP4tuvA/hiTULPQ9W8RzRyKv2HTQhuHBOCw3so469en%0ArXntl+05qV3q9razfCv4kWa3UyxGaSyhaOHLBdzFZThR1JGeK9J8f+C18c6E%0AbE6pq+jt5iyC50258icY7bsHg9xiuK0z9nG+0nVbe4j+JHxEmjilWV7e4vYZ%0AY5gGB2NmLO04wcEHnrVx5bageiJHnkDG7ivMfjV8CPAXiXQvEeuePNL03WrX%0A7I5llv4RILKBU+7Hn7vrxyWOa9WCfPnvivC/jrrfxDufiXb29j8Om8TeEdPC%0AzIE1eG2N5cAgh5Ebqq/wqeM8noMTG99PzsO5c/YR8Ca18Pf2W/C+m621011H%0AFJJDHcEtNb27yO0ETE85SIopz0xivWmTK/rWF8Ldc1/xF4VS78SaRFoGoTSO%0ARpqTi4NrGCQoaRflZiBk44BOO1YHwL+Pcfxv/wCEmT+wdY0G58L6rJpNxFfx%0AhTMyqrrImOqsrqQfeh3bbJO2xzThu/4CKVQCKeg3D6dqkZGFwv1prgM30NTu%0Am5fw61Eo/nQA3Zy3ajyM4296lRcyYqUrhOlAiuY8DvTlj29vapCKXpQAwRY+%0AtPWPH+FOXg09F4+tMBoTcafGm3tTgmaeifNxTAaq7R/SnJDT0TFSpHkVIxsa%0AZ9amEfH1/SlWP5fxp6jP0q0ISOPI/GpY48yU6GPC+lTRpx/SmA6Neacibc/W%0AnRp8tSpGaAEiTJ/nUyw76WNOTUsfyrQA6GLYP1qaOMony+nFCjA6d6sxjigB%0AYU2qvNWIo+lNii5qxGuBTQh0akn8KtRLk9KjhTmrEaZqxEsKZxVmBc4qOJM1%0AaiTkf40Eksa8fpXd6f8A8eEH/XNf5VxESfLXd6cp/s+3/wCua/yoA4LUEInl%0A/wB4/wA6oSZYmta+T/SZf94/zqnNFQWZdyMnGKqSphvwrUuIt1VJ4dvT60Em%0AaY+D61Xkhz3P51oGHDc1Xlh20DPIPF8Syftl+A1zl7bwrrcoGOm6fT0r0mYE%0At6DPWuB1S18/9tTQ/vH7P4H1Bh6KXv7QZ/8AHa9FuLXA27ufaiVgiUJVyvfr%0AgVDLuVz83v0q5PZlh97b/SoXtipbryTj2rMooudys35VGIdyAn6/WrX2PYAv%0A8K9KRY9i/hxSYFKeLch9OmKriHMfU8Gr8yZX9ajFt8lSBy1p8OtD0zxbda1D%0AptumrXTeZLcAEszFdpbBOAxUAZABIGK2Xh4PappIGWTNP8vA+nY0gMm9Uq/T%0ANLbhmXkY5q5cWvnHPG2mRw+UMVTegyB48L+Peqkke+4b1FaDxj0+lVZF2yNx%0A16UREVWhJJyfxqjpHhyz8O20kdpH5bXMrTysfmeV26sx6knj8q1jH833e1E0%0AeItx+9/OqDUzzlUNOso23ct16VMbdmTGPxoiTyvmJ9vrQA6SNigC9aqMSW+h%0ArTCrs3fdqo8TBtwHvUoAhiK9adIdpqWL5xTZ0LL8o/GpArxPvk4qxEhYbj/+%0Aqo0iK9F+arEC7vb696rlAj2lT601G2/hVi6YKvzfhUaxgr7nvRYCROVoPB9O%0A9CxkhVB4qQR598VVkII+XFWIwKhdMJ0p0G532/w9qOXqMmBBHr2p8UoRM0yN%0Adp2n5jU6Qlh0HWq5QJkjyF9e/tQkhZqhWVogVbqf5VLA+5un0o5SSxHuNWkT%0AK89ahjTJqZWwmfzp8oXJAADViJN9Qr03VYgb5RnvS5QuSImAKtRKAOwFQhcA%0AY45qaI7jj2p8ork8IwKsxpkVViJUVagfcmafKFyxCnFWIk/z7VXjOw+/86tQ%0AnmiwixFHirEK/wCNQwpwKtwJkdKAJI1xXb6fKRYQfL/yzX+VcTswK7Swj/0G%0AHr/q17e1Vygcnew7ppP944/OqdxD1/WtW9T9/J/vGqU8WKkdzLljqvNDkGtG%0AZd1VpoqTHuZ0kXy/pUDw/wD1q0JIRg8VCbf/AD6VBR5G9s0v7a0fzfLB4BY7%0AcdC+prz/AOOEV32rajaaLbLNeXVrZwtIsKyXEqxKzscKuWIG5jgAdSelcXbw%0AA/tl6jKc5j8CWyHHIG7Ubg/+y1yf7cSaL4t+FviTQRG2r+J7XQbjUbPS48Fr%0AZOX+3kHhTGLd1Vs5yxRQWlAOnLdpE7LQ9b8+OW7mhWSNpoNokQMC0e4ZG4dR%0AnnGetRTRZNeU/Dv4ieEfh78DNX8fWen32oQrp9pf6zq8Ecct1rs5tlneR5CV%0AMjI05Ri2AjFkAAQhfYJYNo5G1vT+6amUbMaM94cH+QrN0zW7HW7u9htbq3uZ%0ANMn+zXiRuGa2l2K+xx/C2x0bB7MDS/EKDxH/AGF/xS76IuqCZSf7WWVrcxc7%0Ah+7O4N0x24NeIfs5S/EhvHfxCmlsvAb2Vx41kj1Zo7m6SVHjtLKKQ24KEMvl%0AqpUOVJctnAwaFHRsZ7J4s1uPwl4ZvtUuIri4SxhaUxQLullI6RovdmOFA9SK%0A8db9o/xl4F+LvhTw/wCPPBNjo2k+OLtrDTNQ07VftptbnBZILhdi4Zh3XK5D%0AEEgGvfmQAfNxjk5rynWPDUPxo+Jmg+J7144/B3ga4kutMeQ7U1TUGUwi6yeB%0AFEruqH+N3LD5VUsRt9oD0KSIc1G8H4+teL/G7x34y8F/tFeAdL0zWLOOHxtN%0Ae6X/AGXMoaC0jjhWWO84Adpfll+XIU/KvZmPpPhfxJpvhnS9E0bUvFtlrGrX%0AkWLe4uZ4YrjVcE/OqLgN6fIMcVLg1qBtNHmoJXjSeOFpI1lkBKRlhuYD0HU4%0ArSaKvO/2gPD3w71PS7Ofx5daTp/2Qs1ldz35sriAnG7ypFZXHQZCnnA9KlK7%0AsB2Rt8/h29KbJajJzXzOPifq3hqFl+FXinxX8Ro1bEem6jo0l9aPjjYuoYj2%0AD3Zn7V9BfDDXdb8U+CLG+8Q6LH4f1iYN9osEuVuVgIYgfOvByMH2ziqnTcQD%0AxZ4q0vwJoc2paxf2mm6fbqWknuJAiKPx/pUug6xa+KdCs9RsJVuLG+hW4t5Q%0AOJEYZVh9Qc1yv7WdvCv7NHjqSa3hnji0S6YCRQw/1ZrW+CGn/YPgv4TgXgQ6%0APaoB9IlFTb3bgbbRbT2pptlYcrVxoN3pR5P8qkCm9uCdw7fpTPI/WrrwYH9K%0AQQc09QKYg2nHSnmLFWjF8386BFk07AVFt9rfXrUoh2/41MIsineTmi1gKN5a%0AbgG9OaNgZQFXt1q9LFvQ/kKjSBlxxxVAQ2MQMWGqcWx3cL1p/wBl2ybl/EVY%0AiTd/X2qmBVeEk9KckAY9KsTp5aZ98fWrEUOFFHMBnrCXuMr/AA9RVg7owox9%0Afap7eEGdvWpXiw1VcllNoPOnVu2Og71YgtcJ83r1qZrXYBnj6VMkONvpT9Qu%0ARxw4TrU0cC7PbpUvkZVvb2qW1h3p1+7TuSQiH5xkdPWrMEP7ypRAMirEMI8z%0A2pXAY0e2nwrn61I8WWA9/wA6ljgw3HWqQCCPcoq1BBiP0ohg/d/j+VXILf5f%0A1pgQJEzMv97pV2GP5eaIocHFWI4sjGOtACJGzFVz1wavwptX1qGCLaV45xV6%0AKLFADUj3V22nofsEP/XNf5VyUceV6V2lhH/oMPH/ACzX+VAHJ30R89/941Tu%0AIsmtXUFCzt/tMce/NU3gLD7uKloDLliwW/pVO4Xnp1OK1pbYiqdxbYP3T+VS%0ABnzLg4FV3UqrflkVoSwYxx7VG1sEG7HSgDynSLUv+1t4lkx93wppiE+mbq9I%0A/rXfTxbTuH3ugPT3rjvC8Jk/aV8dNj/VaPo8WfbN239eld3JD8lDHE81/aC+%0AGt58QvgL4k8L6Jb2cVxq9kbOBHYQQxBmBJJAOABnoK64yvPGsjRtEzDJjYhi%0AhPUEjg46ccVqGIgfjVExZkYMOVOPrR5DsVZhxyPes7R/DVjoLXhsbOG1/tC6%0Ae9ufLXHnzvjfI3+0cDP0rZeLhvl+lRiHa3IqRowvFng+z8Z+Hb7S9QSWWx1K%0ABre4SOd4WeM8EB0IZcjjgjivOPCv7FPw78D69p+oabpOpQyaVMk9tFJrN5Nb%0Aq6/dJheUxtjggEEAgHqBXsbw4Pp/hULJzjp+FLma2YzyvXf2WfDOvWVms0+v%0AfbtP1b+2LfURqUjX0cuHURiZst5QSR0CdFB4wfmrjfjXaeA4fEWl+CrhbLS7%0Aya5069ec2skkiJbTIbeCFlBxIxQKACMK7Hktz9BtBgVC8ZPSiMpIFo7lG4Qh%0AicZ56eteafGn4d6/418R6XcaHaeB45LOGRf7T1rTGvruzYkYECZUAHGT8w5A%0A616m8XNV2g5pRbWqA8gH7Mmo+KFVfFnxC8Xa1H/HaWLppNm3tthHmY+shrv/%0AAAR4E034e+HoNJ0mBrfT7PIijaV5SMkkks5LMSSTkknmugSHH5UFOaJSk9AP%0APf2jfh/q/wAUfgz4h8M6LJp8N5r9lJZGa8ZgkIcY3YUEn6VreAtHv9F8G6Vp%0A95FbQ3Gn20ds/kSmWM7FC5BIU847gV1Dp6CmiHj7tGtrAeY+Cvid4g1v42+L%0AfDGq+Ho7HS9HhgudO1GK480XiSFhhx/A/wApO3rjnoQT6AseV+tFtoNrYyzN%0ADDDC1w5llZFAMrnjc3qcAcmphDtzRp0Ah8sF/pSNFg/yqXyM5P8Ak014jvAo%0A5RXIxCM/Wgg7+mKseQXZeMU6SEAr6Z5osMgEORSrHk1ZMG1d3YdKYgy+MfnQ%0ABD5OG/D0pwi4qXYWkwOtSrBsI70+ViuQpBx0pyQ4NSKmakjj8wUWYXI1h3eh%0AFSrHtFSxW/FSrDxSGVo4l3/7TVM0HmOoqZLfLZPbpTtvzVSAj+zK9TR24C9K%0AckW0dP8A69TRwYb1qibDIrfauMe1SxWoT0qWOPg1PDbUDI0twx6U9IMPuqeO%0AD+fWpFttz/SgghWAk1YS3wOKmigGc1YhhyelO7AhitWKY61YhjbyyB97HGam%0Ahhx+f51PHDxT3Arw27cce1W7e24qSGHJ9atQw4WqAjgtCrf55q3FHg9MinxR%0AZNWIIcnNADUjymMYrrrFMWUP+4vb2rnYrfiuwsoR9ih+79xf5UAcneW+24k9%0ANx5x71XaLf06da2LuDdK3+8apyW2PzpMDLkgyfpVSSHP/wBateaDk1Vlt+DU%0AAY89v861HJb1ozW3zfQ9qikgoA8v8DWin49/ESRc8RaTGfqIJD/JhXYX0O+P%0APft71y8sifDb4xa5f6lut9J8VwWjxXzL+4t7iBTE0MjdI9ylGUtgE7hnIxVr%0A4kfFjS/htq2m2+pR3C211PHBcXq7Rb6YZN/lGYkggOY36A4CknAxmnqNGyIT%0AtX6c+1VJ4CLhdv507wjrn/CU6M11/ZuqaWoneJYtQt/ImkVTxIEySFYHI3YP%0AqBVx7XzJs9lGOlSUZ81s20gfhmqcobsNvGTmqfxFPizT47W48K2Oh6pJGzG7%0As9RuZLZpk+Xb5Mqqyqw+bO8YORyMc8qP2hdN0K7Fv4x0fXfAlwzbfM1O383T%0A5G/2LyHfCRz1YofYUct9Rcx3Ah3Kp/lULxBW69KvabdWusafFdWVxb3drcLu%0AimglWSOQeqspIP1FeZ+KvEmoeMv2gY/BFhfXOlafpmjnV9UurUJ9pld3CQwo%0AzqwVerscZOFHAzmVG7sO53hi3r61G8GB/nmuH+AfjPUvEd34s8O65Kt5rPgj%0AV2017zYsbX9syiS3nZVAUSMjFW2gDchOBnFeiGDjdiiUbOzGncypotqfoKhF%0Apsj9/WtO6tMIrc9aje3x81SBmQMpcrjkdPei4tyyNx71ZS32TdPvVK8GVoAz%0AIoty89fSpHh2hvTpzViKDZGT680XFt5seecgZHNMnUpyW2B9elNFl2/Q1MI9%0A3zNwIxk+1YMfxk8L3AbydWjuWUlSsEMspBBwRhVPQ8UWYzWFoPOPtT/sgY/5%0A4rk7f49eHb64b7Guu6mqzGB3tNFu5kRwdrAsI8DByD6YNdyY949FocWtxlH7%0AJtNDWW9vxqhdeOdLez1qRLnzF8Pu0d9sXLQsqCRh7nawNauhX8GvaVb3lrIJ%0ALe6jWWN8EBlYAg8+oNKzQEb2p2fqKr3Fnu2q2Tk5PNbIgwMCqlxLbR6lFbyT%0ARrczqzxxFsNIo6keuMjpQBVS12YBP3RUkVqzNnt0rQWzVI/8adFD8n8+Ksmx%0An/YyrAD61LHCVG2rptyxz6UkFqBljzn2o8h2Ikh/lTo4Sfb6GpvusqgVPHB8%0AtLlAgji4p32fc9TLCyzYxwec1YjgyKLagV/svtUkaYFWhDtqSOD8aoZBDBuN%0ATrDhvwzU8UHH0qRYP0oIZDDHu6VMsODUsFt5Y471YSDFAiGO3+WpY4M1MIMD%0A6dalt49/biqsAkEGBUyQ5NTR2+cVMtv3xTsBFb2+Gq1FB/hT4bfJ/wDrVYit%0AicUwGRQcVaht+akit8VZgts0AMjhwtdVZpi0i/3B29qwY7f5K6e0gItY/wDc%0AH8qBamJd2/71/qapzQYrZuoMyN/vVUltsZoGZE1vxVWa34/zxWvNCBx1qvLb%0A4qeUDIlt85qCS29q1JLfiq7wdqkDKkt8H/69eZfGzwF4k+Iuj3lvZ2enxxaT%0Ae2t/pqG4DPqskTRviTcoEQX96oGTubaSVUHd61JBUElvQtHcDzbxrreveH9J%0A8PytJaw3Wq+Iba1uYzEJPKt5pj+6VuBuWMBS+DuOSNuRjrntflpvjDwPD4wX%0ATvPuLy3/ALLvY7+HyCnzSx52FtytkDJ4GM960Hg9sUFankv7QHjKXwcdLjh8%0AX2HhRrwy7g+kNqd3dhdn+pjB425+YlT95fx89uvD2peP4ZoW0f4seNo5kKyL%0ArOox+HNNkByP9UnluynB4KNkdff6WMG2TcPlbpkdahe24+hqlKysg5TivhN4%0AObwR8PdP0xtH0nQmtxJmx02VpbWDdIzDa7KpYnILEjlix964Kz0T/hDv2y9Y%0Avr1o4bXxh4ch+xTSNsjee2cCaEE9XEe2TGc7cnHBI9teHIqhrGgWev2TWt/Z%0A2l9bswfyrmFZUJHQ7WBGffHepTauwseP/s16I+p+LfiN4sQN/Z/ibXiunN1F%0AxBbr5fnA91Zy4HYhcjrXoum67puuR3MljqFjex2crQ3DQXCSLA45KOVJ2sAc%0AkHB5rfjs1t41VFWOOMAKFGAoHAAHtXEeBfgTovgv/hKTHp9rFH4vuWnvrOJm%0Aa32lShUBv72WZsADLnAAAqXruG2x45e6T5v7QOvaPceKNW/sHUPDZvtakt5p%0AIzcXMMzI/wBndWJiwsygrFz8irnIOfXLf4haBB4ug8Nf2kP7WdWjhjkST98Y%0A1DOiyMNjyKuCyhiwGSRWo3wc8MmbRWXRbGM+G1MemBFKLaKdpIVQQCMqpwwO%0ACoPUZrndUvU8QfFrT7G40PxBb2eiXUlxaTjTXFpc3LRMpnab7qqqu6jPLs5P%0AOADV0wVjrWsgfm2/NjtzWF49sdUufD00Ok3MOn3Mmc3jqri0QAkvtbgngDnj%0AnPao/j94DvviD8NLrStMvtU03Urh0Ntc2MvltHIDwZGyP3fdsc+mTgVc1r4c%0Af8JFBpaX2p6k8enx7bmCOUJBqZwv+vXBLAMucAjqQcgkGVbco87/AGcfF3ij%0A4qeDND8Rapeada2sltLby2kcAeS/ljcI1z5m4eWNyvhApADDJz09OtPLvIPM%0AjkSVGyAyMGU/iOK5vwb8EtB+FOjX0bXsj6SWm8qG+eNbewiml8x4lIA+RnP8%0ARJxhc4GKr/AnRG0eXxZbGDTY4l1t5oW05ibNkeKIjYv8BHRwMjfuOeacmnex%0AJ1iwKD6bulcN8X/Ht7pPhbXIPDixz6tp9nLLPcFtsGnBULfM3Qy9MJ2yGbAx%0An0XUdJTUrWSF2mjWRdpaKQxuB7MuCPqCDXL/ABM0e38LfBrXodP0/wDdR2Mq%0AR20EW7ezAj7vfJOT3PNK4zn/AIf3+i/DOw0vQfsb6PHfgNaTSP5kd7M43uGl%0A/wCezMWOGwW7Z6DrPGNzqWkeGrqfSNPOqaoqYtrbzFjDueASWIGBnJ55xWhc%0A+FLPWdBhs7+2iuoV8p/LkXI3oQyt9QwBqj8S54bXwldRTwa5NHeD7MF0iJpL%0ArLcfKV+77scACjm1DQ8R8zWNV8C3On2Nha6Xp2oSGyYXtwok1Wcyg3Vy0yBg%0AsZBMYbDZL8YAGfSNK17xNafEHStHutN0G10+4s57iQ21xJNJGIyioBlVAyW9%0AO1S+EPh7bWHgu8sbjQ7vTdL+wm2Q3l+1/feWQQQR84XaMEBXbp0AAp3w4ubH%0AxF8Q72bTb0alp+h6ZbaZHcCXzN8hzI+W7tt8vOec05C03N7xpBq0WgzS6PcW%0AVvdQq0hN1AZkdQpOAAy4JwOc149P4u1jxH8QPCd/9ukud1ldT28kXhW4+UP5%0AQ4Bck8H73AA9dwr27xhrdjpNg9tcNNJPfI0UNtbLvuZ8jB2L7Z+8cKO5FeJ2%0A/wADNe0zxxpMkmsa+xsdOkni0ddUkZVt1ZE8kzKVJkP3iVwu5VUDaM042tqF%0A2ei/CnWNQ8aaI2sT3zXFncFo4YZNO+xyRlHKMxG5jyV4rsYrbEY496z/AIb2%0Aujw+CrSLQvk02FSqRs7M0JydytuJYEHOQeRT/A/jnSfiJYXF1o10Ly1tbh7W%0ARgjLslT7ykMAe4/MGjzGXZbdRHRawbhmr/2bj/PNJDa7GoFcpyxbBnH51PDB%0A8np61ZFmG+8PwqVLbaOlAFJoMyL7VYSLJqaO15z61MbbaRQDKbwFen61Pbwb%0AO/61OtpuNTRWeDVEkaxHbwv6U5EORx07+tWkt8/nU62+0UgK0MW5uhFWI4Mi%0ApobYYqwkIPHpSAqmD5PrVi2tgEqYWvy9Kngt8pVAQCEq/tVyCDig2+7t3q5B%0ABiqArpBtcf3auRQYp8dtukH0q1Fb4xQAyKLBxViCLceKclvVq2tdooAIoMCu%0AitYiLaP/AHR/KsmC3x2roLeMi3j/AN0dqAMu6t8M31NUZocdRj+ldlPpsBB/%0AdrVOTTLf/nktAHISwZYcZ96rTRY/h/Gu0fSbdh/qVqvJo9rz+5WgDiZFUH7v%0AtUMtrx0rtX0W1P8AyxTpSNodpn/UJRYDgbi3IGRVeRfm5Fd9NodoU/1CVXbQ%0ArNjzbx/5FKwHCvb5qvNDtXNegf2BZhP+PeP/ADio5/D1kyf8e8fSoK6Hnzw5%0A5HeoJoNgr0QeHLHb/wAe8f61G/hyxDn/AEaOgVzzkx7xUb24I/x716JJ4ZsP%0Al/0WOox4bsSW/wBGj+UZHX1oHzHnctoG47VXmi8v7q/lXp3/AAjFh/z6x/rV%0AeXwxp/mf8esf60BzJnmyw7v8KSSEk+1ekr4V0/zv+PWPkZPWlbwpp2f+PWP9%0AaBPc8wePYOR+dIYOa9ObwnppH/HpF096htvCmnkt/osfB46+ppco7o8xu9Nh%0AvLdoZ4o5oZBtaORdyuPQg8EU210qHT7ZYYIY4YYxhY41CKo9ABx+VeqN4T03%0AaP8AQ4qjfwnpuP8Aj0i/WlYL6nmRtuaRbfPavTh4T07cR9ki/WlHhLTQP+PO%0ALp70WCyPL/IwOKBbfNXpZ8J6aJV/0SKpD4S00f8ALnF+tFgPMYrf5h7elUPD%0AvgvTvCovP7Os4bP7fcteTiNcebK2AzH3OB+VevHwnpo/5dI/1pV8J6bk/wCi%0ARdfenYOY8uj0mGK6kmWGNbiYBXkCDewHQE98VUHg23bxUNY/eG6W1+yAbvkC%0Ab9x49Scc+wr17/hEtN3f8ecXX3pR4T00H/jzipiPHdN+H+j6TrdzqVrptpbX%0A12SZ54o9ryk9S2Op9zWhb6ZFZReXDDFBHknaihV55PAr1L/hE9Nz/wAekX60%0Af8Inpuf+PSKgR5kLenC2ya9OXwlppX/jzi/WnDwnpoH/AB5w0AeZra4NOFvx%0A/SvTF8J6bj/j0i/Wnf8ACKad/wA+kX60Aeax2+01J9j3CvSB4U07bn7JF+tS%0AL4W08n/j1joA84itdtSpbGvRF8Lafn/j1jqRfC+n/wDPrH+tAHnsdvz0qZLb%0AJrvo/DNhgf6LHUsfhmw2/wDHrHQBwKQZPap44Mdq7pfDdjn/AI9o6lXw5Ygj%0A/R0/WnGzA4aO3yamjtNre1dvH4fs9/8Ax7x8U9dAs93/AB7x96sDjYrarEdv%0AzXYRaDZ/88EqVdDtAB+4SgDk4LXaasR2vFdXHotqD/qUqSPRrX/nilAHNQ2u%0ARzVqG056V0SaTbgf6lalGmW4P+qWgDBitvatyCH9wn+6KsQ6dB/zzWrawoFH%0Ayr09KtIm5//Z" alt="图"></p></blockquote><p>一、解题思路及步骤</p><p>1、由题知,求f(x)在约束条件下的最大值。可先将其转化为求最小值,再使用fmincon函数求解。所以函数f(x)的定义如下:</p><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br></pre></td><td class="code"><pre><span class="line"><span class="function"><span class="keyword">function</span> <span class="title">f</span>=<span class="title">fx</span><span class="params">(x)</span></span></span><br><span class="line"> f=-(<span class="number">2</span>*x(<span class="number">1</span>)+<span class="number">3</span>*x(<span class="number">1</span>)^<span class="number">2</span>+<span class="number">3</span>*x(<span class="number">2</span>)+x(<span class="number">2</span>)^<span class="number">2</span>+x(<span class="number">3</span>));</span><br><span class="line"><span class="keyword">end</span></span><br></pre></td></tr></table></figure><p>2、定义约束</p><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br></pre></td><td class="code"><pre><span class="line"><span class="function"><span class="keyword">function</span> <span class="params">[f,ceq]</span>=<span class="title">fceq</span><span class="params">(x)</span></span></span><br><span class="line"> <span class="comment">%不等式约束</span></span><br><span class="line"> f(<span class="number">1</span>)=x(<span class="number">1</span>)+<span class="number">2</span>*x(<span class="number">1</span>)^<span class="number">2</span>+x(<span class="number">2</span>)+<span class="number">2</span>*x(<span class="number">2</span>)^<span class="number">2</span>+x(<span class="number">3</span>)<span class="number">-10</span>;</span><br><span class="line"> f(<span class="number">2</span>)=x(<span class="number">1</span>)+x(<span class="number">1</span>)^<span class="number">2</span>+x(<span class="number">2</span>)+x(<span class="number">2</span>)^<span class="number">2</span>-x(<span class="number">3</span>)<span class="number">-50</span>;</span><br><span class="line"> f(<span class="number">3</span>)=<span class="number">2</span>*x(<span class="number">1</span>)+x(<span class="number">1</span>)^<span class="number">2</span>+<span class="number">2</span>*x(<span class="number">2</span>)+x(<span class="number">3</span>)<span class="number">-40</span>;</span><br><span class="line"> f(<span class="number">4</span>)=-(x(<span class="number">1</span>)+<span class="number">2</span>*x(<span class="number">2</span>)<span class="number">-1</span>);</span><br><span class="line"> <span class="comment">%等式约束</span></span><br><span class="line"> ceq=x(<span class="number">1</span>)^<span class="number">2</span>+x(<span class="number">3</span>);</span><br><span class="line"><span class="keyword">end</span></span><br></pre></td></tr></table></figure><p>3、使用fmincon函数求解</p><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br></pre></td><td class="code"><pre><span class="line">lb =[<span class="number">0</span>,-Inf,-Inf]</span><br><span class="line">ub=[Inf,Inf,Inf]</span><br><span class="line">[x,fval] =fmincon(<span class="string">'fx'</span>,[<span class="number">0</span>,<span class="number">0</span>,<span class="number">0</span>],[],[],[],[],lb,ub,<span class="string">'fceq'</span>)</span><br></pre></td></tr></table></figure><p>二、答案</p><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br></pre></td><td class="code"><pre><span class="line">x=[<span class="number">2.6667</span>,<span class="number">0.1667</span>,<span class="number">-7.1111</span>] </span><br><span class="line">fval=<span class="number">-20.0833</span></span><br></pre></td></tr></table></figure><p>参考链接:<a target="_blank" rel="noopener" href="https://blog.csdn.net/ten_sory/article/details/54571525">MATLAB规划问题——线性规划和非线性规划</a></p><h4 id="3-4-微分方程模型求解方法"><a href="#3-4-微分方程模型求解方法" class="headerlink" title="3.4 微分方程模型求解方法"></a>3.4 微分方程模型求解方法</h4><blockquote><p>计算下列微分方程组:</p><p><img src="%0AAAAmAAAI5gEAAAMAAAABD4AAAAEBAAMAAAABC6AAAAECAAMAAAADAAAJDAEP%0AAAIAAAAHAAAJEgEQAAIAAAAJAAAJGgESAAMAAAABAAEAAAEaAAUAAAABAAAJ%0AJAEbAAUAAAABAAAJLAEoAAMAAAABAAIAAAExAAIAAAAmAAAJNAEyAAIAAAAU%0AAAAJWgITAAMAAAABAAEAAIdpAAQAAAABAAAJboglAAQAAAABAAAUmqQLAAcA%0AAAAEaXBwAOocAAcAAAgMAAAA2gAAFXYc6gAAAAgAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAFdpbmRvd3MgUGhvdG8gRWRpdG9yIDEwLjAuMTAwMTEu%0AMTYzODQAAAgACAAISFVBV0VJAABFTUwtQUwwMAAAAAAASAAAAAEAAABIAAAA%0AAVdpbmRvd3MgUGhvdG8gRWRpdG9yIDEwLjAuMTAwMTEuMTYzODQAMjAyMDox%0AMTowOSAyMTo0MzoxNAAALAENAAcAAAAAAAAAAIKaAAUAAAABAAATkIKdAAUA%0AAAABAAATmIgiAAMAAAABAAIAAIgnAAMAAAABAoAAAJAAAAcAAAAEMDIxMJAD%0AAAIAAAAUAAAToJAEAAIAAAAUAAATtJEBAAcAAAAEAQIDAJECAAUAAAABAAAT%0AyJIBAAoAAAABAAAT0JICAAUAAAABAAAT2JIDAAoAAAABAAAT4JIEAAoAAAAB%0AAAAT6JIFAAUAAAABAAAT8JIHAAMAAAABAAUAAJIIAAMAAAABAAEAAJIJAAMA%0AAAABAAAAAJIKAAUAAAABAAAT+JJ8AAcAAABkAAAUAJKQAAIAAAAHAAAUZJKR%0AAAIAAAAHAAAUbJKSAAIAAAAHAAAUdKAAAAcAAAAEMDEwMKABAAMAAAABAAEA%0AAKACAAQAAAABAAAPgKADAAQAAAABAAALoKAFAAQAAAABAAAUfKIXAAMAAAAB%0AAAIAAKMAAAcAAAABAwAAAKMBAAcAAAABAQAAAKQBAAMAAAABAAEAAKQCAAMA%0AAAABAAAAAKQDAAMAAAABAAAAAKQEAAUAAAABAAAUkKQFAAMAAAABABsAAKQG%0AAAMAAAABAAAAAKQHAAMAAAABAAAAAKQIAAMAAAABAAAAAKQJAAMAAAABAAAA%0AAKQKAAMAAAABAAAAAKQMAAMAAAABAAAAAOocAAcAAAgMAAALhOodAAkAAAAB%0A///0EgAAAAAc6gAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEx%0ALQA7msoAAAAAtAAAAGQyMDIwOjExOjA5IDIxOjIwOjU2ADIwMjA6MTE6MDkg%0AMjE6MjA6NTYAAAAAXwAAAGQABI/dAAAnEAAAAKkAAABkAAAAAAAAAAEAAAAA%0AAAAACgAAAKkAAABkAAAPbgAAA+gjIyMjCgAAAK7IMwEAIgAAAAAAAAAAAAAA%0AAAAAAAAAAFwBAAD/////////////////////////////////////////////%0A////////////////////////////////////////MDgxNDY5AAAwODE0NjkA%0AADA4MTQ2OQAAAAEAAgAHAAAABDAxMDAAAAAAAAAAAABkAAAAZAAAAAoAAAAB%0AAAAABAICAAAAAQACAAAAAk4AAAAAAgAFAAAAAwAAFRgAAwACAAAAAkUAAAAA%0ABAAFAAAAAwAAFTAABQABAAAAAQEAAAAABgAFAAAAAQAAFUgABwAFAAAAAwAA%0AFVAAGwACAAAABEdQUwAAHQACAAAACwAAFWgAAAAAAAAAGQAAAAEAAAAyAAAA%0AAQEQ+HwAD0JAAAAAcgAAAAEAAAA2AAAAAQKVan0AD0JAAAAAAAAAAGQAAAAN%0AAAAAAQAAABQAAAABAAAANwAAAAEyMDIwOjExOjA5AAAAAAAGAQMAAwAAAAEA%0ABgAAARoABQAAAAEAABXEARsABQAAAAEAABXMASgAAwAAAAEAAgAAAgEABAAA%0AAAEAABXUAgIABAAAAAEAAAiBAAAAAAAAAGAAAAABAAAAYAAAAAH/2P/bAEMA%0ACAYGBwYFCAcHBwkJCAoMFA0MCwsMGRITDxQdGh8eHRocHCAkLicgIiwjHBwo%0ANyksMDE0NDQfJzk9ODI8LjM0Mv/bAEMBCQkJDAsMGA0NGDIhHCEyMjIyMjIy%0AMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/A%0AABEIADMAoAMBIQACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUG%0ABwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEU%0AMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJ%0ASlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOk%0ApaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy%0A8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1%0AEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJ%0AIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZ%0AWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqy%0As7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/%0A2gAMAwEAAhEDEQA/APRWn96ha4OakZE1ycUw3JoGR/aTTXutqk8nAzgd6AIo%0A70yu3yMgRip3rjJ4wR7VG+oOIFkSGQ5YAqRyAWAJx9Dn8KVgE+3SefIhhcqN%0Au1lHBz1/LH5Y+gdHfBzgAnAyGCna3APB6HrRYBv9obWiWSGVN4YliAQmMfeI%0AyBnt9Kat7ctDA32YAuVDqXxtyMsenbp2z/MAsrcblVhkAjPIwacJz2NADhOa%0AkWcj1pgSLOalWf3oAlWepVnoEZTTEHpULTsM9PagCM3LdMVGblsZ2/SgY37Q%0ASQMdqjN0SvTqQKAGrdSPIcx4XHAPXPP/ANamteMpAEDHIJyCMD685/SlYdyp%0A/aF00EZSD94Ljy5AY2HyZ+8AfbB68c9SMGWC/eUQ7oXRnjDtkEBSR05A5/X2%0AosA/7ZJtQ+Q4LMAVbkjnr8uRTorvzFx8xYIrE7Cuc+x6dDx1HegCQTnj5acJ%0AW3YI4oAekxIJIHBqUS4zweKAJPNwM08Tc0CJllqVZaYioxNQuxwcUhkRkb0p%0ArSHPTIoAbvJ7VXnmKRghM/Og/NgKQwWaVmDMioAMFSMnPHf86hW5kaOIyxeU%0Azvgruzjr3/D9aLBcrLd3r29uRGplafZL+5Zf3eTyATxxg8n14zxViSZ1SU+W%0Aw2Y2tt3hvoFOaAKQvdTZ7wfYlRVVfs5KFtxx8wPI6PgDpkHdyBVh7y7WS3VL%0AEuskro7b8eWqtgN05yOf/wBdGgF12KRllXcR/DkDP096Lcyl5RKoUB8IdwO4%0AbQf5kj8KBi7rr7aFVFNvhcnvk7s/lhPzPXtKklyk4R4jIjs37xSAIxxjIJz7%0AcZ6ds8Ah0T3G2MGLJbBclx8ueoGBzirRLBWKgMQOBnrTEJFJI4zIDECqN1Bw%0Ax6r/AC/OpBcgOAwcBgCD5bYAJAAJx1yelACsKiIPpQBG270phB/u0AM5z0qp%0AelhAny9Zoh/4+tIYx57xbF5hZ7rjqtv5gHfGC3T3/Slgkunk/f24iQwowAYE%0Ahzncue+Pl7DvQBDc3V3BBJJHZG4K7dqxvguC+D1HBC4PPGTjPGasxMxijaVP%0ALkZQWXdnae4z3oGQ2t1JLZrNcQNbuTtMeCcHcVHOBweD0HWrQpAOFOApgSAG%0Anjg89PWgCVRUirQIkANSBaYhrRNTGjbPGKYEflvnkCozG/PFIBhjbjI+tRS2%0A/mptOQA6vnHowP8ASgYKrlN7jkj7g7UgSQyAFBs25zu5z6Yx/WpGZ0B1jdAJ%0ArWH/AI9keU7gP3uV3KOTxjcenpzV7yyzsuwhBgqc5z/9f/634MRH5sgvjB9l%0AlMQjEnnjBXOTlcdc8Dpnr24zLGofcOQykBlI4BwD+PWgY4QHdkE49DUoiOMC%0AgBwi4xzTwmB0P50CJQh4wPzqZUoAkVPapAlMQSeYpcCPOFJUYOSQen8qrO1w%0AnkhovmYkMFXPHPTn+fr7VVhDN1zul3RptC7k55Oc8f5//UGTciMiEhwSpPA+%0Ap9qVh3GoXdiDHj5yvBz07n/PpTZj5OAQSxIAAHHJA6/U0rBcjil84sPKdNv9%0A8YyMKf5MPxBqKK8tp7YzxOWQIX+6QdoJBwDyeRRYdxUnikl8uPczZIOFOBgs%0AO/ujD8qkkHlSRI6nMrbVx9Cf6UrBcR3ijYBm/iCkgEgEkAAnsSWHHv8AWlWS%0AE2wufMVYCoYSP8q4OMHJ+oosFydYgwBGCCOCO9Mt5ILkK0UgbcoYDocYB6de%0AjL+YoAseVhlBByx44p0SrIqshyGUMCO4PSgCYQ04Iv8AeHGM8+vSmImEVSLF%0A7UAWzGuRxUTou7GKoQ0xoQeKjMaZ6frQA1ok5O39aPKjx92kMa0MfXaM01re%0AFgVaMEMMEHnNIYw2lvuD+Uu4HcD74xn644z6U428TFSyAlTkE9qAEFnbg8RK%0AOc47E8HP14HNH2K2MTRtCrRnqjcrxjHHQdBQIeLWDereUu5eFOOR9KrTabZ2%0A1rEsUCqFkhUcknAdB1Psq/kKBltbOCExbEPy5UFmLHB56k+w/KkitodzW2z9%0AysCqFz2O4H9AKBCyWNrFZOiQgKsbhRzwDyamKL50gx0CfqTTAmgUMZMjOHIH%0A0qysaf3aBH//2QD/4AAQSkZJRgABAQEAYABgAAD/4TGwaHR0cDovL25zLmFk%0Ab2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49J++7vycgaWQ9J1c1%0ATTBNcENlaGlIenJlU3pOVGN6a2M5ZCc/Pg0KPHg6eG1wbWV0YSB4bWxuczp4%0APSJhZG9iZTpuczptZXRhLyI+PHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8v%0Ad3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj48cmRmOkRl%0Ac2NyaXB0aW9uIHJkZjphYm91dD0idXVpZDpmYWY1YmRkNS1iYTNkLTExZGEt%0AYWQzMS1kMzNkNzUxODJmMWIiIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2Jl%0ALmNvbS94YXAvMS4wLyI+PHhtcDpDcmVhdG9yVG9vbD5XaW5kb3dzIFBob3Rv%0AIEVkaXRvciAxMC4wLjEwMDExLjE2Mzg0PC94bXA6Q3JlYXRvclRvb2w+PC9y%0AZGY6RGVzY3JpcHRpb24+PC9yZGY6UkRGPjwveDp4bXBtZXRhPg0KICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0ACiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0ACiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0ACiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg%0AICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94%0AcGFja2V0IGVuZD0ndyc/Pv/bAEMAAgEBAgEBAgICAgICAgIDBQMDAwMDBgQE%0AAwUHBgcHBwYHBwgJCwkICAoIBwcKDQoKCwwMDAwHCQ4PDQwOCwwMDP/bAEMB%0AAgICAwMDBgMDBgwIBwgMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM%0ADAwMDAwMDAwMDAwMDAwMDAwMDP/AABEIAL0CSAMBIgACEQEDEQH/xAAfAAAB%0ABQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAA%0AAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZ%0AGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5%0AeoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK%0A0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEB%0AAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQF%0AITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkq%0ANTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeI%0AiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY%0A2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/AP1Bu9UdJm+dvvHv%0A71XfVZCD+8f/AL66VmXl3m4k9mNQG8xxWJoasmqSA/6x/puqGXVZAP8AWSf9%0A9VlPee9QSX2G71JRrPq0m3/WP7fMahOsyY/1j/8AfRrIlv8Ab/8ArqvLqPPt%0AQGhstq0oyfMkx/vGo31WUj/WSf8AfRrFfUMseelRyaoo/lQBuf2rKqf66T/v%0Auon1iX/ntIf+BVif2ruyMio5tT2FhQVsbn9ryn/lrJ9dxph1eYD/AFsn/fZr%0AAl1lUXqaYNVyN2e/pSYG7Jq03XzpP++jUZ1eQ9JpP++zWFJrO2Rh+lJHqv2h%0AfvfUVAG0NVmOf30n/fZ4pra1L8376THb5zWLJqIHP6elV3v97HvQB0H9szMP%0A9dL/AN9mojrEzZ/fSf8AfRrC/tlYQVz+FDa0rnhgfpQPQ3DrEz/8tpG/4Gaa%0AdYmK586TP++axXv9iZzuFMa+ww280DNltWm3f66X6bzmg6xOBxNN/wB9msQ3%0AuAaeL/nluRz9KBms2rTEcTS/99mmtqszlv30uM/3zWWb4Do2fpWF8Q/iBD8P%0AfCV5q08ck0Nmm8xp95/YZ7nNTqM646pMn3Zpv++zSf2rMrczTE/75rHtdT+1%0AW0MgjaFpFVij/eQkZ2n3HT86c12FH40rsDWfVZQT++m/BzSDVZlbPnSg/wC8%0AayPtwXv7/WqHijxbbeE9CuNSvJlhtbVC8kjHCqBSA6N9YmCn99L/AN9mmjWJ%0As/66b0++a898K/GrTfFPihtF2Xdlqv2FNTihuojEbm1Zivmx5+8AwAI6ruGR%0AzXTLqi+Zjp/jRqGhuPrUxb/XTe43nim/2zOp4nm+u815X4p/aH0/QfFU+j2+%0An6xql1abVmays3mjjZgCFLKMKcEHB6Ag13Bv9h29+hHvVcrC5uLrM5GfOm6/%0A3zzTTrNwP+W82f8AfNYV7rMOnWMlxPIsMMKGSR3IAUDqSelZngzxk3i7Q49U%0AELQWt5+8tC5+aaEgbZCMfKGzkDrjB4zgTYVzrv7Xn/5+Jvb5zQmrXBP+um5G%0Af9Yaw2vRjcpx7etPi1HIwpz+NOwzbGsTAf66b1++aF1Wdzn7RN/32eKx/tv/%0AAOunC9560gNb+1bhBzNN/wB9mkOrzhv9dNx/00NZhvgQRkc9PemPc+crqsvl%0AsVID4DbCehweuOuPagDWTV5wOZpf++zUv9tzKvzTTZ/3zXnvwz8cz68NY0vU%0AVhTW/DN0tnfeUT5coZA8UyA8hZEIIBzggjJxmtXxr47tPAfhi61S8814rbAS%0AKJd01zKxCxwxr/E7sQoHqarlewvM6ttam28zTE+7mozrUyH/AF0/zdPnNcv4%0AZ1DUm8PWLa0lrb6tMga4it2LRxSHny1Y8ttzt3cZIzgAgVo296s0QYMrDPBH%0AQ/SmK5tDW5iv+um9vnNK2t3Cn/Xzc/7Z4FYxvFQey9xSrcecDg4X+dMRs/29%0AMvBmmP8AwM06PW5mH+tl/wC+zWGJ12/LwD1NPW6y38+aB6G0dcnDYWaUn13n%0AinJrlwijdPLnoTuNYYvtxbn60gv1BwCTxnJoC6N9dbm5/fTe3zmpF1iYn/XT%0Ae3zGudF9ycduCamjveny/rQSb39tTBR++k46Deaki1ucj5ppfb5zWDJdrjbT%0A/tGBtoA3V16YgN58mPXeakXXZjx50uB/tnNYP2jJwfwzUiz7fvfd6U7lHQx6%0A1Mxz50n/AH0alGsTbP8AWS/XeawY7wY/vYqRb7B/DFPmA3k1SZx/rpfrvNSD%0AV5sczS/99msOO8yuO2fzpwvvNz3oA3k1qU/8tpP++zU0erTZ/wBdKf8AgZ5r%0AnkugPp61Kmoj1GcUXJOhTVps/wCuk+m409dYkHWaX/vs1gx348zbjp+tTR3a%0Agfy5qgN5NXlY/wCtk/76NSLqsmR+9k/76NYK3ioeeB7mpkvBtyp4zQKxvR6r%0AJ186T/vo1KusSA48yTJ/2jxWAt95annbg4qZbrI9aCToI9Vkx/rJP++jTxqs%0AoHEj4+tYSXeD1z6VMt9vUfyoEbkGpSLj95J/30easQ6q5A/eN/31WCl3nH8q%0Amhu8HFVcDoLXUX85F8x/vAfeNFZNrd/vk5x8wH60VQHMX9z/AKTJ/vHH51Uk%0AvMDbUV9cf6RJ7OaqST/z6VmOxc+1ZX69Khlusj9aqPcYG0Yx3qF5yWz/AJFB%0ARZnusfNmqs91tHTrUMzb1+bPHNQuroPvDaOlArExnXb17VXe8bH6URLtU8/l%0AUN+hkbjFF0FiSGdmuMEdu9Q3d9iRl3bgtRrkT5/hqG5tvOn35HIzQOwj3u08%0AUj3hIVRn1zUc9ouRg9fajYy7AOi0rhYdLc/vtpY5xRFeMit39xUNw+ZN3tVf%0Az2MDBl5JpDsWLnUsLjgj2NRpqBWTbwwqlJbyErjovU5qUW/lSA/njvRdASSX%0AHmytlqiWYp/vE4qC5fy1Z0X3pv758SFR8vYmncDUa42J8pyfeq8epeX+JqF5%0AS6lv61B9lkmKjPy5z7mp0AvJqu9m+bv0rivGWuTeIPibo/h9bie3s3tp727a%0AJ9rssZRVQHqMtJ1HOB710623l3m9W+RuoNcI0jXX7R0Kr/yz0G4ODzjM0I/p%0ATVgHeNviNdeHfi5YWdvfmHT7fS572+hYBtsaYCNnqCTnnvt+ubnws8Tt8U/h%0AjpV3riwzTXTrerHjaFUPvhDDuQu0n1p3i74L6N411a4vtQs/PkvrA6ZchZmV%0ALiDJbY4HXBYmtLwz4NtfBul29nYqywQIEBkcsxCgAZY9cAAfgKLroGtzoBq6%0A2yM3LMSTj1rifjf8R28FR6W0fiDRdBa8ZxnUo2dJtoHCbWXkZ59iK6B7ZimM%0A/Nn1p17NsiXdHHIO4dAwH51OlyrNnE/Cr4q3HijXruB/FXhnXkjg3NBp6Os0%0AZ3ABySx+Xkg8dSKwf26NYmj+COnOylbKTxBpkN82OFhe4VW3f7OdvNeqNaxv%0AErRwwxtjAKoAQPTIqn4z8OWPjXwve6NqlrHfabqEZhuIZB8siH+vQgjoRmqU%0Ao3uTyu1jzz4q3cl5+2T8NpIdsf2XTNZkuSP4Ym8hQD7bgce+a9TTUlYrICuD%0Azk1zuk/C3SdKa9m3Xl5d6hZfYJbu7nMk/kc/IGAG3OSSRyTz1pfBHgqx+HXh%0AWx0PTY5Bp+lwrDAsrlyFHTJP+elLmTDlZ5X8ZfAd18HrqPx94P17VItQm1uB%0A9T0ea5Mtnq6TzLG4C/wOAeGHp7V1nxC+L114H+OOoRz3+3w34b8MT63q0BRc%0A58wrDtfqCRHIcf7IxmtPwT8DPD/gpofsq39xHaytPBDd3j3EdvITncoY9R2z%0AnHbFO8Z/Ajwz461TVrrU7OS4fXbKOxv189ljuoo93l7gD1Te+Pr0NPmXUOWx%0AwHjbxRrnin9kDSP7duoxqutTaXBq7QJsEEV1cxB1I7YjkCn2J9a91195FsJo%0ArPyLeVVKwB/9VFjhc4/hHt2Fcnqfwp0fVPhnqHhWaO4bS9UtntZz5p887hgO%0AH6h1OCrdio9K0PC1tqA8Iw2PiCSC+vo0a2uZ0Xal6uNvmbf4S4JJX+EkgEjB%0AockGx4X8HP2htf8AEut/D3S7nV2lXxBdan4iu554kRl0aBiIY2wAA0hZTkYI%0ACn1zXt3wWub7/hWWjNqV5cX13Nb+a086hZZEZi0ZYKAA3llMgdDWLbfs++DL%0ATS9KtYdFgEWiq8VtmRziN1RWjc5+dCsaAo2Vwo4rsIJmX7zFtxyWPfNTKS6F%0ARizK8XeJPF9rrXlaLoOm6hY7FInuNVFsxbuNvlsePXv7Y50fA+r+Ir2C4PiD%0ATdP0t0ceQlrffavMXHJY7E2kEDjBqyJjnac1It3x9Ov1rNyRaizzz4y+IlX9%0AoH4b6aNTuNPs7ePUfEWtMlwY4VsrVEjQSDptaabOSf8AlkRUf7HnxCuviH8P%0AtQ1q/vLu5utev5dajhmz/oFpcSyC0gHYYiiDFf8Aaz3Ge31Xwjo/iTWrLUNQ%0A0uxvL/Tci2uJ4Q7wZIPBP+0AQDkAjPXmotO8O23hbw9Lp/h2y07SdgZoVS3C%0AwLI38TIuN3QcZGQMZFVzRtbqQ4u9zmfhpqcmvftTfE+8t13WUNloekM6niS6%0AijuZZF6dVS4iB9NwrT8KX/8AwtzxsviRtzeHdBllg0JO19cfcmvj6quDHF7G%0AR+cri74A8GWvgLw8unWzyXBaR7i4upgDNezyHMkz443Mew4AwBwBW1Z+TYWk%0AVvaxxwW8KLHEiKFSNQMAKBwAOAAPSq5hWPIfidrNhp37X2i3t0lxeN4Z0G41%0AQQB/3l/cXLLbW9nAvf5Y5nOOpky2ABXZQeJNF/ZX+AelHxFe2+n2Oh20VvcP%0Abxu8QmblljUAtsDFgp7KoNddKyyXCzfI0iKUViPmUHqAeuDWL478L2nxC8N3%0AejaiBLp18oiu4iinz4v4k+YHaG6EjnBOCM5puVxKLOmsNWj1Gxhuo2DQ3Eay%0AxkHcGVhkH8QakN2wXNZts626BUVUVQAFQbVUdgB2AHAqYT/L8x3fjU3LJrG6%0AbfLKZC25sgE8KPb0p7XPmykF9rY4FZ8E21Suc7f1pctJuOdrbsg0yC/eXhjg%0A/vc8471LbfvI/mz7CqBfzEC7vxp8k7CH5fvYxyKAsaDL8rDOMjH0pWu2gdV/%0AE1SiuvlGTz7VIziTjdtJ709Bk9praXhmWPrAQpPqetS219JK/oG5YelUYwqg%0A5b/69Ojl2yff6DGPagaNHz8sqr0XOT6VLcT4bGNxrPWcSyAsT6DmrCzrMOGH%0AsaQFrT7yQ7/N+UknaoOSB9ae1832tVLZ7gelVIF8zcAxYt3PanQwLDOzfN6A%0Asc//AKqZJelvN5Zt3KjoPxqRNT/dqGxzz9apRxrtZVyuepqRoFk25J9iOoph%0Acvx3XnPs3ZXrzSwXEiyR+ZHt57VWh2wJ8v15qRZFf5t3TkUhGolx+f8AOpku%0AdwX8xWXDNgbuVFOin2u3PH160hmtv/eM33uOPpU1jc7YuelZP2rI2njPvUkc%0An7vaG29iaq4Gs8yzJtzjPf0qQXZR1VcAY5NZol/de4FNjlzJuy351RPU2Eum%0AH59KsxXhJ+asiKbK7juqxbTZHXp79KANZbvLfLUwu8Ju/HHrWSJiST19jU8d%0AySMbqBmrZ3n7yPPTeOPxoqhbykyxLn+IZ/Oiq3JMC+uP9Kk/3z/OqrTZ+bNV%0Abu/UXUmf75z+dUbvVwAvLY9DU8oXNgzrgfN+NV5Z8L/9fpWLJqTJHtVjtY5x%0AUcl86r97tmiUQWprPc4bg1GLsAct29a5+6v5HYfvGG09PWpLS+kklbc3ap5e%0A5ZtPc8/L06mo5bj39vrXOajrUkTso4GcZHaoDqjuB8zbemc1XKB0xmyPfPSo%0A2uPlx1zWKNXEdp8zfN0FUJ9bn27t/Knt3osB0bS/N/LimtOcYP8A+qsOXWm2%0ALIPu9wD1qpea/IQ23cv4c1PKO50TTbRz8x64phmBbnG761zun+IGEjeYS3HB%0APek1HxD5kBEYZXzjJpcrEdC1xlcmmvd9vz9q5GXxZcJ5ezbuzznvWkdZb7Mz%0AkfL2560crC5rGcA/U/rQbrB+U/rmubPij5wu0ksM5zVix1lb0sMbWU/MTSsw%0ANg3Ow4z34NON3kcda5y68QeXJhVO1aih8YJJOowdrcAk9aOUrmOma5+X0b+l%0Aef2Uiv8AtPXHA/d+G249C1yn89tdJc69HHwvJ6815z4d8TLJ+0drU2OY9Bt1%0AYA9N1w//AMTRysLnsL3Py8Y/OomuvpiuH1j49+GPD+o3lre6tY2txp8AurqO%0ASQK0EOcGVh/cHdugzzWDf63qT/Gr7e11Pb6JYad5X2cN+6u5pWPzEf8ATNUz%0An/bFZ+zZXMj1Rp8Nw36UyYrKOvWsnT9cF6237si9RWJqfxm8P6TdTQzapYrJ%0ABkODOoKn3GanlZXMjso7jChfu7eKjkmLknr74rCg8aW+o2cVxbt50Nwu+OSM%0A7ldT0IPcfTNT3utLaxttXzGH8Occ+lHKyrmtu3J6/wAzSrKpXGM4xWS2sxw2%0AbTFvuqWCjrxXzNrf7S3irxL+zT4z+L2iX0dvF4bvLmfStMZFa31Czs5Qkqzs%0ARuUygSYKkbcKcE5FEacmTKSR9WO6leDhcnpUUk29v9nrWRoviu28VeH9P1Kz%0AMn2XVLWK7gLcMEkQOue2cEZ968d/bQ+PGpfCLQdBisZdc0uz1C4lfVdc07Sj%0AqI0i3iQEFk6ZdmUDJ6Bj2qowk3YJSSVz3iS5yPbtTftCyHHbHIryn4KePrO0%0A+DMWvXXjJ/Gmlzwy6n/bjQJDH9nC5ICKcKECtkE5yDnBq1+z5r+oeM/BUPjL%0AVFuILrxZEl9b2cj/AC6daNloIcA437CGdupZsdAKrlaRPMmz0zzFEe0H5T+l%0AEc+1W7n1rg1+PnhObTteuY/EGktb+GrmOz1OQXK7bGZ8bEkJICsc8Z75HY1s%0AeH/H+m+Km1BbG6hum0u6exvFjOTb3CY3xMOzDIyO2az5ZFKS2R0gujjkUnnn%0AZ/nms77b5gDD/dwO1H20AH9anlKNT7VhTj0qRZPl/unpXB/ET4y6L8JdGj1L%0AXbprOwknW3MwieQK7kKi/KDgsxAHbNXLP4naXqPj/V/DNteLNq2gwwT38MZ5%0AtBPuMO7sC4RyAOymrUGTzdDqlvlcfKysOhIPWj7Su39K8htdaX4X/tLW+hxy%0AKmj/ABA0u61W2t84WxvrR4vtGwdlmjnRyBwHjc/xGvRINaWW4YHbtOFX+tXy%0A2J3NkXRKjuKTed33vr61RbUlMZ6eh9jVebWFtpnj58yOMybQeWGccUK5WhsC%0AZkbb83XsacJCwHJ+U5z6Vjtq22eGP5QswJAP3uMdvxqe71ZbMLu744HU0aho%0AaobbH16jnFOcYxjjg5z7VhN4kW3ikkdc7eVQHnHrVybU3eBnVDtUbgB/EPQf%0A4UK5LSZejuGVNox7809bzzAR1yO1YY1ia40xmjWSCaRCVV1+ZSfUU3RPEElz%0AY7pI23qSrkdcimTpfQ3o7tYzgN97gmp458EccgcVmW8yvHu+4uMnPH51XtNc%0AWS1BLf6xiF460D5kbyTc+zVPC/G4jnGOa57RdWkvIZDIQzRu0eV6cf5zWhHe%0AZbjrTYzUZ0I+7nb05609W7Nhc1iWWrtcXkkYVmVDhmNXo7kFOc/4UAakU69c%0AHjuKmjuFzz2rJS7DyDHP07VIk/zEs3fsakWhqR3SnbU3n9vTpWal0mdvdqmW%0AbbxjA7mmKxeV95/H16U8TbVx+FZl3qDWQXaqtkgZJ6U4XUk8ilcbV6j1pkmw%0As244FDvtfnjdWRHq5S8VG4ZufarP2/fKys3OeMUwNKOXK/1qeOfqOxrHivN5%0A6jr2qezuWKcn5vanYRtJcdMU5JAG9M1j/af9Jxu+XGcDtU0eossyLyyt69jS%0A1EzbWbEf+HenpMvDdvWs2O5IB3fe5GacLzfK3fbzwaaJNZLjNTLJkcfrWZDc%0AiRN3tUq3GenTNUVfoatrNi4j/wB8fXrRVOyuN1zH/vj+YooHqcvfIWvJPZiO%0AfrWddx+QjfNjsBWpfP8A6XN/vN/M1TniWcYZaIyIsZM1xtIX171MgMwzuHA7%0A1ae2jYYP8JyKbLGjxlduATQ5DirGPJORcbT69fWpRdeRdZZcnFWnsoXTaV/x%0AqL7HGE6fd6VPMWZOqKZSSv8AF19qrM2zK7vm9a15tLj3A7moGmwhOV98ntVK%0AQGLPI0aJu+tU5JmYttzt9BXQ32kxXSKp+XbjBFQWulR25dl+ZXGMUc4amSJd%0AsS85Yiq00sm1Pl3CttdHjLNjv+lNt9CS3jZWYt2BPap5g1My32yyqv51Uvma%0AOdup5+tdD9ihjGB1Hc9qz7zR/Mui6vjPBFHMgsYkqrIN2CMGtCZsaL1yAM4q%0A0dIRkZc7t3tQukKqqpztHal7RFcrZz7XGEVm6L/47Wj4flDpN7nC+lTDw5HB%0AO8kTHbJwyHlfwp1roi2UDrG3zMcjPSl7RDUTAvHQXEibtq9qdaRpK3lsv3cE%0AH19quSeGnlnZiynuRmnWvh+aBvlWPk85PT9Kr2kRcrKmuz/YbiF13bGHIPTN%0Aef8AhGQal+0B4xZd0aw6Np6HPqZJzx+VepT6DLK38P0rzTwBp0kn7QHxDEIU%0AeVZ6WhUdAT9pPT8KOZMXKzll+H2qaj8WPGXm6PPDbapbW9jbXksYkt3hkDtc%0ASHPBOdq7TycAdCa9QvtNVlWPLLEqbF2n5gAMD8q6d9LY6eVb73U1Tbw5JLE0%0AnHmLzjPWj2kSuRrQq6D8sqg9cBQQOuK8c8dfBnxVfeI7u9h0X4UyxzTOyy3m%0AlStcOCeDIQpDMeMmvbdG094ZmaZfmzx3/GrWsWy3Vk237+PlOe9T7RJj9ndH%0AF/DHTLnQPCOm2d5a6TazWsZWSPS4vLtQ24klFwMA5B6dSevU8/4h+Cbavq11%0Adf8ACYeNLRbiQv5NteosUQJ+6oKEhfx9q9QstOiSyjEi7ZMAEA1SudFYOxDb%0Alxxx/n2o9orh7NmB4Z0qbwzpVvZtf3mqLauB5944aeUZz8xAAJ5x07V842Hw%0Au8SeDv2SPFnwRt9H1C41271C803Tbr7O/wBjudPupy6XZlAKqFiZlYE5DpjH%0ATP1JJpTSudy7lkwCB2rUs7FbcKpZivoTT9okHJc4PwJ4yk0rxheeB7fRNYt7%0AHwnpdmlrq86D7HqSbAmyNs53qFGQR3Ppza8RfGlvBHj6z0eTQPFV1Fd2v2qL%0AUbPTXurFmyR5DsmdrkDOGXaQRzzXRaporfaVn3OzRkhVHbPerVin2a3xJnce%0AoJqOZbjUe54T8Mf2dLzSP2RPFXgHyYtDvvGEGstbWYdWj0hr8zGGAsPlxGHR%0AWxwOccV6N+z348tfiD8HfC+oRQvZ+bpsEVzayfK9lPGgjmgcdmjkV0I45Wuk%0AewY3kp24Vj8tZ+geEbHQNS1aa1tfsz61cLd3IQnZJNjDSBeis/G4jG4qCecm%0AqdS4vZ2eh8nf8Kx8TXNys83g/VNP8N3HxNj1XXLWO0Mkz2FkrQ6fDDGMmSFP%0AIjldsYzMgGcuV+n/AIY+H7rRNEvry/gS31bWr2XVb6IFSYZJSNsZK8MUjCKS%0AMgsG7YNdNfwSkr5Tfd4UA8Cs5Ybrz2kn4dl2YQnaKHUugVOxleNvhRp/xNez%0Akv8AUfEdktmrqg0zVZrIS7iD84jI3EY4z0yfWm+BvgxpPw31O4utMvvE95Nd%0AQeQw1PWri+QLkH5UkYqrcfeAzgkd66a1t5PsCCT/AFmMHnOD/nFTWUbRQ7XU%0A5HdqnnDlPJf2mdC1bxVJ4FhstLvNY0nTPFVtqmsRWqLJKYraN5YcIxAYG4EJ%0AOSAAvPXNZn7NfhzxlofxD8cax4m0OLS5PEmt3Wo3MxmE/noqww2MUDKfmSOF%0AJGdmAG+QbBgvXstrp8hkmMyFVL+YoJ6j3qaRJftUckfyKvRegBFV7ToHJrc8%0Aoljn+Kn7VkesWe3+w/hfpF1pXnkZW+1S/aFp4l9RBb28Yb0ecDsav/tJfGzV%0Avgb8Mv8AhJtH8MSeLZjdwxS2UN0IHt4nbaZB8rF23bVVAMszqMjrXcWPhdfD%0A+nW+maTa2+n6bbqxRUJ/dsSWPHUlmJJYnJJJOSc1N/wikBuIbmZVuJLWbz4z%0AKudsgGAw9CBnB7frQ5IVjYni8iSWNzvKkgn1x6VntbxtraSKG8wRbTkfw5Pf%0A+lWGaSUZAVfm53HqKh8qZpy25V4wOOTWdyyrNYsl2iRN/pGM+bjsCPfp2q5q%0AQaV22kjahw3oTUMVjI2qRzNt2+WV4PfPpVyS38+I/LjcpGQOfSnzC5TPV2ii%0AXzdzsyjOT16Vo6U8v2ZlZSOTjPYVA9or2Pkrt3AAbscqfarluGEe35eOTnua%0AObsHKVbWza31C4bdJI0hBVS3yr9PSnW8kiXzOi5MmMqrbhx/Wn2yyR3bMuFh%0Ak5NT28AjuJG67jk4NPmDlHeRNLNHNJJ+5jH+rxwT6n1xVMab5WgRsW2m3k81%0AFHfHGPfrWhLG1xIGVvYjHUUw6aN6BpJdsfAQNhR+FCl3DlRHpEclxdSXTfLH%0AcAFk7jGcc962xtMWem3g+9UoNOEEr7WIVuoPar7QqIR3zwamUug+UpaPN597%0AdRq2I9+c461PqSeS0aKkjK3dfWnWdlDavvWPDDqwHWrqqWXbnjvVXDl7mbp0%0AebzcVuF29Nx4Nac8yiPld27nPpTEhz/u057X+H8PrRzE8ttipoLM6tJJJvk3%0AN+A4xWuLuMS7NyiTrtzz+VQW1pHEfk475qMWsaXhm6swxgjOBS5kwsy8US4I%0AJXdjpVV8C/2rnp0zTp1kmxsm8rv061G+kNdNm4maVcYI6VSZLRe09leM42/n%0AnNRfbhamRlJBzgk9qeiALwu1R6d6dbaTvaQ5+WQ5x6VakSLbXGD8rE7uc1ds%0A332vyn7x4IqCOEKpAY55yTzmnafYPBbNHv8Am52sP0/KjmAswx4nUD+7Uizb%0A28roUPU9agawkc5aVj/ujGKnhs40Ctltw79T+NDsHkXI5Q6d1JFNsZ2AkXuD%0AjPrQi7FH+cVMsYccd+DjuKLktDrZ2SL5TzTrW6kZ/mkjPrt7UIgRFC8be3rQ%0Alsqt8qgfyouC7GlZzMJoj1+YD680VBaf8fMY9XGD+IoouUZV9IGvpj/ttx+N%0AVZZcHPb2p99Lm9m/3z+PNVt+fz6UXEBmzuzkf1qFpCT/AE9KXO3/APVUUrcN%0A29akAaQgn1FNMoPHYd6py3vlvja3oMDrUL37tuPlnHtTsMtXd0sCbm4Wq8Oq%0AxSJnd26VT1SZrq13bSvc56isuFmYsv3lxkH1p8oHQC8WXlSrYGDUbXa569Ou%0AazbGd9khVflHIz3qrc3bRlgON3Jo5Rm0tx5mdvHPNEknyfrWLYXsolXp8x5G%0AKvXFxz8pznv3pco7kj3a7uvIHQ0gk804/KsyaTF4p7/yps2oYkGOe2M1MojU%0AjVL4qJ58/wBaz21jlQE+me9RyapuVh+hrP2bLUkaJclce2KHlAX/AHqzrSdj%0AESWzzmpfte9uv1pcjDmJmuPmbv8AWki1UeZtONvqTVK8bCYzz/OqL3DE7cDg%0A9KpQDmN+STd3615v8JZVm+PXxPkZmOH0uPPriKcn/wBCFdNrOs6jZ+HL6bT7%0AFdQ1C3geS3tDMIRdOBlY97cLuOBk8DPNec/s230fiDSNa8QyNJFq2uXuzVLO%0AVDG+mzwAr9mYHnKbidw4beCMjBNRp7hzao9qlmwB6Dqc9aw/Hnj/AE/4ceFt%0AQ1vUnaHT9Mge4uSi7mCIMkgdzgHgda+ePEX7ZHiLwTqXjS1vNN02abSbuysN%0AFgWRxJdXVwzBYZcZB+UbsqOAcHJr0iWwm+Mdr4s8PeJo7ZdLt9RS2gaxlYG5%0AhCRyMkm4ddxKnGQR6Gp9nbcPaX+E9H0DxNbeJtBsdSsWaS11CBLmEshRirqG%0AXKnkHBHB6VNJcAN/D361jNuWNsllXsEHyr6cVyfxg8d+JPCul2P9gaXouqXF%0Ay7LOuo6wNN8pQPlZGZH3knjGBjOc0uTXQrmstT0F7jD8DOOPrSSyN5iqudzG%0AvJfAvxO8aa1rjJr3hnR9G063iLfabPxAmoMW7KYxGpAIz82T0r0vTb24mZGn%0AG3a2OBz1pSptDjO5zvgL4rTePtZmjh8O6xbabHNPAupTtB5ErQyNG2Arlxll%0AYDI+uKueLfjd4T8C61DpuseINL0+9l8sCK4nCbPMbZHvPRA7fKpYjceBk1i/%0As53K3PwzsyTuWa/v23Z+8Gvp+fxr5s+F90nxD/Y8/aY1rX1W4m1/VPFEN9v5%0AxFZwSQWyc5wIxGpUdjk1Xs7sy9o7H2nKeSG+RgcENwQaxvG3jvR/AOmRXGsX%0A9rp8E0gt4jKf9bIQSI0HVmIUnaoJIB4rif2VvFuqeJv2Y/h3e600kuq3Hhuw%0Ae6mkJMk8nkKC7E8lmwGJPJJz3rzP9pS41rwV+2D8H/HFxpWsav4I0e01fTrp%0AtOs3vZNJvbhI/LuWijBbayoE3gfLtbpkZI09bDlLS5754Q8aaX498PW2r6Hq%0ANpqmm3QPk3VtIJIpMEhgCO4YEEHkEEHBFX/OUN/e/lXzZ+wF4pTxr8RP2hNY%0A0+3vLPwxqHjlG06G5g8iT7Stqq3p8s8qWkEZOcEknIBzXsPxS+Leg/B3TIdS%0A8RX39mWN1MLaJ/JklDyYZsYjViOFJyRjiiUbOwKWl2dj9q37mBJ5yTSSXEcF%0AvJNIyRRxqXeSRgqoAOpJ4A75Nea/Dv8Aau8DfE/xTbaJouuLdajdKzRwC1nj%0ALbQSfmdFXoM9a9Iv7Cx1PT2W+tbS8s0BklhuYFmhcL8wyrAg4IzyOMVEtHYf%0ANpcqeDPHOkfEHw3Hq2h6lZarpU+8xXltKskMgRmViHHBAKnkHHFZnw6+OvhD%0A4q6l9j0HXrHVLoWy30aREgz2xbaLiLcB5kJbjzEyueM818T3HiDUPDX/AAQW%0A8Ox2M01vJrWn22lXM0WRIlvdak0cpHrlGI9CCR3r1j/gpx4q1D4IeOPgzqfg%0A6AWOqeGX8SWem+Quxba0j0gHywP+eaGKFgvQbO2TnVUUtCfaPc+grT4/+DL/%0AAMaf8I/Dr9m2rfbX0xUCOIpLtF3PbrNt8pplXOY1YsMHjg1V8a/tA+Dfhnqt%0Axp+ta3DZXVjbxXl7mKSSPTIJWKxy3LqpWBHKttMhUHaT0Ga+UviXpR8C/wDB%0AGb4cyaSv/Ewsk8O6rp0ij94dRkvI5Q6nvI0juCepyfU1337M08PiT9nz9pbX%0ANaVZJvEXirxWupeYcjyra3e3giz/AHUhQAA9M8Yo5Fa/yDmex9RyXHlqzNNG%0AFUbi5cBAOu4nptxyTnGKyfAHju0+JXhKHWdOiuDpl8SbK4lXaL6H+GeMZz5b%0A9VJwWXDYwQT8seF9a1Lxh/wTU+Ceg6lNMr/EJtG8M6jIWIdtPldvNXI5/eWs%0APl57iTuK+tdWlu7LRpP7J09dSvlxFZ2Syi2jlckKiF8ERxjIywU7VBwpIAMy%0AjYqMrskuV3NuwG9Rimu5RjyRzzmvnT4Mftva18ULP4WWP9maJea38Stf1RIW%0AtEmij/sGxeRW1FImZnVpSEVFdiMs3XYRXr3wL8Zav8QfhrY6rrw0ttQup7ld%0A+m7xaSxx3Esccke8lijogYE9Qc8dKHFrcL32OzDbRnrj07Y//VSli33f4h+t%0AcV8R/jLZ/DLUrW1n0PxnrE1xH527R9Dn1CGIBiMO0YwrEj7pOcc074a/Gy1+%0AJmrTWdv4e8aaS9vD5zyazoc1hEV3AYV5OGY5ztHOATU8ulyuZXsdlHbsTubp%0Az0qR4yVYZB9q434+eI/FGgfDXUJPCKWa6tDaXV413eQ+fDaJBA8uDEGUu0jK%0AkYAOBuZjnbg5H7Pnxc1T9oPRdC8TWNxp9j4cXS4DfwC3Ms1/qE0KSyIku/EU%0AdtuVOjNI7yAlRGCxyu1w5lex0/gz4iw+JfFGteH5rWbTdZ0Vkaa1mIbzYpAT%0AHPEw+9G2084BBUggEV0z2/l7dpxk15T8VZ20P9rj4Sy2p3XWvafr2n3iLyXt%0AoY7WdN3rtlb5c9N7etevOnK56N6U/QI6hC7Ln/Zqyrb0/vfzNcD49+K2peDf%0AEH2Oz+H/AI48SQrGrm90qG2a2yf4cyTodw78Y96ufDn4l6p481CeG88EeLPC%0A0FvGsizauLZVuSSRsTypXOVxk7gOCME9nbqGhZ+Kfxf074UaRYTXVvfXt7rF%0A7HpumafZqrXOoXL9I03MqjAyzMzBVUEk034f/F6Dxb4u1bw3fadd6D4k0NIp%0AruwuXikzFLnZLG8bMjoSrDIPBGCBkZ8u/aBhmu/21/gf52P7Njh1VoQ4+X7V%0A5a9Pfb5f51bvXk1j/gptaxWb7l0/wE39oFOQA90nlKT6kkED2PpT5dL/ADJ5%0Az36JVU849vauD+Kfx8f4eeI4NG0fwf4o8baobcXV1DoqQ7dNjZisRmeWRADI%0AVfaoySEY8DGe8wsfy7uV6+1eO/HL9i/Q/iVqmo+LNO1bxB4a8ZeUZodTs9Sk%0ARdyJ8odM4MeBjHTGeD0KjbqOV7aHqnw81/UPFHg+z1LVtFuPDt9dAu2mXE6z%0AT2q54EhX5Q5HJUEgZxk1usNyZ6ntXzD4q+OXjjVP2GvD3izS9Uh0nxJrFvHb%0AxTRQq017dSyrFbhFYFVjfLOx5OAoHBJG3P8AGbXvFvxB+JGm6Xr0ljo/w90B%0ALN7u3t0kkvNak3H5N3XZsCbc43TDPIp+zZPOj27xr400/wCHvhS81rVJHjs7%0ANAzbE3SSEkBY0Xjc7MQqr3JA96i8G3uranpENxrFlBp99cZke1ikMgtgT8sZ%0Af+NgMZYAAnOBivPPjVpt1deIfhHpupyfaIZtZa4vzj5Zp4LbdHkcdZC7D3X2%0Ar1vUEurqwuI9Pa1W+dCLc3G7yQ5+7v287R1IGCemR1qLbWGmx6JtXdu+uacD%0AuX5f0PSvl+y/aJ8UJ4JgtrTXv7Q1Txr4vk0zQLqe2j8yKwikVZptigLgYbHB%0AxvA5xmvdvhxPqE/iXxQ11eyXVhHqQhskaNV8hViTzI+PvASFuTz1rTla1ZPN%0AfRHXJ+6+96VYgn2pxWP4w1q58NaI13baPqWvSKyqLWx8vziD3/eMq4H+9XI2%0Anxp8QTSKG+FvjqPcwGTJZEJkgEnE5OB7ChRuS3Y9MQc/KcduakhXH58mq9pN%0A5q7m/IGvI7/426t4Ys/iXqkl4t9p/hmUWWmq1uil7gJ86nbjcA8iKM8/Kc5N%0AVHUnY9e17UbnR9IkuLWza/mjG7yEcK0gHXaSOWx0Hc8UnhLxJZ+LtEt9QspB%0AJb3SB0buM9iPUdKg8DPqL+HrH+1ZI5dS8lDdGFNiebtG4KOcDOcVy/wY8uw8%0ATeM9NgO6z0/WpBEFOQm9VdlHsGLUeYG94/8AEmveE7d760ttFn0u3CGUTzyp%0AcNuYKdoVSvfjJ/KuqtiXiUtkbucVy3xibd8NdQXoZPKQfUyoP61t32t23h7R%0AJ726mWGzs4jLLI38CAcn3+ncnHehaoWzLV/rdrpl/aWssyx3N8XFvH/FMVAL%0AY9hkZPuKtK+Pu9/51xfgayur+W78T6laXC317FttrP70lnbLlliA4HmN1b3I%0AGeKb4G+I2ueL/FN1pd54Xk0kaeP9KuTqEdxEjn7sa7V+Z8ZJHG3jPJp2A76w%0A+a6i6/fA/Wiiyyl5Dt5+cdvcUUhGLqJP22Ydf3jfhzVaRChyfu1PfHF9Nj/n%0Ao3P41XPyn26dKAI3XB/zxUUo449OtSMfw565qFzzj72KCiJzwP8AaNQE7gSO%0A3SrDrx1zUEg/TrQBUu0yuPzqkLR2OANoPTitTZuPv24pPlQAdqfMBmC3kiiK%0AjHTiqktk3lBm+YZ7Vtsu5v8AHtUZVVTbx8xzj+9T5gMSNGgbcqsOfyqWSY5X%0Aj3rQaMH5cYqJrVfM/wARS5gKHll5vlqC80xinDKG689q1Ciq2SPcCo5V3rz+%0AVQ56lqNzKmRg6heo65p0dh8zNJ/EO1XWs1k+ZvvZzSy22Pl/LNHMHKyitn5C%0Ana3DetSW0D79zLjsferMSqU+nalkHH941HOXyoztUjZpF4+buPSoLeNHjYPn%0A0JPatSSMA/41Glt5gbcBj+dLnDlKtlD5cDsWz2J9a8n/AGfbKS48Z/Ei5xtk%0AXxAo6cD/AEaP/AflXssECrhR8q9PpXmX7O6B9V+IVwpx5niiZWH+7BCBVRlu%0AEo6o5rXP2MPDniPVr6+kvtYi1S416PxHbXKSqW0+6TaAUBXDKQpXawOAxAxX%0ApWgeGrfw5am2t2ml8sl5JXO55nY5Z2Pqfy7dq6OWINNuHT6daY0a/MPU1PtL%0AhGOphBnhib5t3Jrn/il8IvDPxd0+1h8TeH9J8QJYMZLUX9qs6wMwAYrnoSAA%0ASK7R7NAg+XaPX0p32NZIl/ug0Ko9ynC6PLfAH7OHgf4R6/NqHhzwpoGj3zW5%0Ahe4sbNYJGiJBKkjqDgHB9K9C018eWxYkbgTz90cVebT1ydq/eHJ7mmnTo41w%0AqqMc5xVe07i9npZHln7OHiAHwda6HNp+sWOp2bXMlxHd2M0CAm6lOVdl2tnc%0AGGCcg55rA8VfsgW+qWfjPRbHxJe6R4V+It+dS17SY7VXkeV1RLjyJ948pLgI%0AvmKVfksVI3GvcpE2L/s9QD2qNrESOvy5PcnrU+0tsL2fc4TTfAWo6H8WG1a1%0A8RXcfhddFh0e18LJbItnZvGw23Cyff3bAE2njGeelTfEfwn4i8ZWUdjoviY+%0AF4ZVdLu6gsRcXyg4wbeR32RMBu+Zo3OdpGMV2r6eg46e9O8lNm3C470OoHLo%0Ac18K/hfofwX+H2n+GvDlithpenqwRN5kkkdjueSRz80kjsSzOxJYkmtk3DW2%0A5lZlOeCp6VMymY4+6uOOc5qPyVQll+b1Pbip5myuUGunb70kjbv4dxIP4VR8%0AV6ff6/4b1Cw0+/h0u7vIHhS7e1+0iEMpUt5e9MkA5GWwDjIIyDbRw4Ur68mr%0AMCeQjf3s8k1PUfKzyTwl+x9o+m/sg/8ACmNd1KXxD4YXTjpSXCWws7kQ7i6N%0AwzqZUc7g4ABwMr1zueHfgRcar8UNG8X+Otej8aah4c0m50fTIP7MWxtYY7oK%0At3PIgdzJcTokaswKIqrhUGc16CAM8fe9TUm7bxtDN1qvaSYKmjx/wl+xhZ6F%0AoPgvwzfeJ77VvAPw71QaroWiT2SLMHiZmtI7m53EzR27OWVQiElULFtuDN40%0A/Y9t9dt/Hel6X4m1Lw/4V+Jl2b7xDpdraRNJLK6Klybedjm389VAf5XOSSu0%0Ak164riOTtzwMnpSG6ZR8wxuHc0KpIfs4nBfGj4NQ+MPg0nh3w6NP0G90M2d3%0A4bUKVtdPubJke1QgZIizGsbYyQjN1PXptPv5vih8NrhZLbVvC1xrFjPaSxSq%0Aq3emSvG0bEdVYoxyrD5WwCODWhM4lC9iD2PWrEUrLH0+6OKXMHKjwnw/+wTp%0APgt/CN1pvivX7HU/C2iSeG2vYIoUmutPeKKPyU4/0dlEZKyR/MGmlbO5sj2r%0AT7C10extbGxtbexsbCFLe2t4ECRwRIAqRoBwFVQAB2Aqw8cQuZJEhhW4mwXZ%0AVAZ8cAk45IHAz0FOjXfkN8zew6U+ZvcXIlsEMrRH+JVbGKnifBUkfL29/wDO%0AabnepVvmPahQqA0hHI/Fv4lQ6Gi+HLXT77UvEHiKzuE023S1la1k4EZM8yrs%0AijUyBmLEEqG2gnAOr8FPhdp/wS+Fnh/wjpe1rHQLOO0jkI2mZh9+Vv8Aadyz%0AH3b2reWRtpXJ2t1Hr+FOSUqv+779R70dLBbW5wfgTwVfeJ/i9qXxC8QQNazG%0AxGh+G9OkH7zTbAOZJppRnAmuZNrFRykccak5LgehfavMkI/hAwSahEpK4K9K%0AkE+T8vy8Y6092UloTmVoVJTr1oC+YS24HP6VEgUx89PepIFUA7fzxVdCbGP8%0ARPhlpfxQsLGHUvPiuNLuVvLC7tpPLubGcAjfG2D1BwQQQRwRVHw98CdC0PSP%0AE8PmapcX3jKMxavqs10W1C7UI0aL5oA2JGrsERAFXe3GWbPXIcj8PypxYKFO%0AeaOZj5EZfwx+GWl/CTwJpfhvRluIdN0eEQW4llMsm0En5mPX/wDUOlc6f2Xd%0ABk1jWp5dW8YTaf4imaXUNLfXZvsNxkksmzO5Y2yQUVgGBwciu9SU7d3zfL2p%0ABK0gw33fQGkm+g7Ix/H/AMItI+Jeh6TYXH2qwh0K6jvLH+zJRam1aNSibNow%0AoCnAAA29sYFZHh79m3wj4U8UtqOnWdxZxySQznT47hvsDTQp5cUrRfxuqgYL%0AEjPzYLc120LEg8kL3A70kZ/eegxmmpOwuVXuZPxX8BN4/wDDEUdpMlrq2n3U%0Ad9p9xJkrFPH93djnYyllbHZj1rS8M6jcavocL39jJY3FxEVntWlDtESCCu5e%0AD7EdQQauRS7P93GKlyv/AAL1FUhdTzjTv2SvCej6JpdnYyavaXGiyrLZagl3%0Am9tQisqxo5UgIA7/AChcZYt94kn0Twt4WsPCGjwafp8Xk2luu2NSxdj3JZmJ%0ALMTkliSSSSTmpBIsTBefm7VPHIFI+vTNDb2DlS2JZJM8buO9IqZ+UKOKgVsy%0Ak/w9verUT5Tr35pxM2SxZjG4cnqcivNr/wDZW03WNOmtJtc177M2o/2rDCHj%0A8uKfzfN3MNv735gBiTIA6Y616VGMj+XNTBsMMemMU+axNrmGIF+Ffg3ytPtb%0AzVbhGPlx7t017O7ElnfGF3MSWbgAZ44AqP4P+An8D+HmW5mjuNT1CeS+1CdB%0AhZbiQ7n2j+6Puj2ArpF+UHPJ9KkjO1x1ocugWVzjfjR4vsYNAuNHZ52v7iW3%0ACRJbyPvzMndVI9zz9cVu+IvBQ8WTaWtxcf8AEtsZPtE1ns/4+5R/q9xzwqH5%0AtuOTj0reSdkjwrMFx0HSm27ZUfoaXMHL3KnizTb/AFTQLi20u/j0u9mXal00%0APm+TnqwXIy3pzXM/BrwR4m8G3F0muatpN1YrHHDaW2nwPGqkFi8sm/ku+4Z5%0APIzmuyaTD7eufXtUwbB6U+bQlrU5bwJ4r17Vvix4g07Ubaxj03TZYDZS27lm%0AZX3ErJ6NgKcDGN3ToaK6+whS3uY1SOOPdKGIVQuSTknjueue9FVzJiszLvxm%0A7mzj/WMMfjVSQnP9Kv6iuL2b18xu3vVWSLJoAqS/MT3NVp5vJPI/xq8yHPp+%0AHSqdzbySdFz160IZC1yqhTULShlyv1FSixYJ8yhmU9D2pGsWCsxUbvSq0ArW%0A26Rm+XjOKV5FQfMPp71JaxMjtnkNz9KbeW7Sc/jz2qWBDO48v9frUCXSTqNx%0A74p4iYId26qaxMY2G3a3QDHWqSQFoSK5xu/OmS3Cx4+Ye/NVlgJfHZuCaieD%0AbO24bsD8DU8qY0TzTrGd38PtUiSxyQ7hwG9qzrqJ2iB529cetWIxILVdy49R%0AUuFy43sSkrJGP4hj06VC/wAw46d6AnO5NyjHTFNhbfBuX8c9qmxVxsNyqy8g%0Ar2/H/JqRsY+70Pes1mdp9vv0rSI2RYbriplAZFIf3n44pjTfZ1JPHt2qrNNs%0ADNuO7Pr0qOZWa3+ZmQ49etHK9w5rGgJlkVWHfBz3rzf9mdVbTfG02fv+Kr08%0ADsFjH+Ndss8iNH/dUjJHevL/AIEapH4d+DPizVpPtUkdvrupzSLAhmkcK4GA%0Ao5Y4HAHXgU1HQXNd3PWI/EFnexM0F1BcfeGIpFYkr1Xg9R6da439ni68Ta38%0AOW1LxVP5l7ql7cXdnCYBC1nZM58iJwOrBBkk8/NXh/7IUfgfxV8Z9c8QaT4J%0A1bQvEkkLT3k13pUln9jYyFSs2/Ba6cEsXAI2ZAbOa+nHu5N7Kp+7zmiVNLRB%0AGdyy8W7hVJPYDnikNuwXLIw4zkDj61yHxj0i61/4YalYxaPN4jkuIlUabFqh%0A0t7sbgSouFIMRGM5z2x3rw7wD8IdQ0zxzpNxJ8HfGmkxwXsTtep8T5LyG1Ab%0AmR4Gm/eKO6YORkYPSlGndB7SzsfTTXkZlVPMXrjA68185z/tp6sfg1a/F7+z%0A9H/4Vdca4untFmX+0l05p/s41MPnyyBJhvJ2ZMWTvDYU+3a/4fPiHTr+xSVL%0Af+0LaW3E7AnyDIjKH9flyDxzxXxTcxL4y/4Ja+GfgxAqt8Qry4t/B95oZcC8%0AsLmG8zcM6feESRKJN5G3aVbJBGap001qKUmfe91bG1kaOT5njYpgdiD7fSvG%0Av2jP2l7v4V+PvDvg3wxD4R1Pxhr1rNqK2Wv+IU0aCO1jZYxtkKsXmkkfCRgc%0AiOU5G3nuPA3xg8PfEDxZ4q0nQ9Xj1O68HXw0/VYQjBrOZlLIrZABJUE/KSMg%0AjtXnv7QmjfAn4+Nr/hv4jN4HvL7Q9OEupPdmGPWNFt2UskschHnKOSwCkqSc%0AFTuwZjFJ+8OUm46Ho2heI9U8N/DOTWviBHovhm8061mvdXjt7tp7TTo49zNm%0AVgC+1BksAM84AqD4SeKdS8eeB7XXtUs30pdcAvrCwlTE9paOoMIm/wCmzLh2%0AA4Qvs52kn508caV4qH/BI61t/GUmpSa1a+G7B/EaXmWu2skuYmuFkz8xcWgb%0Afk5G1snOTX1lrOn3OrX15bw3kdjdXDSwpeBAyWjHI8wAjBC/ewRjC0Sikr+Y%0ARlqD27J1Xb3xTQBHHhsrnoPWvi34DfHPVNT1z4U6WnirXbXQfFXiDxB4+1K/%0A1TVZphbaJZqHs7GSeRy2145IbmWMnaqvGMbZNo+pPgLpF74f+EWkw38mtSz3%0ADT3qjVrh7i+ginnkmihmeQly8cUiIQxyCu3tRUp8u5UaikdYIVjIbHJGDgd6%0AaQS3zHb657VxvxHm+JyeJAvg+2+Gc2kiJPm1y91GK8Mn8eRBC8e3pjnJGc1a%0A+HFx40fTb5fGlv4PhvI5E+xDw7dXdxE8e07jKbiKMq27oF3DBOTmocdLlc3Q%0A6yM5XheAcEjrUdzbyT2c0UNwtrPJG4inMfmCBiuFfZkBtrc7cjOMZGc14v8A%0AGrxJGP2p/hjp7eINQ0HSdB0zVvGPi2ZNQlgsotKtljt4PtEYYRsj3M8hywyT%0AbqBnIFS/sJeP9T+JvwWbxBrWo6hf6t4mvZvEP2S5lMn9j2d7LJJY2iHooW2S%0ANtg6CRWI/eDL9m1HmI5/esdl8FvilcfEbS9Xt9UsYNL8SeFtSl0fWbSBy8In%0ARVdJYifm8maJ45UDfMFfaclST2lxJjj1x1ryL4MTf2n+118dLyFv9Djh8NaY%0A5H3WvYrS7kmGP7yxTWuT1wyeleqXevafpmsWVjdX2n21/qgkNnaTXKJPeBAC%0A5jQnc4UEbioIXIzjIolGzshxldXZYWMSzg/dXHJ9amacR/d6dyaYW8w+ntik%0AeNpFxj86RoIi7hu9OuO9TKmF46Z64xTRGI1Gcn6d6ljYlu2B60AQwIweRiu3%0Ac3Y/eA6ZqZTj5Tt+bt2oaPzf4jwc49aBEFHP6UiBzZif1bGfanOcEnn1zUa9%0ARjj3HepFXC/3vftVWK2GszDb3FOh+cBux9R1p0aBlZWUNu6/SpxFt+WPa3Y9%0AttUK4jlQuP8AJqROGH04FIkWw/N8zd+KeyBSx6fTpRIUR4fZt7/TvTlLM/H4%0A+9JEpC5bpTkXaMn8Kksmjyq4U+ooWFgDyOaajsZNqrjjgmrCxsg+vp2poQQS%0AqZWX723g+1TRWxU/3vSqMV1JHfPH9mkVeu/A2n8c1Jo9+k8reZKrM/3RnrTS%0AJuXigXttzTUkYSYAx71ORjr82P5U+O3BBzRYQiRbhwPm65p6syttPPqakUKF%0AGKkQb2HGcd/WgCKNtwyOoqSKPkgZFSqgB+7zmpEX72evpTM7hGm1F+b/AOvU%0AyKfT6U2JGHUY+lSpyV9hxTAUKE3YPXrUkeT83f3o2Ek+vaplj3Dn2/CnoS2N%0AwCvX6AU+MYQdvwpRGExn1xipo1wv8XXOPSmK5DIjBtwG3H61NEnP9KlRA3yn%0A9KfGFBxjt0qRDrPi6h5z+8X8eRRUlrAz3sI6bXX+dFAamXqMeLybnA3n+dV5%0AEC81Y1d2W8l7nzDj25qFpNsG79BW3KTzEBiyW6cVHJBtI2/SlM5BYr19KEuF%0AmO3I8zHOKVmO5DLGQ3Hr1psq4U46e1WjHwQ3rULJ/EaQyq0HP5kVG1tg4NWI%0AXWaVgM5XtRcAQoWP6d6QFNoA3HXjmq8lrvbpirdvMLstx+HtQ1vgf0o2GUPJ%0Aynv0NNSxVl3YH8xV3y87v0qKWQQ/e/SgRTktlJ2tgUiwhVH8qmuJo12g4w3Q%0AUMVjTt+fWlqUVJYMdajjg2E7cfNzirE08YIZmwuKEXzE/HpU6lXKRtlSYNtG%0A/wBh1p00ZdfoKndfL+bauQeR7UxbpJX2gNmgLoofZ1I5j+Y8Cnw2ysf3gzt/%0AKrMo29OOfwosU5O38aG3uVZFa602Fo1XbjnFeb/soQrL8J7uRoztuNb1GXA9%0AftLjr+FeqSRZDduv415t+yHbbvgZYuHz519fuDnO4G7l/wAKnW1w62O+ktI3%0Abbjcvp2FV5LCMjCqeRitMQbBtA3FiScVjaN4z0jxD4k1jSbHULW81LQTENRt%0AYnzJZ+aC0e8dtwUkfSp1NOVIdLaKGU44UcYot7ff2xzV54DITt5GOuaY0Rwd%0AuB7ii4+UpLZqp3Ffl9MU260yCS5a5Frbm4ZPLMoiXzSg6KXxuI9icVe8shSf%0AXnmmyJmX19BSuLlRi6do1rZvcGG1ht2uG8yZo4grTsAAC5AG44AGTzgY6VX1%0ADwBoeqa5Dq1xoui3GqW2PJvZ9Phku4tucBZSu9QMnGCMZNdA0Sy9vmFR+SUZ%0Ad38RKrnpnvRzMmxn32gw65ZXVveQ295a3Ubw3EE6b4riN1KujqeGVlJBB4IO%0AKx/hp8Ppvhn4Ks9Bj1K41Cz0lRBYzXBJuo7ZcCKOSQkmRkUBPMOGYKu7LZZu%0Auis5JUEgjcxk7S207QfTPSmm23K+Fb5T8xA6UrsGjjh8H/CVvpulWKeE/Cse%0An6HcfbNNtV0e3FvptwSf30CbNsUhy3zoA3J5re3s5LfMd2eeuan1hpLLT5JI%0AYmmmiQlId2PNbHAyemTxntTo23ghlj86M4kRWyI2wCVPfPPfBwRRvuBTdNm7%0AO1Y+7e/0qjNqm2OSRYnEMLhCwPMnqQPStYTJcRyGM7tpIOw5ww9fp6VjtIU0%0ABi4bLfLyvJbPQD+lVEJaFTVfhJ4V8V+JNP17VPDGgazrWhoYrHULywjuLi0Q%0Atv2ozqTjd8wB4VskYJJpPC3w1sfhd4Dl0nwPo/h/QY7dXaws1tTDp8MrDhpE%0AiwzLkDcAQzBQNy5yOq0yJobKNHXy8KARn5u2c/lWfeMBIR513GuQMIh78f48%0A/WjXYXKtzD+EHwis/hH4U/su3uLrUrq6uZtR1PVLsL9q1W8mbfNcybflBZuA%0Aq/KiqqLworD+Jv7MmifFH49+BPHN5b2i33gMTyWlyhk+1zu6sqwschFgXcz4%0Awzs5AzGobzPRtJkeay8x/MUE/wDLRdjceoqysG4/KG+XnAHSi7vcfKrGU+Dc%0AGGDnyxh2bnb7VNEG29QMdevNO0q2VkuAAys0zbtw+99Pb/PFN1e4+x+SPNCp%0ALJsZi3C9M4/Pv60W1K5h8pKx5X5mUZ9jTID5w3YKgngEdKvQW5gQBsbh949M%0A1m6dZfajfNHIyqLg7W9DgbseozmjQOYsRw/vAWxu9BUzLxnqvX61RiupNQvW%0AVPljjAVt3r3/ACqOy1xm8QXOnuCzxIrxkjqCP8cVXKTzdTRWLzE/urxSiPb/%0AALPHX1qLQpjdafG0v+uAwQD375pusSy2kfywSNypUqQB9KCvMu2qMU+Yru65%0AFWUhKg+vQUlrGxX5k27hkVZ+dE7n3oAofa2bURBHH93mRyeB6Aep/pVqbaF4%0AyG9xVbw4PMt5mP3vNfPPvTdV86CdVjkG2c4XKcqfz5/+tR6kl2FCR6tU1s6S%0Aj5Tlh8p4wRU2nQlovmxnHUDrUIgaG/lRAPmUHPoaEkF2TeXs7CpEU/xfxVRu%0AtRkS7ito9rTMpJ3cZxVqCW4YL5kaqwHI35/z+FHKFyw42Ju9OSawbCFV065j%0AXc0jFtjnG4HPaujWFsfMvOOBnNPiV3/1kIA6Y3ZxRGVnYCrpME0NqvmFtxA3%0AZq9EgyufShWklfb5XyqeG3dasIoLbQO351fQBhtyGJBGD6VNFFtXp/k09I9q%0A9Pm9BUiREfepEyBYvk/vU6OFs8D7tOjXnnG36VYEeG/X60EkflYPq386dHBg%0Af73NTRxbh83HPepBbYNAmQxxc/1qaOMtk/w+tSeVg/yqaGIN/hQTbUbHBntn%0A6iniDCVLHDmpkTdnmgZVjiGOrA5qxBHgdKla3Cj680kSbXoJJbTBuoux3r/M%0AUVPZLuuof4TvB/UUVXKUjm9TiaW9mxk7Xb+dVxbMYf610F7pK/a5Ox3n+dVZ%0A9PbthvWtjNaGG9vxwuMUWlkDK0n8XTFah08CT5v5c0R6UImyPTJBpcwzKvFK%0AOOapTzPIdvP1rensFkPzVG+lxsPuj1pcwzmVfyJpNoOTRdedJFtz8vQ10K6L%0AGysdv51E+iqx59MDmjmQGCm6DaFboOTRJdTNGpX16nmta40TecKSOxqNdCCf%0ALuO360aAUbNmnByFO39arahgyMu0njjFbUOn/ZPu855qpd6b5sjMuAKWhRhw%0A2+WHmbmUdD6U66h8u3wfmrWTTjFGq9SOtMfSm+z+vc0+ZEnPzxAxDb970NWd%0ALVlhbjDevatCTRdoyF+bvTbe1kiLDy8AenepumBn3DfKw+bPXHpUNvpvnLuD%0AbWU5FaSae7TFj8oxyKj+zPavtCs245z2FGgFW6gP596rxFoXZx+WeK0pI2kz%0AtU7h1NVbm08vCDLNx071JXM+hJZyfaE8wjg+ozXB+BvAmofAix1q3t7iLVvC%0Avnz6jY2qxP8A2hYvIxkeBcApLGXJKn5WXOMNxj0aK02wKq5BArN8beL9L+Hn%0Ah+bVtZvFsNPtyoluGVise5goyFBPUgfjWfN0RpbqeYfDX9pDUviI81gPC8dv%0A4k03W5tJ1TT01NZI7WKHy2e480oM4SVDs28sdoJ4J634cfCq3+HVzr1xFN9q%0AvvEWqSalfXJj2PKThY0PJJVEAUZ9WPGTVD4GfCez8L+JfGPiuO2mhvPG+pC+%0AImXa8UKRqiDHbft3HPJ+XPQV6H9nyDnGevFErXtHYcb7yMvUpTY2U0sdvNct%0ADGzrDEB5kxAJ2Lkgbm6DJAyRyK8tn/aU1LyNx+EPxkj2jOz+xrRj9PluiM16%0Axrmhw69o11YzNMkV5C8EjQytDKoZSpKOuGVgCSGUgg4IIIryqX9jLw75RjXx%0Ah8ZIVYbcR/EPVs/+PTH9RSjy9Ry5uh6bNtS2MjMvlKPMLP8AKAMZJOemMc56%0AVzdt8YPBt8/7rxh4TkX7wZdatTn8fMrtJoo7iNlZQyy5BVhkHPWuLn/Zt+Hd%0Awgjl+HngCdWUpsfw1YkEdMY8rHtUJrqVK/Q6m2VSqlPmVuQfWvCv2b9GkT9t%0A748afJqWr3lja2/hdIRf30l19m8yG+kk8sMSI1JOdqALwOOK98S2+yQpHCiR%0ArGAioq4VFAwAB0wABgDjivLfgV8L/Fvgr9pT4meMNb0/Q103xzLpUlktrqjX%0AE1qtjDNFtmjaCMfP5oIKMwGCDng1UJKzM5XZ81xeKtS8d/8ABOzxR+0It3cW%0AfxEle58U6NfrO4bTbaG7EdvpwAYA2xhXZLF92QuzEFsEehfDib/hsu6+NHiS%0A6vtd06302/m8P+EDa6pPZt4bFvYpObuBomX/AEl7ib5pCCSluicKWU2Ln9jn%0AxRb/ALMeofAmzWzj8G3WpvGniJr9DLHoj3P2k232fHmm9HMIIHlEfvfMB/dV%0A1F58G/GfwrT4t6P4I0Wzv7P4l30+q6JfPqUNra+Gru6tltrhbpHPmmGMos8R%0At45i+XRljIBbfmX4/hoZ8sr6mL4S/aW1/wAb/sJfD/xpZvaw+OviLbabo9nN%0ALbKbaHUrqQW7XZiHylE2yzmMDHybcY4r2fQ/Dui/CbwIlvbyNZ6PokLzTXd9%0AMZZpQMvLcTynmSV2LO7nlmY+wrz/AOIXwVh+C37Mfgmx0OO81K3+EN1pmqCK%0AKItcX9vaEreMka5JkaGS4lEa5y2FBJxXrstnY+LtIh/489W0++WK7t5ECzwX%0AK5WWKVDyGUkI6sP9kjtWUrbra5cb7Pc8+8F/GjwfrnhfR77S9Qlex1nU5dHs%0Ax9hnW4N5G8iyxSxld8bRtE4dpAoXaMkZFdkmjq8yyCFWlJ4YDJH+c15h+yl8%0AJ7/wjrfxC1q+u/tFlq3izWJtBQZ22lpPc+bcsp9ZrlPm7bbaEDGDn1XxJ4Wh%0A8U+H7vS7tryKzvoWgla0upLScKe6SxlZI2GOGUhh2NE7X0Lg243Y+O1aPOV3%0ANj8qWSJVheR2jjWNS7SMwVY1AyWLEgAAckkgAc15tD+xt4VgdfJ8Q/FtOQ2P%0A+Fj62ynGOzXJGOOmK9Q1fR7PxBY3VrqVlb6lp10jpd2DopjvYiPnhZW+Uq4+%0AUg/LhsHjIpaFanG+FPjl4J8beGrXVtM8TaPeabeaumgQT79ok1B2CpajcAfM%0AYkYGOQQRxzTp4PDn7RHw3mjsdYa50fUHktY9U0mcpcWNxDKUMsMnVJoZoyQT%0AxuTBBUkH5d+FPgP4g6W/wV8ReKfBHii+s9P1TXfFPiDTba0H9oXnie9QyJM6%0AOQsUKtNJBFJIVVGWd2IRo2P1r8P9Bj+FHwxMniDUNNt2s4bnWPEOoglLGGV3%0Ae5u5VLAHyU3OFLAMURSRnirlFRejM4yclqcn+zN441L4hfDSG91p4X8RaTeX%0AWgeIVhTbBJf2crW8ksS/wpIU8wA9BIB257s6BHcyeZNGsmBtCsNy49CO9eff%0AsW+GtStPg1ca9q1rPp99471zUfFf2KdNk1nDeTmS3icdnEHl7h6mt/TPj9oe%0ArftBan8NVs/EFv4h0rThqjT3VkI9PvYcxhhBLuLOU81N2UVcnAZiCBMvidiq%0Afwq50xtmt4WjhVFKj5Q33c+9FhZJaxKFLPnLMzHlye/41qC3VR9KPs+5t2MY%0AqSjJnshaXDzLCJFnIVipwye/0rOi8FKt/JdR3d4twVVBIZNxRVOcDIxzXQvA%0Ac5YdR0FSRRFz8ynHbA+lGoWRzvhjR20e4urWKGZLaNlMbSEkuCPU/StpLLzE%0AXeF+TqKvLHI6DgYXkVIbfa+FG3I7DpTsBUSPBxgj6VIIFZfmz+HarJjYMpVc%0AL3pUt23DjjvxzR1DmM21037LdOwI8mQ52g9DUtxocd1qEcztJ+5yRHn92T0y%0AR3PT8q1haq6Ae3JoFuAxBO76cUySrDbtaxNtMkncAnk5ptlZSJEWkx50hJbb%0A0x2/KtIwZiXqD+tAg8v7q/j60AUfskcMvnEFvLHLAdKjvC0728sLqsLA+YCC%0AGbOMHn05rVSAL8x+X2A60pg84DcoZV9acQI4LbEa/eZsYqPUr7+zY1YxszOQ%0AoA6U64aS1ZSrfLkJtI+7mjW4t1vbrIPmaUAHHSmoiLkS5VW6buuO1SbPl/lm%0AoYt0GoeSzM/mJuyBgLWglow5PzYotZCuVb2UWNjLK3PlqWGfXt/Sqvg65uNV%0A0cTXS7ZC7A8YGO2K1vsi3C7JFVlz91hxVlLcKuF4X0HtUtO9wRAsWw9OetWI%0A0BPt0oCHPFTLAdx4qiRqRZP8IA596k2bV44B9qd9mw4+nSpIosCgBkaDPT2z%0AipUi2D096kS3yOBU0cGCKaVwIUTH+NSxR/3ccVKsfPTnNTRwlRnv7U+UljFh%0AYr2/OljttxIqSKJiRVlYg3PQ00iCK1iC3MIH99ev1oq1axE3cfH8Yz+dFMZV%0AvLbNzN/vkfrVdoMGtm8gUXsikqGZ22gnk1nXV9a21/DbyTQpPcEiNGbDORyQ%0AK0JuZ81nnkdqR7bNaslpt68VmnV7Nyyi6tcoSCBIuVPcHnrU2GV5LTLcfTkV%0AEbbdxjpVuG6huZGjikhkdRkqrgkD1I9KjvryHTbVpriRIY1GWZ2AUfU0rMVy%0Aq0G0ng81HJbc+o+laCoZVZlX5euc5qGVkgiLNxt4zSaYyj9k59+OtRz2/HSr%0A32hXK4/i6YHBpjyKDt24Hfipsyoszja7D9OcVHNa5xgD2zWq9uFOaiZRnOM4%0A7+tHKyrozWs8A7vqPeoZbfd0754rQd1Tk/gMdKjlkXH3c0cocyKq2mF5+vWo%0AWgWb5sYq5GvmdSATTjEuMjkVNh81zNa16H7tRvbhv7px6VcXMjH07HNKIgjd%0AvbFDiBnfY1Hyjp6+tK1ov90VeZEy3zL7YqC5kZJVVV9xSHcqpanPA+tDWOVJ%0Ab+LuautEuR/ePNJIjSNtpco7lH7Jt+mecVCbbhutaT24BzTZIsp16cVPKykz%0ANa0x/td6aLTAP8WRzxWg1tgr8uQe3pUckaon+7xQojuUTb/u+gP4dKGgy49e%0A1WkXJ4C+hzTmtlA/HNOWwrlOO3+bLfM1DL84+XjvVxIdwPYUkkWVPUelRylF%0AIJg7ce1BiDcjd6EVZksmdMdO2cc/hSi3xwOmO9VbUCtFG1tt2swYHcGHBU1z%0AfiL4V6P4g8Mw6PsvtJsbe5W7iXRb6fSXhdXMnySWzRuqsxYsFIDbjmuraBjy%0AemeppgjKfdwOTzQGhStNOi0rT4LWzt7WztLSNYbe2t4lht7eNAFVERQFRFAA%0ACqAABgdqkePdH7c/jVvy1DYx/wDXpfs2Of1oJuUhAR6Y9aU2mGPGN3AJ71de%0A1x0HOeo70qwZbj6jHanoO5UEYwPl49QKzPGHgjTfHGlR6fq9v9u09Z0ne0Zi%0AIbpkO5FlUcSRhgG2NlSVGQQMVuLaZDMPm759KEtHLHIHPBBo9BkLq0rsWLFy%0ASTn+dZtp4PsrLxRd64qyz6leW6WhmlkMnkQKSwhiB4jjLkuwXG9sFi2xNu8I%0APm+p+tAt2xn/APWaTAqpbZHp+HQ0xLHA/wA81eEOw4/ADrT1t/k9Mj0oApJb%0AKuCF685FPW1X/wCviriQ7vz608QEL0zzSu0BUVVH8OfbFO8ncvp6dqtJbc8b%0Afqe1P8jaeed3PWrEVFh+YhhxTmi3Htj+dXFi+T6+vemi1YJgDbg+vWgRDFbA%0AfK3H9acYBtwByepq19h3n0bpnPWpBZ7T2A9+1MCulu3T255oFuqD6VfW2wuP%0Af8qY0OZPl9eSe9ICvHZNJjI96c1gYl9farywbQOPm+lEto0mfl59u1MCidOh%0AuGUyD7p3YyetOOjrImAzeXncM9jWglv5SqAo+btipI7diG4+72piKkGkKsnm%0AHLyYxk1YW32k+hHXNWVUucDj2qRbRj/jjtQToU47fLc/rUwtdy/3VzVz7Lx9%0A3oacLfnnFAimkBLf54qeK3JDY5q0tnkZp8cGxvwp2Ah+y7144alW2z2/Sraw%0AY/P0qwkG6nYCmlttqwsQYfXvUy2uWqaK3yT8v6VRNyq1tlxj19KkWDavy9e2%0AasLbkNUsVru7fWgVypHaYH171PHAy9qtxWvHTvwamS3OegoEQWdv+/i9N4B/%0AOirtrAv2iPj+Mc0UAcn8WHsYrZlvG1CD95uSa2hLtE24YII6fjXOa34d1W9+%0AJ2numpW8jWsE0257XGwYUDI3c5z1PPH4V2vxL06+1mRrKzsTM+7zTLIQsKgN%0AnBPUk46AHrXManr/APYFveXCx3i61cKA32rT5miVRz5YKZ4/2geeuOMV0JGJ%0Aa8D3eo6voF5JqE0NxIk7xRlIfLwo46ZNeO+LdIlsnkhmsb77Tdam80QS1ikM%0AiK4JOD8+AB9PfFez+BmhufA7D7RcQyKWkuJ1tnjVXY5YLvXnH0qj4a8DLba1%0AqGqxw3kccsAh868ZmmujnJbnkKBgAYA9Bxmi6QHOfCjwo9v4v1S/WzaG3lt4%0AkhlEMUccnLFseWSD254NVPjlpSazZraX181laKfMVIv3k15KPuIqDkqDyR3O%0AB6mum+Fvwq0+00Gx1OOXVLe4m3STJHdyJFMdx+8mcH+dZuv6ZHBrkl1pqz6f%0AYxE/b74s/IH8KYyzN1zztUD8KN2M4T4Z+MI5vFEN54k1y/0GZFCW2mXV4/kT%0ANjDMWPye2w8jHNdJ8cvFcdn4ehsrabzJtbcW0LwvnG4gM2R0wD+ZFZvh/wAJ%0AxjwJZ3WpQ3uraHJcyzSCN1ZlzIcPtK/OuOo4P16V1vxU8LaciaQsdvBD5t9b%0Awp5Y2BVDhgFHQDjPHoPSh2uM8y+JVvrNnpV9Z6dZu2g2JtrG223Cxs0iyAsx%0AP3j2XqMnOa9Vs31KG2um1TSTp6wt+5WKcXLSJ7heh9uaxfjH8PLWy0a1jhuN%0AUjWW8ij2fa2KfNIM5BrttM8NR+Hp7mb7ZqFy02N5urlpVGOhAPA/Cs5S00KW%0A54X8WfFOsRafqVm02qLa3rwJp8yW8sc8Ts+GTIA4AAIPXJxXoVl8RdJt9csd%0AIZtR+13n7uEz2kq72UdWZgOTUfibTW+KfiGForiWz0rRZDNJeB9itMB8qq2f%0A4T8xI6YFV/B63mvfEKy+3XtrqVzpNlK7T25BjbzGCoeOA20EnHHNNbE6pnU3%0A0cVp80jxxqeMuwUZ/GoJrVbeJn+VlC7jznaMVzf7RVqsmhWcE1vJJFc3Uccj%0AiEuIl3DLHA4wAee1ZvwqlbxNq3ie6W1vIZJysEXmxGPyoUXI4PQMzcd+KVtL%0AlX6F7wrq114ovb6/Ba30mzkMMSAfPcOPvEn0Xp7kn055O8+N2rR6Lq3iC103%0AT5vDekXBt5EdnW6nCEeY6n7q7cng5yR27998JdH8z4XpaJgTwyTwyjHIk3se%0AfrkH8a8m8ldE+A2teE5pA2vvezW6Wgb99N5j5VgOpBBznpwaLBdnofjvxJN4%0Ac8PW+uWKi602MiW6Gz5jAQDvXvkdcd8Yrft/Lv4IZoWEsMqh1kXo4IyCPY1T%0A8b6bb+C/glPaXS+attpwt3H/AD0YIFP5mtb4e+HJND+H+i2cyqs1tZRI6424%0AYKOPwqOha3M6WxUD5eGzwcVNbWBExbu3TPevOPi3f3Gm+NLtY9S+M1lGFUhd%0AE0eK6sOn8DFGJ98966v4dtdan8N5riPUfEUtxmTZc+IdPFrdR4A+9Gqp8vfO%0AOcmjl0uPm1sa9/AqSARq24cEj9ayLDxjHf8AjKbRrGNbg6fGJdRuGcqlqW/1%0AaDj5nbrjoFGSeQDyPwNuvEPiW18OXF9rmpXn265vNQaOcITJYn5IfM+XgFtr%0ALjHXHIBrof2bNGLeEtauLnab681++e6PfcspRAfoiqB7UnFBdmV46/aB0fwl%0Ad64v9n61qNn4XSOTW76ygjkt9JDgsPMy6u5CDcwiVyq8kDIzreMvHFv4K8HS%0AeIHhk1DSbcLNczW7Bjb2x5a4A/jRRhmC87ckZxg+U+AdMGifAb44Sak4juP7%0AY1o3fmddphAi3d/uFQPbFesfs7+G5LL9nXwfY6vDvki0O3huY5O6mMAg/wDA%0AcCnypC5mzak2Twbo5FeN13K6HKsCMgg+hGDVeS3JbOdwYcA84/z/AIVzP7Kc%0AMmofs0eDGZmkjXThFA7ksXgVmWE5PP8AqwlQ/Frxxq/g3xJBZ6Xrnwp06FrY%0ASyW/ibVp7O8LFmG5VjVgYyAME4OQ3oKXLrZD5tLnYW1sAeu7PbHSpLiFUHvW%0AD8HPEer+L7S+k1e8+H14sMsaQyeFdUm1BACGLCbzI02NwpUDORu6YGfN9d/a%0AN8QaY/jDztD0r7Tputab4f0KyE0m66vbrLNBPIMgtGhid2jGBuYDcF3E9ndg%0A6mh68sTSJhSy9jk1T8M+ILTxZcXkdjI11/Zt01lJIqN5bTLw6I2MOVPyttzh%0Asr1BA434vfEHxF4Z+DHxN1CxS2sdW0e5l0nQbu2md8PKIY4bhtyjZJHJOSQA%0AQDGME1J+0haL+zr+xv4sj8JmWyHhfw+1np8iswkixti83d97zPmZ92c7zuzn%0Amp5FsHMzqNB+IPhzxXq11p+l69o+pahYlvPt7a7WR02naxwD8wVuCVyFPBIP%0AFWpNZ09vEjaR9qjXVUtvtq2r5WSSDcEMiZGHVWwrFc7S65xuXPjfxa8G2vwo%0A8M/s3xaHD9lk0TxFp2jWzIoVjbXGnyJcxnH8L7EkYdC0anqBXdftLD+wtE8N%0A+KIYf9O8M+IbIRyKMSeRdzx2l1ED3V4pMlehaOMnlRhcibK52dlOmDjHzdsV%0AHJHs7H1ra/s3a/I+ZSVOa4DXPjSNC1W6tpfAnxMlNpM8H2iDw+JrebaSN6Ms%0ApLI2NwOBkEHA6UopsHI6VrTYMbgo+vFTC3ZQu5GVWGQcfeFN8J6mnjLw9Bfp%0AZ6rp63StiC/tWtbuLkr80bcqe4z6g15X+x3oq2Ov/GKNJr6aOPx7dQI95ezX%0Ak22O0tEwZZmaRuh+8xxnA4FVy6CvqesC2WQd1HbinR2JPP5VpLZbeOOnTFcL%0A44/aO8GfDjxW+h6pqV5HqiiILFb6Vd3KzSyHCW8ckcTRtOeP3QbeNy5AyKlR%0Ab0RfN3Omlhjto5JZGWOOJS8juwVY1AySSeAAOpPAAqwbVhuH3W79jXEeKUk+%0AJn7QX/CHttPh/wAG6fBrGvRryuoXdzJILC2b1jRbeedhyGYQg8A5zfibr194%0A3/an8M/D2HUNU0/R7XRbjxNrbadfzWN1f/vBBb23nwukscYbMjhHUvuQE4BB%0AIwE5Ho5sWBIxwetDwmMbVXawOCH7VwP7OGv6ivjT4i+D9Q1LUNW/4QTWIVsL%0Ay9nae6azuYjLFHJM2WlaJkkXe5LFQm4kgk3fhcj+A/il4i8Aszf2baWVtr/h%0A5HZm+zWU0kkM1quc4jgmjUIucLHOqgBUApcg+e6OtW2wgBLn03HOakFrg45z%0A7d60pYo7WCSaWSG3gRS7vM4REA6kscAD6nFV7XXdIuHxHrGjyY+9tv4mx+Tf%0Azo5R8xHHZ7Bnn1o+yl2z8oHQjFaa2+B654z605bPA+bH5UuUZnR2WTwPu9c1%0AMtpuTvx2rQjshtzj8RXnvx58fa98N9U8Grptto8mn+INftdIuZJ2la6QSb2Y%0AooAQABMZLE/NnAxyRi3sKUklqdittlmUfNu9eMVJHaMuPXoeK5j4pfEG88P+%0ANvC3g/QorVvEHippphNcxGSHT7OBd0szKGUuxJ2oucZDE/dAZ3wx8e6hq3xI%0A8UeDNaW1bWPDYt7qK6tozHFqFpOCUk2FmKSKylXXJHKkH5iBXK7XFzK9jqo7%0Abd2+bvxQYC7L061qR2eDznn8acumlzuX9KkdzNFr3IBHf3pwtcDhRjjrWsun%0A72w2D7Vztx4mn1T4iLoWlpG0elIk+s3LjKw7wfKt4x3lbG9icBE29S4ALMXM%0AaJt8fw/jjrUsUGf4evpWP8YfiND8HfAd7r1xpWp6tDYxNM8VmqfKBgZdnYBV%0AyQOMnrhTg11GlxC9tIZdjR+ciuUznbkZx+tPlYmUWtg3b5hUkFlk8henSs/w%0Ax4lmvvEOpaLqFvDb6ppu2UeST5V1buT5cyZ57FWBztZSMkYJ6VLPPZc9RjtV%0AcoigNOAXK9z0qZLUqv8As1fW2yvanraH+hppAUUsywbqrfzoWywOR9K0ktMi%0Apls8jcdqheSTwAPX2oFcz47HaMdacbRW/nnFM8O65D4stGurNZjZsxWGZwAL%0AhRxvUddp7E9RzjpU0XiTSpNfGkpqFnLqXltKbdHDOiqQGJxnGCQOeeaYuYPs%0A4zwpX2NSLB0X9cVLr2oW/h/Tzd3W5bZSA8ipuEQP8Tei+p7VahgWUZXDL7d6%0AQrlWODI/CpEhJHPPGavR2fPSnJbfNx+dUiSmLfnmpY7bHbpV5bT6HPfrT0sy%0AAP8ACgVyrHD/APWqTyMrx/KrUdt7fSp0tMUFFWztv9Ij/wB8fjzRWlaW2Joz%0A/tCigCO9tt08n+8e9Q3ETLH8p5+tdU/h6BxvzJ8xyeabN4Ytyg+Z66DG5xxD%0Ad8+1PSHzEYMvH866WTwvbhM7pOPepo/C1usA+aT86TKOMng/ehcD8qZNaCZN%0ArKrLjoRkGuquPC1uZWJaQ/jXOmWMeNY9L8tvKeBpS+7nI6dvalYDPmtltY1V%0AEjRV4VVGFX8O1QTaJb3yRvPbwyNE29N6BtjDoR6H3rX0C3h13UNQhdXX7DKI%0AwQ33srn0q1qWj2+mxx/61vOfZ94DHX2osBy+peHrXVgn2m3im8txIgkXcFcH%0AIP1BqPU9Bh1O28q4iWSNuoJ6/wBa6uTw9bkt80vGf4vT8KlsPDdtd2e8+aPm%0AK43DnBx6VPKVdHEtplulotssEK26jaIlQKiD0A6D8KyfDHgLR/BEVxFpOnWu%0AnrdSebN5KbfMbn9Bk4AwBn3rvrLw7a6pHLJ+8j2ytHjcDnHfpUkvgy1UZ3SZ%0A9cj/AAp2C5yUsW3/AOt3qvIVWT5h/wDXrsbzwjbq6jdLjHrUMngm1kiZt0vH%0AuKVg5lc4nS/C0OlaldXVuWjW8wZYxjYzDo2PXHHvxU8tjFbz+f5Mfm4xvAG4%0AD69a7lfB9q9orbpfmHTI4/Sq1x4JtWdfmmxn1pD6Hm+v+EofF93a/aW3Wtq/%0Amm3K5WVxgru9QOuO9bEhj2/d5x0PeuzT4f2KEOGm3Y/vVHc+ALMrnzJvzFHk%0ANHFpH54yvTsaSSx+0xMki+YrcYPQj3rr18D2sUQ2yTdcYyP8KuDwFatg+ZN+%0AYqCjzLwr8P8ASPAtk1to+m2em25AXZCmMKM7VHUhRk4UcDJwBVLQfA0nhfxf%0Aql3aNF/ZutEXM8BBDQXIAVnTttdQNwPOVB7mvWv+EFs2/im646j/AAo/4QG0%0ALf6ybr6ikOx4v4h+A/hrxXqV3dahp8kx1BomvoFupYrXUGj/ANWbiFWCSleg%0ALgnHByOKm+J/hbU/F3hebR9OmWx/tcNa3V6G2yWcDDDmNccyFcqvQKTuzwAf%0AXz4Dswp+eb16j/CkPgCzA/1k35j/AApXDQ820Xw3Z+G9Fs9NsLWGzsbGFLe2%0At4xhYY0UKqgewFUte+HuieLLpZtU0XRtSdV8tWvLCK4YDty6n1r0zVPBFrbI%0ANsk3LAdR7e1Efw/s2j3eZNkjPUf4UvMZ5j4Y8CaH4UNx/Y2j6PpKzuDciwsI%0ArUTsoOC+xRuwCQCc4ya86vP2QdOudUOorrGpLqlt4ifxJYTyxRTLY3DvmQbC%0AAJAy7Uy5yEjQAjBz9LnwBZAfem/Mf4UD4f2h/wCWk/J9R/hTUmhcqZ4r4n+C%0AVh4o+EereD5Li6ht9YtZbeS9OJLhZXO77Sc4DSCXEnYZAAwMYbbaZJ8W/hje%0AaX4v0jybvULSXTddsVYrFJKU2ymCTjMbkl434wCpIDAge0S+ArNBnfMe3Uf4%0AVHJ4FtAB+8n54+8P8KXMHKj558Pfs83w13wZceJvEEfiC2+HkLx6NFHp32Zp%0A5jEsC3N03mOJJUiXC7FjXLuxBJAFj4meGZvij4x0Xw3bwyDSdF1G317XJ2Ui%0AI+QwktLRD0eSSYCR8cJHD83MiA++x+ArN2wWm64+8P8AClPgO0z/AKybb2GR%0Ax+ntT5tbhtocC1oTHhh75Ned6n+zTFqer3V5H49+Lli11M8zRW3i+5WCPexY%0ArHGchEGcKg4AwBwBXvv/AAgNnOPmkuPm/wBod/wp6/D2zK/6yfA7ZH+FJNrY%0AbXc8z8O+F5fC/hmGwS+1PWJrWNglzq12Zrm5OSR5su0k8nG7acADg4xXC/s7%0A/CzxJ8N7nxl/wkFposLeJvEd3r0D6dqMl4qLNsAifzIITuUJ94Agj+7X0R/w%0Ar6zO4+ZNwemRz+lEfw+sw23zJuT1yP8ACnfSwW1ueE6x8Qda0T9obw94T/4R%0AzzdA1/Tbm6XWEuAzQywYLq0Q5EY3RKWPVpVAJPFc3aWnxL1T40Wl9qXgrTRp%0AsN8Dp95/bcN1b6RZEFZmaEbW+3SYX96PMCqTGgCtI7fTEPwy0u3v5rqOER3V%0AxGsc0yoglmVCdis2Msq7mwCSBuOOpp48B2bkjfMMn+8P8KObsTy3PAtI0lfA%0A37UGuyXAUQ/EbRbGSxm6r9r0z7Qk9u3ozQ3UUiD+JY5cfcNV/HHgC88J/tK6%0AL8QrPTbzVdMutBn8O6zFYwG4urP96s8FysS/NJGSpR9gLLhCFYElffNR+FOj%0A67bwx3kBult547iLeeYpUOUkUjlWBzyCOCR0JBtnwNZ5PzTf99D/AApKQz56%0A/Zy+HGqaNf8AjfxXrllJpuoePNZ+3xWEu0z2NlEnlW0cu0kCQgvIyhiFMhGc%0Agkr4R0yTxl+1F4o16JV/svwzosPhWKU/8vN205u7nHtEPJQn+8xHVTj6Dn+H%0A1rNayRrcXcLMpUSROFkjyMZU44I7HsRVfw98HtF8I6Jb6bpsLWdjaqViiRs4%0A5JLMxyzsxJLMxLMxJJJJJrm3FY8/8YaJNqvhLU7W2s9H1C4uLZ44rTVlLWFw%0AxGAk4CsTGf4gFbjsa8Rvf2a9ee3O74Mfst3G5SGEdrJHu46EnT+lfXknw+s1%0Awd8x3e4/wpw+H1mVH7yfp/eH+FKMrbBy3PO7PThbWsUaRrDGiKojT7qYH3R7%0ADoPYVg+NfA/iLXb+O40bxdP4dhWII9sul292jsCx35k+YZBAwDj5a9jX4dWR%0AP+sn/Mf4U5vhzZYH7yb061JR4/4D8G+JdD1GaXWvFg8QW7RbY4RpMVmYnyDu%0A3Ix3cAjGO+c1w37V2q2EPiz4VafNfWFvcP4uhuPLluEVlVIXwxBPC7mAyeOl%0AfTa/D6zV8eZPx7j/AApLj4X6PdD/AEi1iuuMHzoo5Mj/AIEpqlLW4NX0PnP4%0Ag6Cuhfth/D/Xrj5bHUtKvdFSfI8tbjJlRCe29WOP720jtUnw30hvFf7X/jzx%0ABa7ZNN0nS7TQvPU7kmuMiSRAe/l7FDdcFx36fRV78KtE17SjYX9jbX9jKoD2%0A11BHNA4HQGNlKnHbjipNM+GOj+GdOjs9Ps4NPs4RiO3tIUt4Y/oiKFH4Cjm0%0AsTbU8X8K6br0vxu8SSXHirRdQ8OrawrbaJDGv27TZDjLykAEKQGxlm3ZHC7e%0AfNviJ4+vPhT8RPiF4j/tjWL218O6KtlDZPO5tZb+4LTLsh3eWvkRIu4gZIbJ%0APzGvdvAv7Pfh+1+PPirxhaxzWt5NGmnSxK5ZZXO2SSY57tiNQoAC7CeS3HU6%0Ah+zv4Q1G61a5uNFs559ciMGoPIm43SFQpBz0yFUErgnYuSdoxSkk9QadtDyX%0A4XeGNX03xFodtqWt6xqV5o3h+KHWftN00sc95LIrqxDfekUJLlichHjHepP2%0Ae9MZtP8AE9xcBWv7jxJfm6PcFZdqD8IwgHtivYvC/wAH9D8Haetnplu9pbKS%0A20SNIzk9SzuSzHjqxJ6elYE/w9svBHxit/szTNbeNElmuIchRBc2yoDMpxz5%0AiOoZfWMHPUUaO4K55t+2FZ4/Zm8XAgHdZ4Gf94V6Rpmm+VZxr91VUKPwGK3P%0AH/wG0P4maDJpesSanJYSn95DBdtAs3+/t+8B1welbGlfDe10qzW3F3qFyIxg%0ASXMokkP1bAzSdrWH1PFfHlsLb46eB2hVluLm1v4pyo+9ABEw3evz/qTXfR2P%0AzDhlHqBzR4A+H9n4s8cax4kunla4tZX0azj4ItYYnJcg92kf5icDoB2ye6Tw%0APaoR+8m9uelMR4JqPirxUurXEdn4i+FTW6Ssqx3VzPHMgB4DbWI3AcHjGa63%0AwFdatq+nO2r3HhmeXzdiPotzJNCFwPvFwMNk9u2K7O9/Zw8E6ldNNc+FvDNx%0ANIzFpJNGtXZj6kmPOec5q/4d+DugeEIWg0nT7PS4JH8xorK2jt42bGMlUUDO%0AO+KcmrE63PIbn4mal4c+IUNnqthDBpOoWc1xaRoD9rDRPtCtk7SzqQQBjBIB%0APU074lnWZvhza2OpCxt7nXtQisZxZM5jigdiWXcwBJKrtJ6Emu+8a/B7SfFH%0AxM8MzXHnFtLhubuMZGGbdCoB+mSa0fiz8O7S8+H2ozrJNHNpijUIG4OJIjuH%0A4HBB9jRpcWpnaXpq29tGkarGqqFUD+Edq4ObSEH7S25I41ZdD5IUDOZl/wDr%0A17ZoXha11CwgmzMnnIsm3dnGe3T3rz3/AIRjb8af7UaVGWaAaf5QQgqud27d%0AuPOR6U1sxSNyTTUuYmhlRJYZFKOjDKup4IP1BrmvhKZBotxZSNv/ALLupbNW%0APVkRiF/8dx+VeqXXhi1sLKaf96/kxtJt3Y3bQTjp7Vznwb8BWsXgm1uHklkn%0A1HdeSseMvIdx/nj8KlLQOYjFrt//AFU6O1zzirl54emzqF5HfSJDYz+WtuYl%0AZXUFQcnrk5PI6ehro4fCFu6bt8nIB61XKLU5hLT5fx71ILPI6ZxXVR+ELfcP%0Amk596mj8H2+PvydfWgaZycdl93ipha7j0rql8H24T78lSHwlbqPvScU7BzHM%0A21l+9j4P3hRXWR+F4IiG3SHbz1opgf/Z" alt="img"></p></blockquote><p>求数值解:</p><p>1、微分方程组函数声明:</p><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br></pre></td><td class="code"><pre><span class="line"><span class="function"><span class="keyword">function</span> <span class="title">df</span>=<span class="title">yprime</span><span class="params">(t,f)</span></span></span><br><span class="line"> df=<span class="built_in">zeros</span>(<span class="number">5</span>,<span class="number">1</span>);<span class="comment">%u,v,w,y,z</span></span><br><span class="line"> df(<span class="number">1</span>)=<span class="number">0.5</span>*f(<span class="number">1</span>)*(f(<span class="number">3</span>)-f(<span class="number">1</span>))./f(<span class="number">2</span>);</span><br><span class="line"> df(<span class="number">2</span>)=<span class="number">-0.5</span>*(f(<span class="number">3</span>)-f(<span class="number">1</span>));</span><br><span class="line"> df(<span class="number">3</span>)=(<span class="number">0.9</span><span class="number">-1000</span>*(f(<span class="number">3</span>)-f(<span class="number">4</span>))<span class="number">-0.5</span>*f(<span class="number">3</span>)*(f(<span class="number">3</span>)-f(<span class="number">1</span>)))./f(<span class="number">5</span>);</span><br><span class="line"> df(<span class="number">4</span>)=<span class="number">-100</span>*(f(<span class="number">4</span>)-f(<span class="number">3</span>));</span><br><span class="line"> df(<span class="number">5</span>)=<span class="number">0.5</span>*(f(<span class="number">3</span>)-f(<span class="number">1</span>));</span><br><span class="line"> <span class="comment">% df=df(:);%变成列向量</span></span><br></pre></td></tr></table></figure><p>2、在边界条件中无z在t=0时的初值,使用“打靶法”找一个初值</p><p>3、使用ode45求得该微分方程组数值解</p><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">[t,Uvwyz]=ode45(@yprime,[<span class="number">0</span>,<span class="number">1</span>],[<span class="number">1</span>,<span class="number">1</span>,<span class="number">1</span>,<span class="number">-10</span>,<span class="number">5</span>]);</span><br></pre></td></tr></table></figure><p>4、为了便于观察,作图:</p><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br></pre></td><td class="code"><pre><span class="line">subplot(<span class="number">3</span>,<span class="number">2</span>,<span class="number">1</span>)</span><br><span class="line"><span class="built_in">plot</span>(t,Uvwyz(:,<span class="number">1</span>),<span class="string">'-b'</span>)</span><br><span class="line"><span class="built_in">legend</span>(<span class="string">'u(t)'</span>)</span><br><span class="line">subplot(<span class="number">3</span>,<span class="number">2</span>,<span class="number">2</span>)</span><br><span class="line"><span class="built_in">plot</span>(t,Uvwyz(:,<span class="number">2</span>),<span class="string">'-r'</span>)</span><br><span class="line"><span class="built_in">legend</span>(<span class="string">'v(t)'</span>)</span><br><span class="line">subplot(<span class="number">3</span>,<span class="number">2</span>,<span class="number">3</span>)</span><br><span class="line"><span class="built_in">plot</span>(t,Uvwyz(:,<span class="number">3</span>),<span class="string">'-g'</span>)</span><br><span class="line"><span class="built_in">legend</span>(<span class="string">'w(t)'</span>)</span><br><span class="line">subplot(<span class="number">3</span>,<span class="number">2</span>,<span class="number">4</span>)</span><br><span class="line"><span class="built_in">plot</span>(t,Uvwyz(:,<span class="number">4</span>),<span class="string">'-k'</span>)</span><br><span class="line"><span class="built_in">legend</span>(<span class="string">'y(t)'</span>)</span><br><span class="line">subplot(<span class="number">3</span>,<span class="number">2</span>,<span class="number">5</span>)</span><br><span class="line"><span class="built_in">plot</span>(t,Uvwyz(:,<span class="number">5</span>),<span class="string">'-c'</span>)</span><br><span class="line"><span class="built_in">legend</span>(<span class="string">'z(t)'</span>)</span><br></pre></td></tr></table></figure><p>如图:</p><p><img src="%0Ac//+AB1NQVRMQUIsIFRoZSBNYXRoV29ya3MsIEluYy7/2wBDAAgGBgcGBQgH%0ABwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0%0AHyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIy%0AMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAINArwD%0AASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QA%0AtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0Kx%0AwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZ%0AWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKz%0AtLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6%0A/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQD%0ABAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLR%0AChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hp%0AanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6%0AwsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIR%0AAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACiiigAooooAKKKKAOf0zXL698U3+mXFh9lt4LaOeEuwMkgZ5F3HB%0AIAOzgde564F6/wDEOi6Vci21HV7GznKCQR3FwkZKkkAgMRkZB/KmRaZMni26%0A1UtH5EtjDbKoJ3BkkkYkjGMYcd/Wub1oPZeOLvXoQxOnadaGdV532zyXPmjH%0AqNquP+ueO9aUoKpLk77evT79hN2N7/hMvC3/AEMmj/8AgdF/8VR/wmXhb/oZ%0ANH/8Dov/AIqtpWV0V0YMrDIIOQRS1mMxP+Ey8Lf9DJo//gdF/wDFUf8ACZeF%0Av+hk0f8A8Dov/iq26KAMT/hMvC3/AEMmj/8AgdF/8VR/wmXhb/oZNH/8Dov/%0AAIqtuigDE/4TLwt/0Mmj/wDgdF/8VR/wmXhb/oZNH/8AA6L/AOKrbooAxP8A%0AhMvC3/QyaP8A+B0X/wAVR/wmXhb/AKGTR/8AwOi/+KrbooAxP+Ey8Lf9DJo/%0A/gdF/wDFUf8ACZeFv+hk0f8A8Dov/iq26KAMT/hMvC3/AEMmj/8AgdF/8VR/%0AwmXhb/oZNH/8Dov/AIqtuigDE/4TLwt/0Mmj/wDgdF/8VR/wmXhb/oZNH/8A%0AA6L/AOKrWtraGztIbW3jWOCFFjjReiqBgAfQCpaAMT/hMvC3/QyaP/4HRf8A%0AxVH/AAmXhb/oZNH/APA6L/4qtiWWOCJ5ZXWONFLO7nAUDkknsKx/+Ey8Lf8A%0AQyaP/wCB0X/xVAB/wmXhb/oZNH/8Dov/AIqj/hMvC3/QyaP/AOB0X/xVH/CZ%0AeFv+hk0f/wADov8A4qj/AITLwt/0Mmj/APgdF/8AFUAH/CZeFv8AoZNH/wDA%0A6L/4qj/hMvC3/QyaP/4HRf8AxVH/AAmXhb/oZNH/APA6L/4qj/hMvC3/AEMm%0Aj/8AgdF/8VQAf8Jl4W/6GTR//A6L/wCKo/4TLwt/0Mmj/wDgdF/8VR/wmXhb%0A/oZNH/8AA6L/AOKo/wCEy8Lf9DJo/wD4HRf/ABVAB/wmXhb/AKGTR/8AwOi/%0A+Ko/4TLwt/0Mmj/+B0X/AMVR/wAJl4W/6GTR/wDwOi/+Ko/4TLwt/wBDJo//%0AAIHRf/FUAH/CZeFv+hk0f/wOi/8AiqP+Ey8Lf9DJo/8A4HRf/FUf8Jl4W/6G%0ATR//AAOi/wDiq0rHUbHVLf7Rp97b3cIYr5lvKsi5HbIJGeaAILDXtH1WVotO%0A1axvJEXcyW9wkhA6ZIUnitCsS6/5HnSv+wbe/wDo21rboAKKKKACiiigAooo%0AoAKZLLHBE8srrHGilndzgKByST2FPrE8Zf8AIjeIP+wbc/8AopqAD/hMvC3/%0AAEMmj/8AgdF/8VR/wmXhb/oZNH/8Dov/AIqtuigDE/4TLwt/0Mmj/wDgdF/8%0AVR/wmXhb/oZNH/8AA6L/AOKrbooAxP8AhMvC3/QyaP8A+B0X/wAVR/wmXhb/%0AAKGTR/8AwOi/+KrbooAxP+Ey8Lf9DJo//gdF/wDFUf8ACZeFv+hk0f8A8Dov%0A/iq26KAMT/hMvC3/AEMmj/8AgdF/8VR/wmXhb/oZNH/8Dov/AIqtuigDE/4T%0ALwt/0Mmj/wDgdF/8VR/wmXhb/oZNH/8AA6L/AOKrbooAxP8AhMvC3/QyaP8A%0A+B0X/wAVR/wmXhb/AKGTR/8AwOi/+KrbooAxP+Ey8Lf9DJo//gdF/wDFUf8A%0ACZeFv+hk0f8A8Dov/iq1mtoWu47po1M8aNGj9wrFSw/Eov5VLQBif8Jl4W/6%0AGTR//A6L/wCKo/4TLwt/0Mmj/wDgdF/8VW3VLUNY0zSVjbUtRtLISEhDczrH%0Aux1xuIz1oAo/8Jl4W/6GTR//AAOi/wDiqP8AhMvC3/QyaP8A+B0X/wAVR/wm%0AXhb/AKGTR/8AwOi/+Ko/4TLwt/0Mmj/+B0X/AMVQAf8ACZeFv+hk0f8A8Dov%0A/iqP+Ey8Lf8AQyaP/wCB0X/xVH/CZeFv+hk0f/wOi/8AiqP+Ey8Lf9DJo/8A%0A4HRf/FUAH/CZeFv+hk0f/wADov8A4qj/AITLwt/0Mmj/APgdF/8AFUf8Jl4W%0A/wChk0f/AMDov/iqP+Ey8Lf9DJo//gdF/wDFUAH/AAmXhb/oZNH/APA6L/4q%0Aj/hMvC3/AEMmj/8AgdF/8VR/wmXhb/oZNH/8Dov/AIqj/hMvC3/QyaP/AOB0%0AX/xVAB/wmXhb/oZNH/8AA6L/AOKo/wCEy8Lf9DJo/wD4HRf/ABVH/CZeFv8A%0AoZNH/wDA6L/4qqN78QfDkEqW1pq2n3d1J9xUvI1Qe7SE4H0GT6A0m0tyoQc3%0AaJe/4TLwv/0Mmj/+B0X/AMVWraXltf2y3NncRXEDZ2yROGU4ODgjjrWZHo89%0A9+81ydbgHBFnECtun1HWT/gXH+yKj8JIseizIihVXUb8BQMAD7XLxSTbLnGE%0AVZO7/D/g/wBbm7RRRVGQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF%0AFABWHbqG8b6srAFTplmCD3/eXVblYlr/AMjzqv8A2DbL/wBG3VADPDxbTZZ/%0AD0u7FmA9m7fx2xPyge6H5D7BT/FW9WN4gsZ5Eg1Owj36jYEvEgOPOQ8PEfZh%0A09GCntWjYX1vqVhBe2sm+CZA6N0/AjsR0I7Guit76VVdd/X/AIO/39hLTQsU%0AUUVzjCiiigAooooAKKKKACiiigAooooAKKKKAMTxl/yI3iD/ALBtz/6Katus%0ATxl/yI3iD/sG3P8A6Kar+oWVxexotvql3YFTktbLExb2PmI4/LFVFJuzdgLl%0AFYf9g6j/ANDbrP8A36s//jFH9g6j/wBDbrP/AH6s/wD4xWvsYf8APxf+Tf5C%0Av5G5RWH/AGDqP/Q26z/36s//AIxR/YOo/wDQ26z/AN+rP/4xR7GH/Pxf+Tf5%0ABfyNyisP+wdR/wCht1n/AL9Wf/xipbbR76C5jlk8SapcopyYZY7UK/sdsIP5%0AEUnSgl8a/wDJv8gv5GvUEt7awyvHLcRo0cRmcMwGxB/EfQcHk+h9K4bxV4if%0ARb7xZDPqf2V30SOXTI2k2s02LgN5Q7tkR5xz92qt0JdQ8KfEJ7jzGuvsvlJt%0AY7jELJHQAjkgu8hx6lhWIz0RLq3kuDAkyNKI1l2g87GJAb6HBrK0P/kMeJv+%0Awkn/AKSW9Y8UsB1XwZLp84njlt54zKsvmb4fKDE7udw3rHznvWxof/IY8Tf9%0AhJP/AEkt6AC6/wCR50r/ALBt7/6Nta26xLr/AJHnSv8AsG3v/o21rboAKKKK%0AACiiigAooooAKxPGX/IjeIP+wbc/+imq1rerxaJpct5IjSsPlihT70rnoo/x%0A7AEngVl+ILz+0Phlqt7s8v7Ro80uzOdu6EnGe/WgDpaKitrm3vLaO4tZ4p4J%0ABlJYnDKw9QRwaloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsS6/5H%0AnSv+wbe/+jbWtusS6/5HnSv+wbe/+jbWgDborNn0y7mneRNd1CBWORHGluVX%0A2G6In8yaj/si+/6GPVP+/dt/8ZqeZ9vyNlSg18a/8m/yNaisn+yL7/oY9U/7%0A923/AMZo/si+/wChj1T/AL923/xmjmfb8v8AMfsYf8/F/wCTf5GtRWT/AGRf%0Af9DHqn/fu2/+M0f2Rff9DHqn/fu2/wDjNHM+35f5h7GH/Pxf+Tf5GtRVKCwm%0AjtZoJtSvLkyggSSeWrpkY+Uoi/1rz1tY1698M+IZvOnW50LSJ7KQjK+degNu%0AkA74VI2X/rqaaMpJJ2Tuehrq2ntA863kLRpEZ2YODiMZ+f8A3flPPTis/wAY%0AMG8Ca+ykFTplwQQeCPKasTTbbT7T4mPDDLtjfQLVbaIzHa6LJKDtTOCAuzoO%0AN2e/MNu7N8FNQBJKJpl5HCSc5iUSLH/44Fpkne1ieFP+QPP/ANhK/wD/AErm%0ArZd0jjaSRlVFBLMxwAB3JrC8HTRXOgPPBKksMmoXzpIjBldTdSkEEdQR3oA3%0A6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDl9YtLfVvGmnabqMEd%0AzYrYXFwIJVDI8geJQSp4JAY49N1T+ErjZ4UVppWeO2muYldsk+VHNIqdeT8q%0AitLUtHstVMLXSSeZCSY5IZnhdMjBAdCGwe4zg4FOg0ixtks44IPLjs0KQojs%0AFAIwcjOG/HPrQB5/4UtprPUfDd7NZx26X0Uyi9jfM1+zIZENwP4TtVm6vyMZ%0AFdbAtwfiDqDJLEsA0y08xGjJZj5lztw24AY5zwc5HTHNmx8M6Tp11FcW1vIr%0AwhhCr3EjpCG6+WjMVTjj5QOOOlR2v/I86r/2DbL/ANG3VAG3XOM3/CNa2WOR%0ApGpS8ntbXDcZ9kkOPo3+9x0dQXlpBf2c1pdRLLBMhR0YZBBrWlUUXaXwvf8A%0Aruv60E0T0Vg6Rd3Nhe/2FqcjyyKpazu3/wCXmMdQx/56L39R83rjepVKbhK3%0A3PugTuFFFFZjCiiigAooooAKKKKACiiigAooooAz9esJNV8O6np0Tqkl3aSw%0AIz9AXQqCfbmqn2rxT/0B9H/8Gsv/AMj1t0UAYn2rxT/0B9H/APBrL/8AI9H2%0ArxT/ANAfR/8Away//I9bdFAGJ9q8U/8AQH0f/wAGsv8A8j0favFP/QH0f/wa%0Ay/8AyPW3RQBifavFP/QH0f8A8Gsv/wAj0favFP8A0B9H/wDBrL/8j1t0UAYn%0A2rxR/wBAbR//AAay/wDyPVVIfEUepy6gmjaSs80SxSY1aXDhSSpI+zdRubn3%0A9hjpaKAOa8nxEdVGoto2ktcLB5CZ1aXCKW3NgfZuMkLn/dX0q9odlfW0mp3O%0AoJbxzX12J/Lt5WlVAIY48biqkn93np3rXooA5+dbgfEHT2eWJoDpl35aLGQy%0AnzLbdltxBzxjgYweueOgrEuv+R50r/sG3v8A6Nta26ACiiigAooooAKKKKAO%0Ac8ReH77VLpbyz1MwPDbSRRwmBZFLMOSCTwSMLnsM+pqnf2d3p/wjv7S+k8y5%0Ah0WZHO0DBELfLxxx0z3xmuvrE8Zf8iN4g/7Btz/6KagDbooooAKKKKACiiig%0AAooooAKKKKACiiigAooooAKKKKACsXVbPU/7bsdT02G0nMFvPbvFc3DQ/wCs%0AaJgwKo+ceVjGB161tUUAYn2rxT/0B9H/APBrL/8AI9H2rxT/ANAfR/8Away/%0A/I9bdUb3VrSwdYZHaS5cZS3hUvI30Uc49zge9JtLcqEJTdoq7KX2rxT/ANAf%0AR/8Away//I9Ub7xBr1gwifSNJluWGUtodTleVh7KLfp7nA9TWj5Wral/r5P7%0AMtj/AMs4WDzsPd+VT6Lk/wC0KvWWnWmnIyWsCx7zl25LOfVmPLH3JNTdvY25%0AKcPjd32X+f8Alf1RlQX3iuWFZH0HSoWYZMcmrOWX67YCPyNSfavFP/QH0f8A%0A8Gsv/wAj1t0VZg9WYn2rxT/0B9H/APBrL/8AI9I1x4ndSraLozKRgg6rKQR/%0A4D1uUUCOWgtfEdtoy6XBpemxwJCYI2GsS741xgYP2bqBgAn0HWo77T/EN14Z%0AudCg0jRrS2ls2s4ympSsIkKFBhfIGcDtkdOtdbRQAVieFP8AkDz/APYSv/8A%0A0rmrbrE8Kf8AIHn/AOwlf/8ApXNQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAFFFFABRWZqmspps9vbJaXN7d3Ado7e2Cbiq43MS7KoA3KOT1IxVnT%0AtRt9U06G+tmPkygkbxtKkHBBHYggg+4oAtViWv8AyPOq/wDYNsv/AEbdUad4%0Amg1O5gSKxvkt7pWa1u5I18qcDnIwxYAjkbguR0otf+R51X/sG2X/AKNuqANu%0AiiigCjqulwatZ+RMXR1O+KaM4eFx0dT2I/8ArHiqel6pcLd/2Tq21NQVS0cq%0AjCXSD+NfQj+Je30raqjqulW+r2fkTF0ZWDxTRHbJC46Op7EfkehyDW9OomvZ%0A1Nvy/rqhNdUXqKw7HV57W8TS9bCxXTYFvdD5Yrv6f3ZOuU9ORkZA3KipTlTd%0An/w4J3CiiisxhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRRQBiXX/I86V/2Db3/ANG2tbdYl1/yPOlf9g29/wDRtrW3QAUUUUAFFFFA%0ABRRRQAVieMv+RG8Qf9g25/8ARTU7xBYyXMST+ZqMkMCsTZ6fMYZJ3OADvDKc%0AKM8ZAOec4ArCkvJr74OahPc3Hn3B0m5WVyCDvVHUq2QPmBBB46g0AdtRUVtK%0A89tHLJby27sMmKUqWT2O0kfkTUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRWdea1a2s/2VBJdXmM/ZrZd7j0z2UcdWIFJtLcuFOU3aKuaNUL7WbOxl8h%0AnaW6I3LawL5krD12joPc4HvVM2msapg3lyNOtj/y72bZlYcfelxx9FH/AAI1%0Ao2Om2emxGOzt0iDHc5HLOfVmPLH3JJqbyexryUqfxu77L9X/AJX9Sj5Wr6n/%0AAK+T+zLY/wDLOFg87D3f7qfRcn/aFXrLTrTTkZLWBY95y7clnPqzHlj7kmrV%0AFNRS1InWlJcq0XZf1r87hRRRVGQUUUUAFFFFABRRRQAVieFP+QPP/wBhK/8A%0A/Suatl2KxswRnIBIVcZPsM8VheDpGl0B5HieFn1C+YxuQWQm6l4O0kZHTgke%0A5oA36KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDm9WL6d4tsNXkt%0A7ma0+xTWrm2geZo3LxupKoC2CEYZA4OM9aZoUM8HhuKwuLaeC4v3u5gvlHbC%0AJJHkAcjhThwMHuCK6eigDz3wvYz2lx4eggttWhvLeJotWNwJRCVWIrgFvkb9%0A5s27M4UHoK6KC2t5PiDqFw8ETTw6ZaCOVkBZA0lzuAPUZwM+uBXQViWv/I86%0Ar/2DbL/0bdUAbdFFFABRRRQBBe2VtqNq9tdwpNC+CUccZByD7EEAg9qw/tF/%0A4ZVUuzcajpQ4F19+e3HAHmAcyL1+YfMMcg8tXR0VrTq8q5ZK8e3+XZ/07iaI%0Ara6t722jubWaOeCQZSSNgysPYipawp9Aktbxr7Q7lbKd2LTW7KWt7gk5JZc/%0AK3+0uDzzu6U+z8QxPcrY6nA2m37NsSKU5SY+sUmAHz6cN6qKuVFSXNSd1+K/%0AruvnYL9zaooornGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU%0AUUAc/PbW8fxB0+4SCJZ5tMuxJKqAM4WS22gnqcZOPTJroKxLr/kedK/7Bt7/%0AAOjbWtugAooooAKKKKACiiigDN1LRxf3UF3FfXdldQqyLLbFMlGxlSHVlIyo%0APTIxxWVr2mW+kfDXW7K23mOPTbo7pG3M7MjszE9yWJJ+tdPWJ4y/5EbxB/2D%0Abn/0U1AG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFZD+IbeWVoNMhl1KZSVb7Pj%0Ay0P+1IflH0BJ9qTkluaU6U6nwrb8PV9DXrJuvEFpFdNZ2qS396pw0FqAxjP+%0A2xIVP+BEGk/sy8v+dVusRn/l0tGKJ9Gfhn/8dHqDWlbWtvZ26W9rDHDCgwsc%0AahVH0Aqfee2holSp/F7z8tvv6/L7zMWz1PUcHULgWkJ62tm5yfZpcA/98hfq%0Aa0bSytrCAQWkEcMeSdqLjJPUn1J7nqanopqKWpE60pLl2XZbf15vUKKKKoyC%0AiiigAooooAKKKKACiiigAooooAKxPCn/ACB5/wDsJX//AKVzVt1ieFP+QPP/%0AANhK/wD/AErmoA26KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAor%0Am9WD6j4rsNHe4uYbT7FNdSC2neFpGV40UFkIbA3scA8nGelT+GdQkk8Mi4v7%0AkObaS4hkuHI+ZYpXTeT9EBJoA3axLX/kedV/7Btl/wCjbqsPQvED6t4zWY6i%0An2S6sXa2sllHygOu1mXP+sYbmx1AwOxrXgldfiDqEQt5XR9MtC0qldseJLnA%0AOTnnPGAehzjjIB0FFFFABRRRQAUUUUAFQ3Vrb3ts9vdQRzwOMNHIoZWHuDU1%0AFNNp3QGB/ZGp6Sd2i3vnW4/5cL92ZAOOI5eXTp0O8egFSweJbQTx2upRy6Ze%0ASHCxXQAVz/sSDKN9Ac+oFbVRz28F1C0NxDHNEwwySKGU/UGt/bRn/FV/NaP/%0AAIPz18xW7ElFYP8Awjb2LB9D1KfTwOlqw862Pt5Z5UeyMtDaxqunMF1TR3ki%0A73WnEzKB6tGQHH0UP9aPYKX8OV/LZ/16Nhfub1FUdP1nTdVB+w3kMzKMvGGw%0A6f7ynlfxAq9WMoyg7SVmMKKKKkAooooAKKKKACiiigAooooAKKKKACiiigDE%0Auv8AkedK/wCwbe/+jbWtuufnldviDp8Rt5URNMuysrFdsmZLbIGDnjHOQOox%0AnnHQUAFFFFABRRRQAUUUUAVb/U7DS4RNqF9bWkTHaHuJVjUn0ySKy/Fssc/g%0AHXZYpFkjfTLhldDkMDE2CD3pviC+sNNvrO5NqLrWHSSGxh37eG2lySeFXhct%0AjOOBnODnXumf2R8JtWsjPHMyabdu7xjCbmV2YL6KCxA9gKAOxoqK2W4W2jW6%0AlilnA+d4ozGpPspZiPzNS0AFFFFABRRRQAUVFcXMFpA09zNHDEnLPIwUD8TW%0AU2qahfgjR7EbP+fq93Rx/VUxuf8A8dBzwalySNadGc1dbd3ov6/E2HdI0Z5G%0AVUUZLMcACsj+3mvG2aNZSX3T/SGPlW4B77yPm/4AG/Cnx6GkziXVZ21CUHcF%0AkULChzkbY+nHq248da1gABgcCl7z8i/3NP8AvP7l/m/wMj+xXvhnWbj7UD/y%0A7RgpAPYrnL/8CJHsK1Y40ijWONFRFGFVRgAegFOoqlFIznVnPRvTt0+4KKKK%0AZmFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWJ4U/wCQPP8A9hK//wDS%0Auatlw5jYRsqvg7SwyAfcZGfzrC8HCVdAcTujzDUL4O6IVVm+1S5IBJwM9sn6%0AmgDfooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMzU9GTUbm3u47y%0A5sru3V0Se2KbtjY3KQ6spBKqeR1AxS2miW9jaWlpBLMLa3V1aJiGE+7qZMjJ%0AOSTxjkmtKigDKh8OaVbaxHqlvZwwzxwtCojiVVAJBJ4Gc8YznoTUNr/yPOq/%0A9g2y/wDRt1W3WJa/8jzqv/YNsv8A0bdUAbdFFFABRRRQAUUUUAFFFFABRRRQ%0AAUUUUAUNQ0XTdU2m9soZnX7shXDr9GHI/A1QGg6hZMX0zXrxR2gvwLqP8ziT%0A/wAfreoraNepFct9Oz1X3MVkYX9pa7ZnF7oqXUY/5a6fOCT7+XJtx9AzGnRe%0ALdGLCO6um0+UnaI9Qja2LH0XzAA34E1t010SRCkiqyMMFWGQaftKUvih9zt+%0Ad/wsFmKrK6K6MGVhkEHIIpaw38I6J5nmW1obCXJbfYStbEn1IjIDde4NJ/ZO%0AtW2DZeIZHA6R6hapMuPqnlt+JJ/Gj2dJ/DO3qv8AK/6Bdm7RWF9s8S2xxPpF%0AldoP47S7KOf+AOoA/wC+6X/hJ4Yf+P7TNWsvd7NpVH1aLeo/E0fVqj+HX0af%0A4LULo3KKyrXxNoV7J5dtrFjJLnBjE67x/wABzmtWs505wdpq3qO9woooqACi%0AiigAooooAxLr/kedK/7Bt7/6Nta26xLr/kedK/7Bt7/6Nta26ACiiigAoooo%0AAKKKKAKGoaHpGrSJJqWlWN46DajXNukhUegLA4rM8T2Vrp/w8121sraG2t00%0A252RQxhEXMbE4A4HJJ/GuirE8Zf8iN4g/wCwbc/+imoA26KKKACiqV7q1pYO%0AsUjs9w/KW8Kl5G9wo5x79B3NUwdb1I8qmlWx9cS3BH6on/j9S5LZG0aEmuaW%0Ai7v9Or+SL2oapZaXCJb25SFWOEB5Zz6Ko5Y+wFU/tWqaiMWVv9hgP/Lxdply%0AP9mLII+rEY/umrNlpFlYSNLFFuuHGHuJSXlf2LHnHt0HYCr1K0nuVz0ofArv%0Au/8AL/Nv0Mq10C0guFurl5b+8U5W4u2Dsh/2BgKn/AQK1aKKpJLYynUnUd5O%0A4UUUUyAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArE8Kf%0A8gef/sJX/wD6VzVt1ieFP+QPP/2Er/8A9K5qANuiiigAooooAKKKKACiiigA%0AooooAKKKKACiiigAooooAKKKKACsS1/5HnVf+wbZf+jbqtus+/0HR9VlWXUd%0AJsbyRF2q9xbpIQOuAWB4oA0KKxP+EN8Lf9C3o/8A4Axf/E0f8Ib4W/6FvR//%0AAABi/wDiaANuisT/AIQ3wt/0Lej/APgDF/8AE0f8Ib4W/wChb0f/AMAYv/ia%0AANuisT/hDfC3/Qt6P/4Axf8AxNH/AAhvhb/oW9H/APAGL/4mgDborE/4Q3wt%0A/wBC3o//AIAxf/E0f8Ib4W/6FvR//AGL/wCJoA26KxP+EN8Lf9C3o/8A4Axf%0A/E0f8Ib4W/6FvR//AABi/wDiaANuisT/AIQ3wt/0Lej/APgDF/8AE0f8Ib4W%0A/wChb0f/AMAYv/iaANuisT/hDfC3/Qt6P/4Axf8AxNH/AAhvhb/oW9H/APAG%0AL/4mgDWtrmG8tIbq3kWSCZFkjdejKRkEfUGpaxP+EN8Lf9C3o/8A4Axf/E0f%0A8Ib4W/6FvR//AABi/wDiaANuisT/AIQ3wt/0Lej/APgDF/8AE0f8Ib4W/wCh%0Ab0f/AMAYv/iaANuisT/hDfC3/Qt6P/4Axf8AxNH/AAhvhb/oW9H/APAGL/4m%0AgDUurG0vo9l3awXCf3ZYw4/Wso+ENEUk21o1k3rYzPb4/wC/ZH+TS/8ACG+F%0Av+hb0f8A8AYv/iaP+EN8Lf8AQt6P/wCAMX/xNaQrVIK0ZNfMVkxP7AvIf+PT%0AxHqkQ/uSmKZT+LoW/JqT7P4pg+5qOlXS54Etm8TfiyyEf+O96d/whvhb/oW9%0AH/8AAGL/AOJo/wCEN8Lf9C3o/wD4Axf/ABNX9Yn1SfyX52uFhBqHiKIgT6Fb%0ASj+9a3+7Pvh0TH0zQfEbxE/atB1mADv9nWb/ANFM5pf+EN8Lf9C3o/8A4Axf%0A/E0f8Ib4W/6FvR//AABi/wDiaPa03vBfJv8AzYWfcT/hMNDX/X3j2v8A1+W8%0Atvj/AL+KKu2uu6RfHFpqtjcH/plcI/8AI1T/AOEN8Lf9C3o//gDF/wDE0n/C%0AGeFj/wAy1o3/AIAxf/E0XoPo180/0Qai3X/I86V/2Db3/wBG2tbdZWneGdD0%0Ai+e803SbOzuHTy2e3hWPK5BxgcdQPyrVrKain7ruvu/VjCiiipAKKKKACiii%0AgDM17X9P8OaXJf6jLsjRSVRRl5CAThR3OAfoOTgDNVPFsgm8A67KoID6XcMM%0A+8TVL4ttnuvB+txQwtNO+n3CRIi7mZjGwAUDkk9MCryWsdzpC2l1EHikgEcs%0AbjqCuCDQC8yvc67ZxXDWsBa8vF4NvagOyn/aPRP+BEVA1lq2p/8AH5efYLc/%0A8sLJsyHn+KUjj6KB/vGhvB/hhjlvDmkMfVrKMn/0Gk/4Q3wt/wBC3o//AIAx%0Af/E1HK38R0e1jD+Evm9X/kvxfmaNlp1ppyMlrAse85duSzn1Zjyx9yTVqsT/%0AAIQ3wt/0Lej/APgDF/8AE0f8Ib4W/wChb0f/AMAYv/iapJLRGMpSk7yd2bdF%0AYn/CG+Fv+hb0f/wBi/8AiaP+EN8Lf9C3o/8A4Axf/E0yTborE/4Q3wt/0Lej%0A/wDgDF/8TR/whvhb/oW9H/8AAGL/AOJoA26KxP8AhDfC3/Qt6P8A+AMX/wAT%0AR/whvhb/AKFvR/8AwBi/+JoA26KxP+EN8Lf9C3o//gDF/wDE0f8ACG+Fv+hb%0A0f8A8AYv/iaANuisT/hDfC3/AELej/8AgDF/8TR/whvhb/oW9H/8AYv/AImg%0ADWa5hW7jtWkUTyI0iJ3KqVDH8C6/nUtYn/CG+Fv+hb0f/wAAYv8A4mj/AIQ3%0Awt/0Lej/APgDF/8AE0AbdFYn/CG+Fv8AoW9H/wDAGL/4mj/hDfC3/Qt6P/4A%0Axf8AxNAG3RWJ/wAIb4W/6FvR/wDwBi/+Jo/4Q3wt/wBC3o//AIAxf/E0AbdF%0AYn/CG+Fv+hb0f/wBi/8AiaP+EN8Lf9C3o/8A4Axf/E0AbdFYn/CG+Fv+hb0f%0A/wAAYv8A4mj/AIQ3wt/0Lej/APgDF/8AE0AbdFYn/CG+Fv8AoW9H/wDAGL/4%0Amj/hDfC3/Qt6P/4Axf8AxNAG3RWJ/wAIb4W/6FvR/wDwBi/+Jo/4Q3wt/wBC%0A3o//AIAxf/E0AbdYnhT/AJA8/wD2Er//ANK5qP8AhDfC3/Qt6P8A+AMX/wAT%0AWra2ltY2yW1nbxW9vGMJFCgRV78AcCgCaiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKAI55Rb28szAlY0LkD2Ga5HR9T1cHw5e3l8biLXFPm%0AW5iRUt2MLTLsIAYgBSp3Fs9eK7B0WRGRwCrDBB7iuc0vwvcWU+mLc6klxZ6S%0AjJYxLb7HGV2AyNuIYhCV4C9cmgDpaKKKACiiigAooooAKKKKACiiigAooooA%0AzPEepvovhvUdSjQPJbW7yIrdCwHGfbOKoafLqWn+I4dKvtRk1CO5snuVlkiR%0ACjxuisBsA+U+YCM5Ix1Na+q6dDq+k3enXO7ybqJonKnkBhjI96zLPRNRS+fU%0AL7U4bi+W0NrbyR2vlrGCQSzLvO5iVUnBA+XgCgDL8TapqcGvC3t7nVLWyhsx%0APLLY2KT5YuRyWU9ApOBzz0NdVYTR3On208Vx9pjkiV1nwB5gIBDccc9ay7zS%0A9akm82z1xITJbrDMstqZFDDP7yMbxsY56HcOB6c6OmafBpOlWmnWwPkWsKwp%0AuOThRgZ9+KALdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc3rmo6vZ+INEhg8i%0ALTbm8EErZ3SSkxSNjGMKo2DnOT7Ac9JWdqmlf2lc6XN53l/YbsXWNud/7t02%0A9ePv5zz0rRoAKKKKACiiigAooooAK5/Vrm9ufEVlotnfSWKvay3U08SIzkKy%0AKqjerKMlyTx2966CsjVNIubnUrXU9OvIrW9gjkhzNAZUeNypIKhlOQUUgg+v%0ArQAvhu/uNS0OOa72m5SWa3lKjAZopGjLY7Z2Zx71rVQ0bS00bSYbFJWlKFme%0ARhgu7MWZsDplmJx71foAKKKKACiiigAooooAKKKKACiiigArn9Wub258RWWi%0A2d9JYq9rLdTTxIjOQrIqqN6soyXJPHb3roKyNU0i5udStdT068itb2COSHM0%0ABlR43KkgqGU5BRSCD6+tAC+G9QuNR0OOe82/aY5ZoJWUYDNFI0ZbHbOzOPeu%0Ac8L61f3d9ZNq2o6nFJeq7w2lzYxxRP1OxW2BsqvPJ5wTyK6PTNGl0qwtLKG8%0AzDH5jXBaP55ncliwIPyfMzHoeuKp2vh7UPtenPqmrrewaaxe3X7PskdyhQNK%0A24hiFZugXJOaAOiooooAKKKKACiiigAooooAKKKKACiiigBrlgjFV3MBwucZ%0APpXP+GdQ1W81DXINWMAktbqNI44OUjVoUfaGIBb73U9T2A4roqztP0r7Dqer%0AXvnb/wC0J0m2bceXtiSPGc8/cz260AaNFFFABRRRQAUUUUAFFFFABRRRQAUU%0AUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU%0AUUAFFFFABRRTJZFhieVzhEUsx9hQA+se7114NSlsbXSL+/lhRHkNu0KqobO3%0A/WSLn7p6elZmk+INVnl0W4vo7T7HrSFreOFGD258syqHYsQ+UU5wFwR3q7a3%0AFvF411KB541uJ7W3McTOAzhTJkqOpxkZ9MionJpxS6v9GZzk1KKXV/o2P/tz%0AUf8AoVNY/wC/tp/8fo/tzUf+hU1j/v7af/H626Ks0MT+3NR/6FTWP+/tp/8A%0AH6P7c1H/AKFTWP8Av7af/H626KAMT+3NR/6FTWP+/tp/8fo/tzUf+hU1j/v7%0Aaf8Ax+tuigDE/tzUf+hU1j/v7af/AB+j+3NR/wChU1j/AL+2n/x+tuigDE/t%0AzUf+hU1j/v7af/H6P7c1H/oVNY/7+2n/AMfrbooAxP7c1H/oVNY/7+2n/wAf%0Ao/tzUf8AoVNY/wC/tp/8frbooAxP7c1H/oVNY/7+2n/x+j+3NR/6FTWP+/tp%0A/wDH626KAOftvEt5eWkNzD4V1oxTIsiFntVJUjIyDOCOD0PNS/25qP8A0Kms%0Af9/bT/4/W3RQBif25qP/AEKmsf8Af20/+P0f25qP/Qqax/39tP8A4/VjU9ZO%0An3ltZxadd31zcRySrHbGMYRCgYkyOo6yL3zzVf8AtzUf+hU1j/v7af8Ax+gA%0A/tzUf+hU1j/v7af/AB+j+3NR/wChU1j/AL+2n/x+j+3NR/6FTWP+/tp/8fo/%0AtzUf+hU1j/v7af8Ax+gA/tzUf+hU1j/v7af/AB+j+3NR/wChU1j/AL+2n/x+%0Aj+3NR/6FTWP+/tp/8fo/tzUf+hU1j/v7af8Ax+gA/tzUf+hU1j/v7af/AB+j%0A+3NR/wChU1j/AL+2n/x+j+3NR/6FTWP+/tp/8fo/tzUf+hU1j/v7af8Ax+gA%0A/tzUf+hU1j/v7af/AB+j+3NR/wChU1j/AL+2n/x+j+3NR/6FTWP+/tp/8fo/%0AtzUf+hU1j/v7af8Ax+gA/tzUf+hU1j/v7af/AB+j+3NR/wChU1j/AL+2n/x+%0Aj+3NR/6FTWP+/tp/8fq3pWqjVFugbS4tJrWbyJobjYWVtiuOUZlI2up4NAEF%0Alrj3OqJp9zpN9YTSQvPH9oaFg6oyK2DHI2CDIvXHWteufnubeT4g6fbpPE08%0AOmXZkiVwWQNJbbSR1GcHHrg10FABRRRQAUUUUAFQXl5bafaSXd5OkFvEMvJI%0AcKo9zU9FAHD6tri63rGm2ekyXN/ZS201ww0668kyMrKgzKGUhRk8A8kr2zWx%0ApOrwW3go6pPNdzRWcMzTGdR5w8osHVsHBYbSuc84znmrupaMmoXVvdx3dzZX%0AlurolxbFN2xsblIdWUglVPI6gYrL1/TYNJ+G2t2VuXMaabdEtI25nZkdmZj3%0AJYkn60AXP7c1H/oVNY/7+2n/AMfo/tzUf+hU1j/v7af/AB+pb7xRoGmXbWt9%0ArWn2twuN0c1yiFcjIzk8Z7Z9RWhbXdteR+Za3EU6f3onDD8xQBlf25qP/Qqa%0Ax/39tP8A4/R/bmo/9CprH/f20/8Aj9bdFAGJ/bmo/wDQqax/39tP/j9H9uaj%0A/wBCprH/AH9tP/j9bdFAGJ/bmo/9CprH/f20/wDj9H9uaj/0Kmsf9/bT/wCP%0A1t0UAYn9uaj/ANCprH/f20/+P0f25qP/AEKmsf8Af20/+P1t0UAYn9uaj/0K%0Amsf9/bT/AOP0f25qP/Qqax/39tP/AI/W3RQBif25qP8A0Kmsf9/bT/4/R/bm%0Ao/8AQqax/wB/bT/4/W3RQBz7eJbxbuO2PhXWvNkRpFG+1xtUqDz5+By68Hk9%0AuhqX+3NR/wChU1j/AL+2n/x+tuigDE/tzUf+hU1j/v7af/H6P7c1H/oVNY/7%0A+2n/AMfrbrM1PWTp95bWcWnXd9c3Eckqx2xjGEQoGJMjqOsi9880AV/7c1H/%0AAKFTWP8Av7af/H6P7c1H/oVNY/7+2n/x+j+3NR/6FTWP+/tp/wDH6P7c1H/o%0AVNY/7+2n/wAfoAP7c1H/AKFTWP8Av7af/H6P7c1H/oVNY/7+2n/x+j+3NR/6%0AFTWP+/tp/wDH6P7c1H/oVNY/7+2n/wAfoAP7c1H/AKFTWP8Av7af/H6P7c1H%0A/oVNY/7+2n/x+j+3NR/6FTWP+/tp/wDH6P7c1H/oVNY/7+2n/wAfoAP7c1H/%0AAKFTWP8Av7af/H6P7c1H/oVNY/7+2n/x+j+3NR/6FTWP+/tp/wDH6P7c1H/o%0AVNY/7+2n/wAfoAP7c1H/AKFTWP8Av7af/H6P7c1H/oVNY/7+2n/x+j+3NR/6%0AFTWP+/tp/wDH6hu/E9zYWc95d+GdXitreNpZZC9qdiKMk4ExJwAegJoAm/tz%0AUf8AoVNY/wC/tp/8fq9pWpJq1gLuOGWH95JE0U23cjxuyMDtJHDKehIq7WJ4%0AU/5A8/8A2Er/AP8ASuagDbooooAKKKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACmSxrNC8TjKOpVvoafRQBymlaBq0Emh2989n9j0VCIZIZGZ7giMxIWUq%0AAmEZicFuT2rVtFI8U6o3Y21t/OWtasy2BHiTUT2Ntb4/76lrKp8UfX9GY1fi%0Ah6/ozTooorU2CiiigAooooAKKKKACiiigAooooAKKKKACiiigDEuv+R50r/s%0AG3v/AKNta26xLr/kedK/7Bt7/wCjbWtCTS9PmkaSWxtndjks0Kkn8cVMnL7K%0AJm5Je6r/ADt+jLdFUv7H0v8A6Btn/wB+F/wo/sfS/wDoG2f/AH4X/CovV7L7%0A/wDgGfNW/lX3v/Iu0VS/sfS/+gbZ/wDfhf8ACj+x9L/6Btn/AN+F/wAKL1ey%0A+/8A4Ac1b+Vfe/8AIu02SRIYnlldUjRSzOxwFA6knsKqf2Ppf/QNs/8Avwv+%0AFSDTrJbaW3S1hSGZSsiIgUMCMHOPaqi531S+/wD4BUXUv7yVvX/gIc97aR+Z%0AvuoV8uLznzIBtj5+c+i8HnpwayNW8XaZo0lz9rciK28hZZQRgPM+1F5IycfM%0AfRcHvXC2/gnxEz2xuoVYyuNKvGMynOnR+VhzzyW8qTjqPPORwa1tV029uP8A%0AhLLC3t2ub2TU7HUoowyq0sK+RwCxAyDbygZI6D1qzQ7S21SG41O6sACs0CRy%0AjJBEkbg4dfbKsPw9xVLQ/wDkMeJv+wkn/pJb1WhDXXxBadEZUtdKEc4OOHkk%0ADKpx3ARjwf4h6irOh/8AIY8Tf9hJP/SS3oALr/kedK/7Bt7/AOjbWtusS6/5%0AHnSv+wbe/wDo21rboAKKKKACiiigAooooAKxPGX/ACI3iD/sG3P/AKKatusT%0Axl/yI3iD/sG3P/opqAIPByLPoMl5Iqlr+8uLlu+Q0rbPrhAg/Cp7nwf4cu5v%0AOl0SxE/aaOERyD/ga4Pc9+9ReBefAPh9+8mnwSH3LIGP866CgDnz4UWDB07W%0A9asSOgF4bhfptnEgx7Dp2xSfYvFVqB5Gs2F6o6reWZRj/wADjYAf98GuhooA%0A58ar4itgPtfhtJxnBOnXySHHriUR/XAJ/Gj/AITCwhO3ULTU9Pb1ubKTZ/38%0AQMn/AI9XQUUAZ+n67pGrEjT9Us7th1WCdXI+oByK0KztQ0DR9WBGoaXZ3We8%0A0CsfzIqh/wAIhYw/8g+91PT/AEW2vX2D6I5ZP0oA6CiufGm+JrX/AI9vEFvd%0Aj+7qFiM/99RFAP8Avk0v9q+IbXi88OC5A6tpt6j56c7ZfLx3OMnHqaAN+iuf%0APjPSYONQW905u/220kjUf8Dxs/8AHq17HUrHU4fOsL23u4v78EqyL+YNAFmi%0AiigAooooAKxLr/kedK/7Bt7/AOjbWtusS6/5HnSv+wbe/wDo21oA26Kxbrwf%0A4Yv7qS6vPDmkXFxKd0ks1jG7ufUkrk1D/wAIJ4P/AOhU0P8A8F0P/wATQB0F%0AFc//AMIJ4P8A+hU0P/wXQ/8AxNH/AAgng/8A6FTQ/wDwXQ//ABNAHQUVz/8A%0Awgng/wD6FTQ//BdD/wDE0f8ACCeD/wDoVND/APBdD/8AE0AbzukcbSSMqIoJ%0AZmOAAO5NQyX1pDGJJLmFUMbSglxyigEsPUAEc+4qvYaJpGj280OnaXY2UMvM%0AqW9ukavxj5goAPHrXnen6Ffap4V8T28MizfZLG40TSXR9wkiG45z6nMUZ94j%0AQB2ln4usr64azgikOoCwW/W0ZlDsj7ti9eGO0Eg9NwzTPEd9b6n8NtYvrV99%0AvcaTPLG2MZUxMRx2+lVtPZpfFX/CQx25/se80SALc70CxFHkchgSGHyyDoCO%0ADnFUI4JYPgvqPmoyGXTbydUYYKJIJHVSOxCsBj2oA7usTwp/yB5/+wlf/wDp%0AXNW3WJ4U/wCQPP8A9hK//wDSuagDbooooAKKKKACiiigAooooAKKKKACiiig%0AAooooAKKKKACiiigArPgBGv3p7G2gx/31LWhVCJv+J/dLj/l1hOf+BS1lU+K%0APr+jMavxQ9f0ZfooorU2CiiigAooooAKKKKACiiigAooooAKKKKACiiigDM1%0APRjqF5bXkWo3djc28ckSyWwjOUcoWBEiMOsa9s8VX/sPUf8Aoa9Y/wC/Vp/8%0AYrbooAxP7D1H/oa9Y/79Wn/xij+w9R/6GvWP+/Vp/wDGK26KAMT+w9R/6GvW%0AP+/Vp/8AGKP7D1H/AKGvWP8Av1af/GK26KAMT+w9R/6GvWP+/Vp/8Yo/sPUf%0A+hr1j/v1af8AxituigDE/sPUf+hr1j/v1af/ABim/wDCPXplEv8AwlGreYAV%0ADeTZ5A9M+R04FbtFAGEvh69RnZPFGrKztuciGzG44Ayf3HJwAPwFXdK0oaWt%0A0Td3F3NdTefNNcbAzNsVBwiqoG1FHArQooAxLr/kedK/7Bt7/wCjbWtusS6/%0A5HnSv+wbe/8Ao21rboAKKKKACiiigAooooAKw/Gpx4E8Qn/qGXP/AKKatysH%0Axvx4B8R/9gu5/wDRTUAT+FI/K8HaJH/c0+BePaNa16oaEnl+H9NTGNtrEMen%0AyCr9ABRRRQAUUUUAFFFFABRRRQAVkXfhbQb6f7RcaRZtc5yLhYQsoPqHGGH4%0AGteigDnx4XltsDTNf1ezUDAjeYXKf+Rg7fkRxR/xVliDj+y9VUDjO+0k/wDa%0Ain/x2ugooA55fFE0B26n4e1ezA6yRwi6j6Z48ks2PcqKu2HiXRNTl8mz1W0l%0AnHDQCUCVT6Mh+YH6itSqeoaTp2rRCLUbC1vIx0W4hVwPzFAFyszU9GOoXlte%0ARajd2NzbxyRLJbCM5RyhYESIw6xr2zxVL/hEre350vUdT0w9lguTJGPpHLvQ%0AfgBThH4psVO2403VVH3VlRrWQ/V13qe/RB/WgB/9h6j/ANDXrH/fq0/+MUf2%0AHqP/AENesf8Afq0/+MVE3ik2smzU9F1WyAHMwg+0Rf8AfURYgfUCtLT9a0vV%0Atw0/ULa5ZRlkilDMv1HUdR1oApf2HqP/AENesf8Afq0/+MUf2HqP/Q16x/36%0AtP8A4xW3RQBif2HqP/Q16x/36tP/AIxR/Yeo/wDQ16x/36tP/jFbdFAGGdB1%0ABgQfFWsEHggxWn/ximQeG7q1gSC38S6pDCgwsccFmqqPYCDit+igDnz4aujA%0A0B8S6p5Lgho/Is9rA9cjyMc5OfrSXfhi5v7Oezu/E2ry21xG0UsZS1G9GGCM%0AiEEZBPQg10NFABWJ4U/5A8//AGEr/wD9K5q26xPCn/IHn/7CV/8A+lc1AG3R%0ARRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWXE3/ABVd0mf+%0AXGE4/wCBy1Jb67pF3emyttVsZrsEgwR3CM4I6/KDniqcUg/4Tq6jzz/ZkLY/%0A7ay1lU+y/MxrfZfmblFFFamwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU%0AAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYl1/wAjzpX/AGDb3/0ba1t1iXX/%0AACPOlf8AYNvf/RtrW3QAUUUUAFFFFABRRUF5eW2n2kl3eTpBbxDLySHCqPc0%0AAT1geOP+Sf8AiT/sF3X/AKKasjXNZh1a90ddLuLvUbKZLiSWDSbkxySbdoD7%0Awy4VWJBG4ZLDrjFR3l1Pd/BTVprq4M9x/ZF2kjtncGVHUq2QPmXG08dQaAOx%0A01Qml2iDosKAZ/3RVmq2nSNLp1u728luxjGYpCpZOOh2kj8ias0AFFFFABRR%0ARQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVm6p4f0jWtp1HTba5dPuSPGN6%0Af7rdR+BrSooA5/8A4Ru6tDnSdf1C1UdILhhdRH0z5mXA9lcfpQb7xNYkC50i%0A11GMD5pbCfy3P0ik4/8AIhroKKAMGPxjovmRw3lw+m3DkAQ6hG1uST2BYBW/%0A4CTW6rK6hlIKkZBB4Ips0MVxEYpokljbqrqGB/A1iN4R06As+lPcaRITu/0C%0ATYmfUxHMZ/FaAN6iueY+KtNX5RYazEuAAc2s59ST8yMfwQUxPG2mwEJrEN5o%0AsvGRqMWyPk4H75SYuv8AtZoA6SimxyxzRLLE6yRsMqynII9QadQAVieFP+QP%0AP/2Er/8A9K5q2XYrGzBGcgEhVxk+wzxWF4OkaXQHkeJ4WfUL5jG5BZCbqXg7%0ASRkdOCR7mgDfooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs2bUb%0A2LVBbDSLh7TGWvRLHsXjP3d2/wBuFrSooA4Hw8JtEbw5FFqNnqlrqQdN0VsE%0AcfI0nmqc5IyMNu7sOnStdCx+KFwokZVGkQkgAYb97NweM+/GOlbVro+l2N1J%0AdWmm2dvcS58yWKBUd8nJyQMnmsNz5fxGnmJAQWFpGxPbc91j9QB+NZVvhv5r%0A80Y1/hT81+aOpooorU2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo%0AoAKKKKACiiigAooooAKKKKACiiigDn54nX4g6fKbiV0fTLsLEwXbHiS2yRgZ%0A5zzknoMY5z0FYl1/yPOlf9g29/8ARtrW3QAUUUUAFFFFABRRRQBl6joqX97B%0AexXl1ZXkCNGs9tsyUYglSHVlIyoPTIxWP4n02DSPhZ4is7cyMiaXeMXkbc7s%0A0bszMe5LEk/WusrnfH5K/DvxIR/0DLgfnG1AHRAAAADAHQCiiigAooooAKKK%0AKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkdFkQo6hl%0APUEZBpaKAMBvB+mwyvNpTXGkTudzNYP5aMfVoyDG34qaYX8U6WGLx2etQKMg%0Ax/6Ncfkco5/FK6KigDFt/FWlyypb3Uj6ddudq29+vkux9FJ+V/8AgJPWk8Kf%0A8gef/sJX/wD6VzVrXNrb3tu9vdQRTwOMPHKgZWHoQeDWJ4LtoLPw81rbRLFB%0AFqF8kcajAVRdSgAe1AHQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF%0AFABRRRQAVgwxRzeNdXjlRXRtMsgVYZB/e3Vb1Ylr/wAjzqv/AGDbL/0bdUNX%0A0Ymk1Zl7+yLEfdtwn/XNiv8AI0f2Xbj7sl0v0upP/iqu0Vl7Gn/KvuMvq9H+%0AVfcil/Z5H3b27X/toD/MGgWVyv3dTuT/ALyRn/2UVdoo9jDp+bD2EOl182v1%0AKX2e/X7t+h/66QA/yIo2amB/r7Rz/wBcWX/2Y1doo9ku7+9h7CPRv73/AJlL%0Afqa/8sLR/wDtsy/+ymj7Rfr96wQ/7k4P8wKu0Uezf8z/AA/yD2Uuk3+H+RS+%0A23A+9ptyPdWjP/s1H9pKPv2t4n/bAt/LNXaKOSa2l+X/AAA9nNbT+9L9LFL+%0A1bX+IzJ/v28i/wA1pRq2nH/l+tx/vSAfzq5QQCMEZotU7r7v+CHLW/mX3P8A%0AzIY7u2l/1dxE/wDuuDU1QPZWsn37aFv96MGof7I0/wDhs4k/65rs/lii9RdF%0A9/8AwGF6y6J/Nr9GXaKpf2Vbj7r3Kf7tzIP/AGagaeyj5L+8U+u8N/6EDRzV%0AFvH7n/wwc9Vbx+5/5pF2iqX2W9X7uosf+ukKn+WKNmpqOJ7R/TMLLn8dxo9p%0AL+V/h/mHtZdYP8P8y7RVLzdSXra2z+6zkfoV/rR9rul+/p0x9fLkQ/zIo9rH%0As/uf+Qe3j2f3P/Iu0VTGoqB+8tbuP/tiW/8AQc0n9rWIGXmMf/XVGT/0ICj2%0A1PrJB9YpdZJF2iq8V9aTnEV1BIfRJAasda0UlLVM0jKMleLuFFFFMoKKKKAM%0AS6/5HnSv+wbe/wDo21rbrEuv+R50r/sG3v8A6Nta26ACiiigAooooAKKKKAC%0Aua+Ibbfhz4jOM506YfmhFdLXMfEX/knHiL/rwl/9BNAHT0UUUAFFFFABRRRQ%0AAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB%0AWJ4U/wCQPP8A9hK//wDSuatusTwp/wAgef8A7CV//wClc1AG3RRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWJa/wDI86r/ANg2y/8ARt1W%0A3WJa/wDI86r/ANg2y/8ARt1QBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU%0AUUAFFFFABRRRQAUUUUAFFFFAEMlrbzf62CJ/95Aag/sjT+q2scZ9YxsP6Yq7%0ARUOlCW6RnKjTlrKKfyKX9mxg5juLtPpcM3/oRNH2S6U/JqMpGOkkaN/IA1do%0AqfYw6ael1+RPsKfRW9G1+RS26mn/AC1tJfrGyfrk/wAqXz75R89ijf8AXKfP%0A8wKuUU/Z22k/z/O4eya+GTX4/nc59pXn8aaa7wSQFdOvBtlK5bMltyNpPHH6%0AiugrEuv+R50r/sG3v/o21rbq4ppau5pFNKzdwoooplBRRRQAUUUUAFcr8S/+%0ASbeIP+vN66quU+JhC/DXxAT/AM+jD88UAdXRRRQAUUUUAFFFFABRRRQAUUUU%0AAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYnhT/kDz/9%0AhK//APSuatusTwp/yB5/+wlf/wDpXNQBt0UUUAFFFFABRRRQAUUUUAFFFFAB%0ARRRQAUUUUAFFFFAEZnhEoiMqCQ9E3DP5Vzdlq+rL4q1a21IQpawWEdzBBCdx%0AUF5VJZiBliEHHQdOeSdt9H0yTUl1F9OtGvl+7cmBTKOMcNjPTjrUI0dT4hut%0AUeUMtxZR2hhKdAryNnOe/mYxjt70AYGj6nq4Phy9vL43EWuKfMtzEipbsYWm%0AXYQAxAClTuLZ68Vo3LX+n+Kbu+h0e7v7e5sreENbSQja0bzEgiSRe0i4xnvT%0ANL8L3FlPpi3OpLc2mkoyWUQt9jrldgLvuO4hCV4C9cmtm21XTry7mtLW/tZ7%0AmD/WwxTKzx9vmAOR+NAGf/bmo/8AQqax/wB/bT/4/R/bmo/9CprH/f20/wDj%0A9bdFAGJ/bmo/9CprH/f20/8Aj9H9uaj/ANCprH/f20/+P1t0UAYn9uaj/wBC%0AprH/AH9tP/j9H9uaj/0Kmsf9/bT/AOP1t0UAYn9uaj/0Kmsf9/bT/wCP0f25%0AqP8A0Kmsf9/bT/4/W3RQBif25qP/AEKmsf8Af20/+P0f25qP/Qqax/39tP8A%0A4/W3RQBif25qP/Qqax/39tP/AI/R/bmo/wDQqax/39tP/j9bdFAGJ/bmo/8A%0AQqax/wB/bT/4/R/bmo/9CprH/f20/wDj9bZOBk9KqWOqafqiyNp9/a3Yjba5%0At5lk2n0OCcGgDKttd1g2kJu/CWqLc7F80RTWpQPjnaTOCRnOMipf7c1H/oVN%0AY/7+2n/x+r1/rOl6WyLqOpWdm0gJQXE6xlgOuMkZq3HIk0SSxOrxuAyspyGB%0A6EHuKAMb+3NR/wChU1j/AL+2n/x+j+3NR/6FTWP+/tp/8frbooAxP7c1H/oV%0ANY/7+2n/AMfo/tzUf+hU1j/v7af/AB+tuigDE/tzUf8AoVNY/wC/tp/8fo/t%0AzUf+hU1j/v7af/H626KAMT+3NR/6FTWP+/tp/wDH6P7c1H/oVNY/7+2n/wAf%0ArbooAxP7c1H/AKFTWP8Av7af/H6P7c1H/oVNY/7+2n/x+tuigDE/tzUf+hU1%0Aj/v7af8Ax+j+3NR/6FTWP+/tp/8AH626KAOetmv9Q8U2l9No93YW9tZXEJa5%0AkhO5pHhIAEcjdo2znHauhqOW4hhaJZZY42lbZGGYAu2CcD1OATj2qSgAoooo%0AAKKKKAGu6xoXdgqjqScAVgeLtS1Ky8K399ojWxkht5ZTPI2RGEQtlQAdzcYA%0APHc5xg7lza297bPbXUEU8Egw8UqBlYe4PBrPvdBtJvDV9oljFBYQXVvLAogh%0AAWPepBYKMA9c9s0AZ95eX99q+maTbX0ll5tlJeT3EUaM52lFCjerKMlyTx2w%0AMZrM1ePVPFfwr1K0jhWfVJFmtdqlUEkkcxjJ5OBnYT171u3uiXL3VjfafexW%0A17aQPb75rcypJG20kFQynOUUgg+vXNPtF07wnoUEF7qMEMSsxa4upFiEkjsX%0AY8nAyxY4oAZ/bmo/9CprH/f20/8Aj9H9uaj/ANCprH/f20/+P1so6SxrJGyu%0AjAMrKcgg9CDTqAMT+3NR/wChU1j/AL+2n/x+j+3NR/6FTWP+/tp/8frbooAx%0AP7c1H/oVNY/7+2n/AMfo/tzUf+hU1j/v7af/AB+tuigDE/tzUf8AoVNY/wC/%0Atp/8fo/tzUf+hU1j/v7af/H626KAMT+3NR/6FTWP+/tp/wDH6P7c1H/oVNY/%0A7+2n/wAfrbooAxP7c1H/AKFTWP8Av7af/H6P7c1H/oVNY/7+2n/x+tuigDE/%0AtzUf+hU1j/v7af8Ax+j+3NR/6FTWP+/tp/8AH626q32pWOlwCfUL23tISdok%0AuJVjXPpkkc0AZLa7rH2uML4S1T7NsbeTNa7w+V24Hn4xjfnn098S/wBuaj/0%0AKmsf9/bT/wCP1so6SxrJGyujAMrKcgg9CDVG313SLu9NlbarYzXYJBgjuEZw%0AR1+UHPFAFT+3NR/6FTWP+/tp/wDH6P7c1H/oVNY/7+2n/wAfrbooAxP7c1H/%0AAKFTWP8Av7af/H6P7c1H/oVNY/7+2n/x+tuigDE/tzUf+hU1j/v7af8Ax+j+%0A3NR/6FTWP+/tp/8AH626KAMT+3NR/wChU1j/AL+2n/x+j+3NR/6FTWP+/tp/%0A8frbooAxP7c1H/oVNY/7+2n/AMfo/tzUf+hU1j/v7af/AB+tuigDE/tzUf8A%0AoVNY/wC/tp/8fo/tzUf+hU1j/v7af/H626KAMT+3NR/6FTWP+/tp/wDH6k8N%0AW1za6OVu7dreaW7up/KdlZkWSeSRQSpIztYZwTWvUcdxDLJLHHLG8kTBZFVg%0AShIBAI7HBB/GgCSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK%0AKAIrrzPsk3k/63y22Y/vY4rhdGFuLL4em22+cYW8zbjJT7M3mbu/+s2Z/wBr%0ArzXf1TttI02yu5ru10+1guZs+bNFCqu+Tk5IGTzzQBcooooAKKKKACiiigAo%0AoooAKKKKACiiigDB8bGYeB9bMG7zPsUv3euNpzj8M1WQ2sfjmyNmY1hGjSGQ%0Ax42BBJF5XTtjzMe2a6cgEEEZB7VRtNF0qwhnhs9Ms7eKfiZIoFVZO3zADnqe%0AtAHO6zZm78SXV5ba1ZW8ttpqHyZ7YSBVLu28knGw4wcc/L1FdBoV8+p+H9Ov%0A5IPs73NtHK0X9wsoOPpzRdaFpF8IBd6XZTi3G2ES26t5Y9FyOBwOnpWgBgYF%0AABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHJeJtPgHiXwzqJ8xrg6kIQWkJVE%0A8iYkKvQZIGTjJwPQV1tRy28M7RNNDHI0L+ZGXUEo2CNwz0OCRn0JqSgAoooo%0AAKKKKACiiigArnL3afiFpQn2+X/Z10Yd3TzN8Wce+3P4Z966Oqt/plhqkAh1%0ACyt7uINuCTxK6g+uCOtAGR4J2/8ACLQ+X/qPtFyIP+uXnyeXj227ce2K6Gmx%0AxpDEkUSKkaAKqqMBQOgA7CnUAFFFFABRRRQAUUUUAFFFFABRRRQAVzl7tPxC%0A0oT7fL/s66MO7p5m+LOPfbn8M+9dHVW/0yw1SAQ6hZW93EG3BJ4ldQfXBHWg%0ADF8GSxR+FoQrgRefdfZwT1iE8mzAHUbNuMdsVi+HhNojeHIotRs9UtdSDpui%0Atgjj5Gk81TnJGRht3dh06V24srUNbsLaENbqVgIjGYgRghfQY44qC10bS7G6%0AlurTTbS3uJc+ZLFAqu+Tk5IGTzzQBeooooAKKKKACiiigAooooAKKKKACiii%0AgBrrvRlyVyMZU4I+lct4RsYNN1rxRaWysIkvYiN7l2JNtESSxJJJJJJPrXV1%0AHHbwxSyyxwxpJMwaV1UAuQAAWPc4AHPYCgCSiiigAooooAKKKKACiiigAooo%0AoAKKKKACiiigAooooAKKKKACisew8T6Vqd79ks5p5JMsN32WVUJXOcOVC9j3%0ArYoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRyVRiASQM4H%0AU0tFAHnnhy4trS80Gz0LWru/Rw6X1ncMpaCMIx3OoH7pw+1cd9x69a6S6a/v%0AvEWoafbalLZJDY28qPFGjEM7zBj84I6Rr+tb9Ylr/wAjzqv/AGDbL/0bdU07%0AETgpqz/O35FT+ztThGLvxNrMf/TRYrRk/PyMj8atLot+6hl8WauQehEdnz/5%0AArcqsbKNWLwM0Dk5JTofqvQ1XuvyMrVobe8vuf8Ak/w9TN/sPUf+hr1j/v1a%0Af/GKP7D1H/oa9Y/79Wn/AMYrQ+0TwHE8BZf+ekIyPxXqPwzViKWOZN8Tq6+o%0ANJxa1LhWhN8uz7PR/wBeexj/ANh6j/0Nesf9+rT/AOMUf2HqP/Q16x/36tP/%0AAIxW3RUmpif2HqP/AENesf8Afq0/+MUf2HqP/Q16x/36tP8A4xW3RQBif2Hq%0AP/Q16x/36tP/AIxR/Yeo/wDQ16x/36tP/jFbdFAGJ/Yeo/8AQ16x/wB+rT/4%0AxR/Yeo/9DXrH/fq0/wDjFbdFAGJ/Yeo/9DXrH/fq0/8AjFH9h6j/ANDXrH/f%0Aq0/+MVt0UAc/baFrAtIRd+LdUa52L5pihtQhfHO0GAkDOcZNS/2HqP8A0Nes%0Af9+rT/4xW3RQBif2HqP/AENesf8Afq0/+MUf2HqP/Q16x/36tP8A4xVjxJeT%0A6d4W1e+tmC3FtZTTRMRnDKhIOD15FV/7D1H/AKGvWP8Av1af/GKAD+w9R/6G%0AvWP+/Vp/8Yo/sPUf+hr1j/v1af8Axij+w9R/6GvWP+/Vp/8AGKP7D1H/AKGv%0AWP8Av1af/GKAD+w9R/6GvWP+/Vp/8Yo/sPUf+hr1j/v1af8Axij+w9R/6GvW%0AP+/Vp/8AGKP7D1H/AKGvWP8Av1af/GKAD+w9R/6GvWP+/Vp/8Yo/sPUf+hr1%0Aj/v1af8Axij+w9R/6GvWP+/Vp/8AGKP7D1H/AKGvWP8Av1af/GKAD+w9R/6G%0AvWP+/Vp/8Yo/sPUf+hr1j/v1af8Axij+w9R/6GvWP+/Vp/8AGKP7D1H/AKGv%0AWP8Av1af/GKAD+w9R/6GvWP+/Vp/8Yo/sPUf+hr1j/v1af8Axij+w9R/6GvW%0AP+/Vp/8AGKXw/LdmfWLS7vZbz7HeiGOaZUVypgikwdiqvWRu3TFAEFst/p/i%0Am0sZtYu7+3ubK4mK3McI2tG8IBBjjXtI2c57V0NYl1/yPOlf9g29/wDRtrW3%0AQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYlr/AMjzqv8A2DbL/wBG3VLa+I4r%0AzxRcaNBAzLBAZGud3ylwyhkA743DJ9eOoOIYLm3j+IOoW7zxLPNploY4mcBn%0ACyXO4gdTjIz6ZFAHQUUUUAFQS2kcrbxujl/56RnB/H1/Gp6KabWxE6cZq0lc%0AqhrqD/WAXCf3kG1/xHQ/hj6VLDcw3GfLcEj7yngj6g8ipahmtoZyDInzDowO%0AGH0I5qrp7mXJUh8Duuz/AM9/vuTUVUK3dv8AcYXEY/hbh/z6H8cfWpIbuKVt%0AnzRy4z5cg2t/9f8ACk4vdajjXjfll7r8/wBHsyeiiipNwooooAKKKKACiiig%0ADE8Zf8iN4g/7Btz/AOimrXmkeMApBJLnshUY/MisnxipbwRr6qCSdNuAAO/7%0AtqT/AITLwt/0Mmj/APgdF/8AFU0TJNqydjS+1Tf8+Fx/31H/APFUfapv+fC4%0A/wC+o/8A4qs3/hMvC3/QyaP/AOB0X/xVH/CZeFv+hk0f/wADov8A4qnzLt+f%0A+Zl7Gf8Az8f/AJL/APIml9qm/wCfC4/76j/+Ko+1Tf8APhcf99R//FVm/wDC%0AZeFv+hk0f/wOi/8AiqP+Ey8Lf9DJo/8A4HRf/FUcy7fn/mHsZ/8APx/+S/8A%0AyJpfapv+fC4/76j/APiqVLiVnCmznQH+JimB+TZrM/4TLwt/0Mmj/wDgdF/8%0AVR/wmXhb/oZNH/8AA6L/AOKo5l2/MapTT+N/+S/5EHiDxDqGjXdtDbaVFem6%0AkWKBBd7JJHPXC7Dwo5LE4AFY3iDxHq0K63daY8e3T76y05EdgFLyPE0jdDni%0AZE9sMeelJfXHhm78QPrMPxCjs7loRAFhvLJ0jQHJCiSNiuTycHnA9BivdXHh%0Ae8uNZtZfFWmJY6k9vd+dDqEAkjuYtgzg5HIiiPQjIbI6VJsdTBf3EPi+fTJ3%0A3R3Fmt3Cuc+WysEkUeq8xke5b2o0P/kMeJv+wkn/AKSW9Y1tr/h4+J7jVLjx%0ANo5SO1S0ts38OWGd8jnBwMnaMcfcPqK0/DF3bX974hu7O4iuLaXUlMc0Lh0f%0AFrbg4YcHkEfUGgCa6/5HnSv+wbe/+jbWtuufnubeT4g6fbpPE08OmXZkiVwW%0AQNJbbSR1GcHHrg10FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU%0AAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA%0AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUdxG8ttLHFKYZHQqs%0AgAJQkcHB6461JRQBxui+F9W0fxHZOdS+0afb2Twk+QiliWB2nnJJPzFu5Bz1%0ArXtf+R51X/sG2X/o26rbrEtf+R51X/sG2X/o26oA26KKKACiiigAooooAKZL%0ADHMm2RAy+hFPooTsKUVJWauip5FxB/qJfMT/AJ5zH+TdfzzT0vE3BJgYZD0W%0ATofoehqxTXjSVCkihlPUMMg1fMn8Rh7GUP4T+T1X+a/LyHUVU+ySQ82sxUf8%0A85PmX8O4/D8qUXojIW5QwMeAScof+Bf44o5b/DqHt+X+KuX8vv8A87FqigHI%0AyOlFQdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYl1/yPOlf9g29/8A%0ARtrW3WJdf8jzpX/YNvf/AEba1t0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA%0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU%0AUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFIc4OO%0AD2oAWsS1/wCR51X/ALBtl/6Nuqx7VbrSPGOnWMl3qUiXEMonubyYvFeS7QwE%0AabiIyMOcAKMAgbutacErr8QdQiFvK6PploWlUrtjxJc4Byc854wD0OccZAOg%0AooooAKKKKACiiigAooooAKKKKACkIDDBAIPY0tFAFT7EITm0kMP+xjKH/gPb%0A8MUv2toeLqPy/wDpovzJ+fb8fzq1RV81/i1Of2HJ/CfL5dPu/wArCKyuoZSC%0AD0IPWlqq1kqsXtnaBz/d+6fqvT+tH2iWHi5i+X/nrECV/EdR+o96OW/wh7Zw%0A/iq3nuv+B89PMtUU1HWRA6MGU9CpyDTqg3TTV0FFFFAwooooAKKKKACiiigA%0AooooAxLr/kedK/7Bt7/6Nta265+eV2+IOnxG3lRE0y7KysV2yZktsgYOeMc5%0AA6jGecdBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU%0AUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUjKHUqwyCMEUtFAGFYeFreyubK%0AVr++uo7EMLOC4dCkGVK8EKGYhSVBYtgGnWv/ACPOq/8AYNsv/Rt1W3WJa/8A%0AI86r/wBg2y/9G3VAG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA%0AV3s0LmSFmhkPVk6H6joaZ9pmt+LmLKf89YgSPxHUfrVuiq5u+pg6CTvTfK/w%0A+a/ys/MbHIkqB43V1PQqcinVWkso2cyxM0Ep6vHxn6jofxponuIOLmLen/PW%0AEE/mvUfhmnyp/CT7aUNKqt5rVfPqvy8y3RTI5Y5kDxurqe6nIp9QdCaaugoo%0AooGFFFFABRRRQBiXX/I86V/2Db3/ANG2tbdYl1/yPOlf9g29/wDRtrW3QAUU%0AUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRRQAUUUUAFFFFABRRRQAUUUjgFGDHCkcnOP1oAp22saZe3ctpa6jaT3MWf%0AMhinVnTtyoORVG1/5HnVf+wbZf8Ao26rG0eOy1XVdKl0qOK30bR1kS0bd89y%0AxQodoPPlgZO48scHoMnUgidviDqEouJURNMtA0ShdsmZLnBORnjHGCOpznjA%0AB0FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFaWzR%0A3MkbNDMf44+M/UdD+NM+0XFvxdRb0/56wgn816j8M1coq1Po9TnlQSfNTfK/%0Awfqv10fmNjkSVA8bq6noVORTqrSWaFzJCxhlPVk7/UdDSfaJoOLmPK/89YgS%0APxHUfrRyp/CHtpQ/iq3mtv8AgfPTzLVFIjrIoZGDKehByDS1BummroKKKKBm%0AJdf8jzpX/YNvf/RtrW3XPzxOvxB0+U3Ero+mXYWJgu2PEltkjAzznnJPQYxz%0AnoKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACmuiSxtHIqujAqysMgg9QRTqKAMuz8M6%0ADp90l1ZaJpttcJnZLDaRo65GDggZHBI/GoLX/kedV/7Btl/6Nuq26xLX/ked%0AV/7Btl/6NuqANuiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKAK0lmpcyQu0Ep6snRvqOh/nTRdyQHbeRhB/z1TlD9e6/%0Aj+dW6Kvm6S1Od0LPmpvlf4P1X+VmICGAKkEHoRS1Wa02HdbP5LZyVxlD9V/q%0AMU1bwxsI7uPyW6B85Rvoe30NHLf4Q9vyO1VW8+n39PnbyuZ91/yPOlf9g29/%0A9G2tbdYl1/yPOlf9g29/9G2tbdQdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ%0AAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB%0ARRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZ%0AF7ob3OqPqFtq19YTSQpBJ9nWFg6ozsuRJG2CDI3THWtZ3WNGdyAqjJJ7Cuc0%0AvxRPfXGmm404W1pqqM9jKJ97sAu8B02jYSgLDBbpg4oAs/2HqP8A0Nesf9+r%0AT/4xR/Yeo/8AQ16x/wB+rT/4xW3RQBif2HqP/Q16x/36tP8A4xR/Yeo/9DXr%0AH/fq0/8AjFbdFAGJ/Yeo/wDQ16x/36tP/jFH9h6j/wBDXrH/AH6tP/jFbdFA%0AGJ/Yeo/9DXrH/fq0/wDjFH9h6j/0Nesf9+rT/wCMVt0UAYn9h6j/ANDXrH/f%0Aq0/+MUf2HqP/AENesf8Afq0/+MVt0UAYn9h6j/0Nesf9+rT/AOMUf2HqP/Q1%0A6x/36tP/AIxW3RQBif2HqP8A0Nesf9+rT/4xR/Yeo/8AQ16x/wB+rT/4xWhq%0AmoQaTpV3qNznybaJpX2jJIUZwPes/TdavJ9U/s3U9Pjsrp7f7TEI7jzgyAhW%0ABO1cMpZcjkc8E0ARW3hq8s7SG2h8Va0IoUWNAyWrEKBgZJgJPA6nmpf7D1H/%0AAKGvWP8Av1af/GKg1rxJcadrEWm2lnaTytCJma5vRbhcsVUD5WySQ35VvxNI%0A0KNKgSQqC6K24Ke4BwM/WgDH/sPUf+hr1j/v1af/ABij+w9R/wChr1j/AL9W%0An/xituigDE/sPUf+hr1j/v1af/GKP7D1H/oa9Y/79Wn/AMYrbooAxP7D1H/o%0Aa9Y/79Wn/wAYo/sPUf8Aoa9Y/wC/Vp/8YrbooAxP7D1H/oa9Y/79Wn/xij+w%0A9R/6GvWP+/Vp/wDGK26KAMT+w9R/6GvWP+/Vp/8AGKP7D1H/AKGvWP8Av1af%0A/GK26KAMT+w9R/6GvWP+/Vp/8YpDoOoMMHxVrBB7GK0/+MVuUUAY+m+H1sL1%0ALuTULy9mjikijNx5YCK5QsAI0UdY17VsVial4jj0/XNO0tbSeV7yYRNNtKxx%0AZR2HzEYZjsPyj6nHGdum23uTCEYK0VZBRRRSKCiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AAI54hcW8sLEgSIUJHbIxXI6Pp2rsfDdjd6e9tFoaHzbhpUZLhlhaFfLCktgh%0Ay3zBcdOa7KigAooooAKKKKACiiigAooooAKKKKACiiigDL8SaZJrPhrUtNid%0AUlubd442boGI4z7ZxWbajVL3Xl1e50ma0W0sJIEt5JY2aaR2Rm2lWICjygAW%0AIznoK6aigDlNYtZri8lmm8JQ6kLmyWJW3ReZG3zExyF2HyfMDlM9+Olbeh2U%0A+m6Bp1jdTefcW9tHFJLnO5lUAn9K0KKACiiigAooooAKKKKACiiigAooooAK%0AKKKAMXXrC5vb3QZLePetrqInmO4DankyrnnryyjA55raoooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=" alt="img"></p><p>参考链接:<a target="_blank" rel="noopener" href="https://blog.csdn.net/qq_18820125/article/details/104727013">Matlab求常微分方程组的数值解</a></p><p>(其他,与答案无关)</p><p>求解析解代码:</p><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br></pre></td><td class="code"><pre><span class="line">syms u(t) v(t) w(t) y(t) z(t) t;</span><br><span class="line">eqn=[diff(u)==<span class="number">0.5</span>*u*(w-u)/v,diff(v)==<span class="number">-0.5</span>*(w-u),diff(w)==(<span class="number">0.9</span><span class="number">-1000</span>*(w-y)<span class="number">-0.5</span>*w*(w-u))/z,diff(y)==<span class="number">-100</span>*(y-w),diff(z)==<span class="number">0.5</span>*(w-u),u(<span class="number">0</span>)==v(<span class="number">0</span>)==w(<span class="number">0</span>)==<span class="number">1</span>,z(<span class="number">0</span>)==<span class="number">-10</span>,w(<span class="number">1</span>)==y(<span class="number">1</span>)];</span><br><span class="line">S=dsolve(eqn,t);</span><br></pre></td></tr></table></figure><p>运行代码:找不到解析解</p><figure class="highlight"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">备注:正确与否不做保证,但尽力保证答案正确,仅供参考!!</span><br></pre></td></tr></table></figure><h4 id="3-5-统计模型求解方法"><a href="#3-5-统计模型求解方法" class="headerlink" title="3.5 统计模型求解方法"></a>3.5 统计模型求解方法</h4><blockquote><p>【简答题】</p><p>随机产生100个整数,绘制出其直方图,并用多项式拟合其统计图。</p></blockquote><p>1、生成1000,000个随机数(使用randn函数),并绘制直方图</p><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br></pre></td><td class="code"><pre><span class="line">A=<span class="built_in">randn</span>(<span class="number">1</span>,<span class="number">1000000</span>);</span><br><span class="line">hist(A,<span class="number">100000</span>)<span class="comment">%划分100,000个区间</span></span><br></pre></td></tr></table></figure><p>如图:</p><p><img src="%0Ac//+AB1NQVRMQUIsIFRoZSBNYXRoV29ya3MsIEluYy7/2wBDAAgGBgcGBQgH%0ABwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0%0AHyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIy%0AMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAINArwD%0AASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QA%0AtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0Kx%0AwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZ%0AWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKz%0AtLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6%0A/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQD%0ABAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLR%0AChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hp%0AanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6%0AwsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIR%0AAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACiiigAooooA43xf/AGvpltNf2niO9jeaRYbOwitrdg8rcKgZkJ5P%0AJJPAz6U2JtdvNYh8PS67LFNZaelze3lvBGHmldmCqAylQo2k8DJ4961dS0y6%0Av/GGi3DRZ06wjnmLFhgzsFRBt68KXOcY/Sq9/a6jpni59asdNk1CC6s1tp4o%0AZY0kR0ZmVv3jKCCGIPORgcUAWvCeqXOqaRKL1ke8s7qaznkRdqyNG5XcB2yM%0AHHvV2/17R9KlWLUdWsbOR13KlxcJGSOmQGI4ql4T0u50vSJTeqiXl5dTXk8a%0ANuWNpHLbQe+BgZ9qda/8jzqv/YNsv/Rt1QAf8Jl4W/6GTR//AAOi/wDiqP8A%0AhMvC3/QyaP8A+B0X/wAVW3RQBif8Jl4W/wChk0f/AMDov/iqP+Ey8Lf9DJo/%0A/gdF/wDFVt0UAYn/AAmXhb/oZNH/APA6L/4qj/hMvC3/AEMmj/8AgdF/8VW3%0ARQBif8Jl4W/6GTR//A6L/wCKo/4TLwt/0Mmj/wDgdF/8VVzR9PfTLKSB3Vy9%0A1cT5A7SzPIB+AcD8Kv0AYn/CZeFv+hk0f/wOi/8AiqP+Ey8Lf9DJo/8A4HRf%0A/FVt0UAYn/CZeFv+hk0f/wADov8A4qj/AITLwt/0Mmj/APgdF/8AFVt0UAYn%0A/CZeFv8AoZNH/wDA6L/4qj/hMvC3/QyaP/4HRf8AxVXNc099W8P6lpsbrG93%0AaywK7DIUuhXJ/Or9AGJ/wmXhb/oZNH/8Dov/AIqj/hMvC3/QyaP/AOB0X/xV%0AbdFAGJ/wmXhb/oZNH/8AA6L/AOKo/wCEy8Lf9DJo/wD4HRf/ABVbdFAGJ/wm%0AXhb/AKGTR/8AwOi/+Ko/4TLwt/0Mmj/+B0X/AMVW3VDUNPe8vdKnV1UWV007%0AAj7wMMseB+MgP4UAU/8AhMvC3/QyaP8A+B0X/wAVR/wmXhb/AKGTR/8AwOi/%0A+KrbooAxP+Ey8Lf9DJo//gdF/wDFUf8ACZeFv+hk0f8A8Dov/iq26KAMT/hM%0AvC3/AEMmj/8AgdF/8VR/wmXhb/oZNH/8Dov/AIqtuigDE/4TLwt/0Mmj/wDg%0AdF/8VR/wmXhb/oZNH/8AA6L/AOKq5Np7yeILPUg6hILWeApjkmR4mB/Dyj+d%0AX6AMT/hMvC3/AEMmj/8AgdF/8VR/wmXhb/oZNH/8Dov/AIqtuigDE/4TLwt/%0A0Mmj/wDgdF/8VR/wmXhb/oZNH/8AA6L/AOKrbooAxP8AhMvC3/QyaP8A+B0X%0A/wAVR/wmXhb/AKGTR/8AwOi/+Krbqhp+nvZ3uqzs6sL26WdQB90CGKPB/GMn%0A8aAKf/CZeFv+hk0f/wADov8A4qj/AITLwt/0Mmj/APgdF/8AFVt0UAYn/CZe%0AFv8AoZNH/wDA6L/4qj/hMvC3/QyaP/4HRf8AxVbdFAGJ/wAJl4W/6GTR/wDw%0AOi/+Ko/4TLwt/wBDJo//AIHRf/FVt0UAYn/CZeFv+hk0f/wOi/8AiqP+Ey8L%0Af9DJo/8A4HRf/FVc0PT30nw/pumyOsj2lrFAzqMBiiBcj8qv0AYn/CZeFv8A%0AoZNH/wDA6L/4qj/hMvC3/QyaP/4HRf8AxVbdFAGJ/wAJl4W/6GTR/wDwOi/+%0AKo/4TLwt/wBDJo//AIHRf/FVt0UAYn/CZeFv+hk0f/wOi/8AiqP+Ey8Lf9DJ%0Ao/8A4HRf/FVc1zT31bw/qWmxusb3drLArsMhS6Fcn86v0AYn/CZeFv8AoZNH%0A/wDA6L/4qj/hMvC3/QyaP/4HRf8AxVbdFAGJ/wAJl4W/6GTR/wDwOi/+Ko/4%0ATLwt/wBDJo//AIHRf/FVt0UAYn/CZeFv+hk0f/wOi/8AiqP+Ey8Lf9DJo/8A%0A4HRf/FVt1Q1DT3vL3Sp1dVFldNOwI+8DDLHgfjID+FAFP/hMvC3/AEMmj/8A%0AgdF/8VR/wmXhb/oZNH/8Dov/AIqtuigDE/4TLwt/0Mmj/wDgdF/8VR/wmXhb%0A/oZNH/8AA6L/AOKrbooAxP8AhMvC3/QyaP8A+B0X/wAVR/wmXhb/AKGTR/8A%0AwOi/+KrbooAxP+Ey8Lf9DJo//gdF/wDFUf8ACZeFv+hk0f8A8Dov/iquQ6e8%0AfiC81IupSe1ggCY5BjeVifx80flV+gDE/wCEy8Lf9DJo/wD4HRf/ABVH/CZe%0AFv8AoZNH/wDA6L/4qtuigDE/4TLwt/0Mmj/+B0X/AMVR/wAJl4W/6GTR/wDw%0AOi/+KrbooAxP+Ey8Lf8AQyaP/wCB0X/xVatrd219bJc2dxFcW8gyksLh1btw%0ARwamrE8Kf8gef/sJX/8A6VzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF%0AFFABRRRQAUUUUAFYlr/yPOq/9g2y/wDRt1W3WJa/8jzqv/YNsv8A0bdUAbdF%0AFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU%0AUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ%0AAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYnhT/%0AAJA8/wD2Er//ANK5q26xPCn/ACB5/wDsJX//AKVzUAbdFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYlr/AMjzqv8A2DbL/wBG3VbdYlr/%0AAMjzqv8A2DbL/wBG3VAG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU%0AUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRRQAUUUUAFFFFABWJ4U/5A8/8A2Er/AP8ASuatusTwp/yB5/8AsJX/AP6V%0AzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVQ1HXNJ0h4k1%0ALU7SzaX7gnmVC30yaXUNZ0vSYI59R1G1tIpDhHnmVAx9snmgC9WJa/8AI86r%0A/wBg2y/9G3VbEUsc8SSxSLJG4DK6HIYHoQe4rHtf+R51X/sG2X/o26oA26KK%0AKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo%0AAKKKKACiiigAooooAKMg556UVieH/wDj91//ALCR/wDRMVUo3TfYDboooqQC%0AiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK%0AKKACiiigAooooAKKKKACiiigArE8Kf8AIHn/AOwlf/8ApXNW3WJ4U/5A8/8A%0A2Er/AP8ASuagDbooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPOoE%0A1nUPFXi1rGz02V0ljtma/wBzB4hEpESgfdBJZiTxlhwex4LuLLV/EUFxb2hh%0AtINBt1tIJGL+UrPIHAJ68oFz3Ciuov8AwvDd6hc31tqWoadNdRiO5+xugEwA%0AwCdythgONy4OO9Mk8IWSfYm065u9Lls7f7LHJaMmTF/dYOrA885xnOeeaAKv%0AgPMelalaqu23tdWu4LdR0WMSnAHsMkfhSzS6pF451H+zbOzuc6bZ+Z9pu2h2%0A/vbnGNsb57+mOOueNzSdKttF0yGwtA/lR5O523M7EkszHuSSSfrVG1/5HnVf%0A+wbZf+jbqgDZQuY1Miqr4G4KcgH2OBn8qdRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFU578QanZ2Xl7%0AjcrI2/P3dgHbvnNXKx7/AP5GjRv+udx/JKqCTevn+QGxWJ4f/wCP3X/+wkf/%0AAETFW3WJ4f8A+P3X/wDsJH/0TFVQ+GX9dQNuqdhfi++1Yj2eRcPB1zu2459u%0AtXKx/D//ADFP+whL/SpSXK2BctL8Xd5f2/l7fskyxbs535jR8+338fhVysfR%0A/wDkM+IP+vyP/wBJ4q2Kc0k9PL8gCis2wu5rjVdWgkYGO3mjSMY6Axqx/Umt%0AKpas7AFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA%0AooooAKKKKACiiigAooooAp6hJqUcaHTbS0uHJ+cXNy0IA9isb5/IVmeDjK2g%0AOZ0RJjqF8XRHLKrfapcgEgZGe+B9BW/WJ4U/5A8//YSv/wD0rmoA26KKKACi%0AiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxLX/kedV/7Btl/6Nuq%0A26xLX/kedV/7Btl/6NuqANuiiigAooooAKKKKACiiigAooooAKKKKACiiigA%0AooooAKKKKACiiigAooooAKKKKACiiigAooooAKx7/wD5GjRv+udx/JK2Kx7/%0AAP5GjRv+udx/JKunv8n+QGncXEVrCZZ5BHGCAWPTJIA/Uisnw/8A8fuv/wDY%0ASP8A6Jip/in/AJF+f/rpD/6NWmeH/wDj91//ALCR/wDRMVXFfu2/66AbdY/h%0A/wD5in/YQl/pV6O+STVrjTwjB4IIpi3Yh2kUD8PLP5is7Q3EUWryNnC38zHH%0AtipSai16AZXgBme11ZmYsxvRkk5J/dR11a3ELXUlssgM0aLI6dwrFgp/Eq35%0AVx3w0nF1pF/cKpUS3KuAe2YYzWpcXi6d4g16+dC6W2k20zKvUhXuTgflW1eF%0A6sl6foBa0n/kO69/18Rf+iUrYrF0dg2ta6w6GeI/+QErarGpv8l+QBRRRWYB%0ARRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF%0AFFABRRRQAVieFP8AkDz/APYSv/8A0rmrbrE8Kf8AIHn/AOwlf/8ApXNQBt0U%0AUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAViWv8AyPOq/wDY%0ANsv/AEbdVt1iWv8AyPOq/wDYNsv/AEbdUAbdFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxUurXM3xb%0At9JYJ9mt7B5kwPm3NgHJ9OBXa155/wA12/7hf9a6MOk+a/ZgdP4wcxeF7uRc%0AZVo2GfaRao+BbuS/0+/vJtvm3Fykr7Rgbmt4ScfnVzxp/wAilff9s/8A0YtY%0AvgC6gh8M3bPPGm14QSzgYJtoAPzPA96uEb4d+v8AkBhfEDxhqfhPxhI2nLAT%0APpkLP5yFvuzSgYwR/fP6V2Hh+Vp9F1SV8bnuJWOPUqDXz9rd7cXgglu7mWeU%0A2W0PNIWY/vm4yfxr1/RdSijCN9tRbaSa7XPmgI58uIAdcE5z+Nd2IwyhSilv%0A372Axfhrrt3b6nbaOgj+y3BgL5X5ubV24OfWJf1rs9f/ANd4s/7AEX87qvNP%0AAl1b2nizTpLmeKFM2w3SOFHNpMByfcgfUiuyW7EkPjCOa4Dztp1yFV3yxVLm%0A+HAPOACo9uKnFU7VuZLovzA6Lw7cPJqfiRmxmO6jVfoII619Fu5L/QdOvJtv%0Am3FtHK+0YG5lBOPzrjfDMsn/AAn3imHzG8rarbM8Z8uMZx611fhf/kUtG/68%0AYP8A0WtcVeCj+H5AatFFFcoBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ%0AAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVieFP8AkDz/APYSv/8A0rmrbrE8%0AKf8AIHn/AOwlf/8ApXNQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRXN3/iDVR4guNJ0jRoL420EU08st75AUuXAUDY2eEz+NLda/qgvrbSr%0APSreTVGtRdXMct2VigXO0DeEJYkhgPlHQk0AdHWJa/8AI86r/wBg2y/9G3VW%0AdC1hNc0pLxYXgkDvFNA5y0UiMVdSR1wQee9VrX/kedV/7Btl/wCjbqgDbooo%0AoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig%0AAooooAKKKKAK11fRWlxZQyK5a7mMMZUDAYRvJz7YQ/jiuF/5rt/3C/611etf%0A8hXw7/2EH/8ASWeuU/5rt/3C/wCtdlBWUv8AC/zA6Lxw4i8G6hI2cKqMcezr%0AXnPhbUYZPD+r2QV/MLafNkgY2/uF9eua2PGvii7uND8T2LQwCK1vILVCAclW%0AwxJ568V5dZ+IrrSLe4+zxwsbhLdGLgnAQIwxz6qP1ruwmGk6LXW6/RjM7V/u%0A2P8A17n/ANGPXR2fiK0TQtPtDHP5gv5nyFGMMYyO9czqLmSGwcjGbc8f9tZK%0AhWVo7W3YAZSZ2GfXCf4V60qamkn/AFuBq2d0lzfWWwMNs9mhz6qpU/rXdWN9%0AFqGteIJ4ldVbRdRYBwAfmuZmH6MK850b/j9tf+vyD+ZroNL1Waza9kjSMtc6%0AVPE+4HADzsDjn0JrDEU77AdtbeJLPQPiB4oe6jnceSrfulB42xDuR616N4X/%0AAORS0b/rxg/9FrXzx4g1ad/FV/cMke++ghWQAHC5SNjjn2r6H8L/APIpaN/1%0A4wf+i1rysdS5KcZdXb8EI1aKKK8sAooooAKKKKACiiigAooooAKKKKACiiig%0AAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxPCn/ACB5/wDsJX//AKVz%0AVt1ieFP+QPP/ANhK/wD/AErmoA26KKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigDz7Wo/BDeIdY/4SO3WC8KRsHu5CBMoTAaAZ6jp8vzZFUvDF7L4d%0A1K0vfFNybU3+jwoLi8bb88budjsf49jIcHk89xXp1FAHMeBYnGjXl6yOkeoa%0Ajc3kKupVvLeQlCQemQAfxps2lW+p+OdR+0SXieXptnt+zXs1vnMtz18tlz07%0A5xz6muprEtf+R51X/sG2X/o26oA2UQRxqgLEKABuYk/iTyadRRQAUUUUAFFF%0AFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU%0AAYmtSINZ8Oxl1D/b3O3POPs04ziuD026Y/HrVGuJvkitiil24VdqcewyT+dd%0AH4h/5KL4Y/3pP/RUtefavMlv8UfE08mdkdtvbHoBETXqYandNd4/qBH4xukZ%0APGQSdSH1K0aPa/3vkfJHr2rzYuzDBYke5/CtXVpFDyxE/My2zD6CLn+YrJr2%0A6FPkhb0/JIY5nd1RWYkINqg9hknH5k/nSZO0Lk4ByBSUVuBd0gn+2LFcnBuY%0AyR/wIVc84ie0RH620iOAf+mkhwf0P5VnWEyW+o2s8mdkcyO2PQEE0sMyJemR%0Aj8vzc49Qf8azlG7AdcSvPfxySOXYrECT7Kor6K0e+C2ng+0juQC9ovmxK/JA%0AtwRkfiD+Ir5th/10f+8P517L4X/5HnQv+vP/ANsrauHMKalFeSf5Aet0UUV8%0A2IKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig%0AAooooAKKKKAKeoaZBqcaJPJdoEOR9mu5YD+JjZSfxrM8HRLBoDwoXKx6hfKC%0A7l2IF1KOWYkk+5JJrfrE8Kf8gef/ALCV/wD+lc1AG3RRRQAUUUUAFFFFABRR%0ARQAUUUUAFFFFABRRRQAUUUUAFFFFABWJa/8AI86r/wBg2y/9G3VbdYlr/wAj%0Azqv/AGDbL/0bdUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU%0AUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5z471RtK8baDcpEJDDb3M4BOMlIn4%0A/WuB8XTmH4jeJ0Cgia1dCfT90rf+y10vxfleLxDozRttJtbhc+xGD+hNcX8Q%0ApWi+IWutG2CSFJHoUUEfkSK9/BQTUH3i/wD0oZy99Obi7ZyoBCqmB/sqF/pV%0Aenzf66T/AHj/ADplestEAUUUUwCiiigB8P8Aro/94fzr2Pwq2fHWiDH3bTH/%0AAJJW1eNAlWBHUHIr02zvZbPWLe4hl8ueOwYo3GQfsNtiuLGR5lZdmB7Rp181%0A696rIF+z3LQDBzuACnP61drG0EgTavz11F//AEBK2a+ZmkpWQgoooqACiiig%0AAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC%0AsTwp/wAgef8A7CV//wClc1bdYnhT/kDz/wDYSv8A/wBK5qANuiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACsS1/wCR51X/ALBtl/6Nuq26%0AxLX/AJHnVf8AsG2X/o26oA26KKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKKKKACqep6rZaPaG6v5vJgGcttLdFLHgA%0Anop/Krlcd8S/+RRl/wC2n/oiWtKMFOai+oHD/F+9t5tf03y5M/Z454pflPyt%0AgHHvww6etea69cw3viLU7q3ffDNdyyRtgjcpckHB56Gux+KbbdfkOM/6TMPz%0Ajirz6vpsFBKjB+Qx0hDSuR0LEim0UV2AFFFFABRRRQAVpXt1DNqttMj5jSG2%0AVjg8FIkVvyINZtFJq7uB9F297bjWrKcyfu59ZmEbbT8xa2+X8813FeS6RejU%0ALbw7cCPYD4gZNuc/dh25/HGa9ar5TFQ5Wl/W4gooorlAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxPCn/IHn/7C%0AV/8A+lc1bdYnhT/kDz/9hK//APSuagDbooooAKKKKACiiigAooooAKKKKACi%0AiigAooooAKKKKACiuB+Iur30mjapYaRcPAbK2+0XtzGSDGOqRKR0Zup9FH+0%0AK0L6Nte8bzaRPdXcNjZWMc5jtrh4TJLI7AEshBIUJwM4yaAOurEtf+R51X/s%0AG2X/AKNuqg8GX1zd6Pc293O9xNYX1xZGeT70ojchWPvtxn3qCbVbfTPHOo/a%0AI7x/M02z2/ZrKa4xiW56+WrY698Z59DQB1NFNRxJGrgMAwBG5SD+IPIp1ABR%0ARRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF%0AFABXB/F2eS38EM8ZwxnVDxnhlZT+hNd5XiGuz5+CFn5shMkmouBuOSSJJD/I%0AV2YKF6kZdmvxv/kBifFORj4ruIifkWZmH1Kpn+QrhqnvJDLezOzFsyMck+9Q%0AV9NRh7OmodhhRRRWgBRRRQAUUUUAFFFFAHq/hiRhbeFowfkbXrhiPcKMfzNe%0A2V8u+CbyOz8Y6TNczeXbxT7mLHheDzX0Lr11FcaRG9vLuC6naRMV7Mt3GrD8%0AwRXz2Y0WqsV3/ViN2iiivKAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKxPCn/IHn/wCwlf8A/pXNV/UNTg0yNHnj%0Au3DnA+zWks5/ERqxH41meDpVn0B5kDhZNQvmAdCjAG6lPKsAQfYgEUAb9FFF%0AABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxniX4e6dqumar9hSWHUL3%0Ac+9r2dYjIcfMyBivb+6atSeH77SdYi1Dw+ttKptBaTQX1zIMhWLI4k2uxILM%0ACD1BHIxXU0UAZHhvR5NF0kw3EqS3c88lzcyRjCtLIxZsD0GcD2FR2v8AyPOq%0A/wDYNsv/AEbdVt1iWv8AyPOq/wDYNsv/AEbdUAbdFFFABRRRQAUUUUAFFFFA%0ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXzpq+rpefC3%0ATbJYmVodQeQsTwdxlIFexXWv3sOlLcL5fmHUbm25XjZGZtv4/u1/Wvna5vJR%0Ao1pY/L5JHnHjncGcfyNezltB3bfRr8LgUHYNIzDoSTTaKK90YUUUUAFFFFAB%0ARRRQAUUUUAS20oguI5SMhTnFfQFrqSXmj31skbKbfxDFlj33agD/AEr56r1n%0AwvqlzPoUFw+zzL/X7MzYHrcNIcenzKK8/H0+aMZdmB6rouuRazLqMccLxmxu%0A3tWLEHcVPUe1atefeBbyX/hL/FFj8vk/bZ5unO7zMfyr0Gvn69NU52Qgooor%0AEAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACsTwp/yB5/8AsJX/AP6VzVt1ieFP+QPP/wBhK/8A/SuagDbooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigArEtf+R51X/sG2X/o26rbrEtf+%0AR51X/sG2X/o26oA26KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKAPJPHN0V+G8lxazkZ1u4KyRtjgyzDgj1Brxq%0ARiyRDdnauMZ6ck/1r0rxPqMI+GEGnbX87+0pJd2BtwZrgDv1+Q/pXmVfU4GP%0ALBrzYwooortAKKKKACiiigAooooAKKKKACut0e+jTwRPbrcBbpdVt5UQNhgo%0ADfMPYE/ma5Krmnyqkuwg5kdAMezA1nVhzRA9i+GDmTxRrbsxYtvJYnOfnHNe%0Aq15D8H7hLrWdUmQMFZCQG6/eBr16vmcerV2vQQUUUVxgFFFFABRRRQAUUUUA%0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVieFP+QPP/wBhK/8A%0A/SuatusTwp/yB5/+wlf/APpXNQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQA%0AUUUUAFFFFABRRRQAViWv/I86r/2DbL/0bdVt1iWv/I86r/2DbL/0bdUAbdFF%0AFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU%0AAFYNrrlxPbaJK0cQN/dSQyAA/KqxzOMc9cxr+ZreryPxrqFxYfDTRbqxungu%0AI9RIWSJ8MvyzA8j2JH410Yel7R8vd2/BgeYanr9zf2P2CWOJY0lLhlBznfK3%0Ar6yt+QrHoJJOScmivrIxUVZDCiiiqAKKKKACiiigAooooAKKKKACpLditzEw%0A6hwf1qOlBKsCOoORQB6v8D3J1XVI+MLAGH4sP8K9c0a+k1HTI7qVVV2eRcL0%0Awrso/QV4f8GbgxeNJIjNsSW1cFS2AxBXH1PWvTNCupV0rw4I5m2Tardo+G4d%0AAt0wB9RlVP4Cvnsxp3rSfp+T/wAhHZ0VleGZ5bnwpo9xPI0k0tjC7uxyWYoC%0AST65rVry5LlbQBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACsTwp/yB5/8AsJX/AP6VzVt1ieFP+QPP/wBhK/8A/SuagDbo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM+/13SNLuIrfUNTs7Wa%0Ab/VxzzKjN9ATT9R1jTNIhSXUtQtbONztRp5VQMfbJ5rE8RaTK1lq8uiadZXe%0Ao38flXRuZj90JhQBgjp/DlRzkn1w/Bc1rqfiC2ljMk9vbeH7WO1a4X58FnVy%0ARyNxKAHHpQB6DFLHPEksUiyRuAyuhyGB6EHuKx7X/kedV/7Btl/6NuqoeA8x%0A6VqVqq7be11a7gt1HRYxKcAewyR+FLNFqkvjnUf7NvLO2xptn5n2m0abd+9u%0AcY2yJjv6546Y5AOpopqBxGokZWfA3FRgE+wycfnTqACiiigAooooAKKKKACi%0AiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAryXkMV9BZsT5s6O6DHG%0AFxn/ANCFeC+KNSt7jwBbafGW+0WmqSvKCOMO8+3B7/dNer+J9UbSvEnh6RYh%0AIZ5GtiCcYEkkKk/hmvCdZlP2PUIsDH21Tn6Ncf417GXUtpej/FoDnaKKK94Y%0AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB0HgjUYNJ8Y6df3RYQQM7PtGTjY3a%0AvX/BxDeFPBRH/QRuB/5Duq8GtZPKnD4zhW4/4Ca9v8FXJPh3wJDt4lvbyTOe%0AmEuBj/x79K8zMoe7zf1opAdt4S/5EzQv+wfb/wDota2Kx/CX/ImaF/2D7f8A%0A9FrWxXz9X436iCiiioAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACsTwp/yB5/8AsJX/AP6VzVf1CPUpI0Gm3dpbuD85ubZpgR7B%0AZEx+ZrM8HCVdAcTujzDUL4O6IVVm+1S5IBJwM9sn6mgDfooooAKKKKACiiig%0AAooooAKKKKACiiigAooooAKKKKAMC98KxXOoXd5a6pqOnSXqqt0to6BZcDAb%0A5kYq2OMqQeKa/g+xj+xNptzd6XJZ2/2WOSzZMtF12sHVgeec4zkk55roaKAK%0AWk6VbaLpkNhaB/KjydztuZ2JJZmPckkk/WqNr/yPOq/9g2y/9G3VbdYlr/yP%0AOq/9g2y/9G3VAG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF%0AFABRRRQAUUUUAFZktzMvimztRIRA9lPIydiweIA/gGP51p1jz/8AI52P/YPu%0Af/RkFXT3+T/IDifjBdS2ltptzbS7J4Gd0deqMHhIP8jXi97PLJJdK7kgz5I9%0ATlz/AOzH867v4lXkGoWMV3bPvhl1KV0bBGQYICOD7GvN6+lwFPloK4woooru%0AAKKKKACiiigAooooAKKKKACiiigAooooAASOhr1jwHeO2oeDbVph5MUcrqhI%0A+V2N6CfqQqfpXk9a/hV1j8YaI7HCrfwEn28xa58TS9pTa9fyYH0l4RZT4O0N%0AQwLDTrfIzyP3a1tV5j8MtXspru4CSkma1sLZPlPMkdu+8dO3ltz04r06vmMT%0ATdOq0/6uIKKKKwAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACsTwp/yB5/8AsJX/AP6VzVt1ieFP+QPP/wBhK/8A/SuagDbooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArEtf+R51X/sG2X/o2%0A6rbrEtf+R51X/sG2X/o26oA26KKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigArHn/5HOx/7B9z/wCjIK2K5rVrmS38aaX5ZA3a%0AfeZ464MRH6gVpSV5W8n+QHgniLVPNsbXSvJx5BS483d97fbwrjGO2zrnvXOV%0AoayS1+hPU2tuT/35Ss+vr6UVGCSGFFFFWAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRRQAVf0OTyvEGmyYzsuomx64cVQp8Mz288c0Zw8bB1OM4IORSkrpoD0v4R%0AtnUYhj7t6g/8l7mvda+e/hLcSjxfaWwb900pkYY6sIZQP0J/OvctAu5r7Rbe%0A5uH3Svu3HAHRiB09hXzuaQarN+n6/wCQjSooorzACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACiiigArE8Kf8gef/ALCV/wD+lc1bdYnh%0AT/kDz/8AYSv/AP0rmoA26KKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKxLX/kedV/7Btl/6Nuq26xLX/kedV/7Btl/6NuqANuiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAbI6xRtI5wqgs%0AT6AV5B8S9d0+9u9IvLO8WSD7JfReYmQNzwLtH471/OvRPFetxaJo7ySwvIJk%0AlQBSBjbE7/8AsmPxr5w1HUlvNF0+3EZUwSPkk9f3cK/+yZ/GvVy3D80vaP8A%0ArRgZBJPU0UUV9CMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDV8%0AP3MdrqUkkknlg206A/7TRsoH4kgV9HeDr23ufD8EcMqu8YYuB2y7Y/ka+XkY%0ALIrHoCDXunwg1VNRt9SiSJkNukKkk9ctKa8rNaV6fP2A9Nooor54QUUUUAFF%0AFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYnhT/AJA8/wD2%0AEr//ANK5q26xPCn/ACB5/wDsJX//AKVzUAbdFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAFFFFABRRRQBz17resnUry10jRI7lLIKZZbm5MAlYru2RfI244I5OB%0AniqkPjGbVxYR+H9PS6nurMXzi6nMKQxk7QCQrEsSGAAGPlJzWT4o8Y2FzrVx%0A4ZOs2+lW0SgX93JIBIwYZ8qIepHVu2eOadY3+haB4pW9W7trbQ73SYYbK5Lb%0AYcwu4KBjxnDAjPXmgDrtC1hNc0pLxYXgkDvFNA5y0UiMVdSR1wQee9VrX/ke%0AdV/7Btl/6Nuqp+BYnGjXl6yOkeoajc3kKupVvLeQlCQemQAfxps2jaXq/jnU%0Af7S02zvfK02z8v7TAsmzMtznG4HGcD8hQB1NFNREjjWONVVFACqowAB2Ap1A%0ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVHWXaPQtQ%0AdGKuttIVZTgg7TyKaV3YDh/jJdS2nha0eEgM90YjkZ+VopFP6E14IXJjCfwg%0Akj8cf4V33ju+lm094J7p5D58TojuTwDcAkA/8BH5V5/X1GApezo2GFFFFdoB%0ARRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeg/DLWbvSIdba12Za%0AFXO5c8qkhH6159Wnp90bfSdSVJzHI4jChWwSMnP6H9axr01UpuD62/MD6gv7%0AyW31PSrePbsuZnSTI5wI2YY/ECtCvNtIu5rnxN4WL3Dyo8Ny+S5YHmUA/l+l%0AejedF5/keYvm7d+zPO3OM49M18rWp8jS8v1Yh9FFFYgFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYnhT/kDz/wDYSv8A/wBK5qv6hpOm%0A6tGkepafaXiIcotzCsgU+o3A4rM8HQxW2gPBBEkUMeoXyJGihVRRdSgAAdAB%0A2oA36KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxLX/ked%0AV/7Btl/6Nuq26xLX/kedV/7Btl/6NuqANuiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigArH8U30Vh4bvXlVyJYzCNoH3nG0fhk1sV5%0Af8UPEl5aanZ6DHHAbW5iE7uyneGVjgA5xj5R2rfDUnUqqKA8q8Taxb6vcRS2%0A6SqoU/6wAH77nsT6isGlLEhR6DFJX1sIqKshhRRRVAFFFFABRRRQAUUUUAFF%0AFFABRRRQAUUUUAFFFFABRRRQAU5WAVx6jH6im0UAem+GvGGnxX2hTtDcldLt%0A3imAVcsX8zG35uR8w64r1DStUg1nxDb31skixPZToBIAGyk4Q9Ce6mvnLSp2%0Ah+07QDiIvz6jp/OvdvAn+ssv+ve9/wDSxq8TMKEYLnX9bsR2ljfRX8MksSuF%0ASaSE7wAdyOUP4ZU4qzWP4a/5B91/2ELz/wBHvWxXjTSUmkAUUUVIBRRRQAUU%0AUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYnhT/kDz/wDYSv8A/wBK5q26%0AxPCn/IHn/wCwlf8A/pXNQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA%0AFFFFABRRRQAViWv/ACPOq/8AYNsv/Rt1W3WJa/8AI86r/wBg2y/9G3VAG3RR%0ARQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBFNdW9uyLN%0APFE0hIQO4Utj0z1r578f6kLu60WdbwTTrp5EjiTcwYs+MnscEV33jzVraafw%0AjqKb/IuHkMeV5w6pjI/EV4XM4eQFemxR+Sgf0r3Mtw1v3j/rdDI6KKK9oAoo%0AooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAs2jBVufmx%0AmEjr7iu88La1cRWcO3UXWYaZqBwJsMH5de/XOWHvzXnVXNLuY7S9Msudvkyp%0AwM8tGyj9SKxrUlOLX9bAfQtrduvg2e4tpyC2qviSNuoa8weR6gn867KvMfCV%0A5FefCtRFu/c6iqNkY5Nyjj9HFenV8xiY8smvN/oIKKKK5gCiiigAooooAKKK%0AKACiiigAooooAKKKKACiiigAooooAKxPCn/IHn/7CV//AOlc1bdYnhT/AJA8%0A/wD2Er//ANK5qANuiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK%0AKKACsS1/5HnVf+wbZf8Ao26rbrEtf+R51X/sG2X/AKNuqANuiiigAooooAKK%0AKKACiiigAooooAKKKKACiiigAooooAKKKKACsC48QSweIW00QIUC7t+Tn/Vs%0A/wD7L+tb29f7w6469/SvM/GlzNaa/ezW8hjkW2kKsOoItZyP1Arow9NTk0+w%0AHnGteLp9S0Xw3E9rGn9m52EMTv27QM/981yFOaR2RULEqmdo9M02vq6dOMFa%0AIwoooqwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig%0AAooooA9N8Cay8Xw/160EKkWdzbXStn7xaReD7fux+det6Frkur/Z/MhSPzdN%0Atr07SThpd+V+g2ivnXS72ez8JayIJjGZbm1VwMfMoErY+mQtem/D/UruXXdM%0Aha4ZojpkMZXjG1FfaPw5rxcdhk1Ofn+iA9YooorwxBRRRQAUUUUAFFFFABRR%0ARQAUUUUAFFFFABRRRQAUUUUAFYnhT/kDz/8AYSv/AP0rmrbrE8Kf8gef/sJX%0A/wD6VzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxvjt9bit%0AoJrS8jtdOjubUSCMHzpmadVK56KmCDxknpwOsl9G2veN5tInuruGxsrGOcx2%0A1w8JklkdgCWQgkKE4GcZNa3ibSp9Z0b7HbvGsn2m3lzISBiOVHPQHnCnHvVX%0AUdK1SDxINb0dbOV5bUWtxBdStECFYsjhlVuQWYEEcg9RigA8GX1zd6Pc293O%0A9xNYX1xZGeT70ojchWPvtxn3qCa+uLLxzqP2fSby/wB+m2e77M8K7MS3PXzJ%0AE657Z6HpxWl4b0eTRdJMNxKkt3PPJc3MkYwrSyMWbA9BnA9hUdr/AMjzqv8A%0A2DbL/wBG3VAGyjFo1YoyEgEq2Mj2OOKdRRQAUUUUAFFFFABRRRQAUUUUAFFF%0AFABRRRQAUUUUAFVrq/t7N40ncq0gcoNpOdq7j+gNWa5Hxtf/ANn3Gjv5fmeb%0ANJBjdjG+Mrn8M5xWlKHPLlAz49Xsmt7bUVmzaN4hcCTYe6Oo4xnrXF+MfF+i%0Aarf3U1ndmRJYGVD5TjJMEqdx/eYD8apR6/5Xw+gP2bPk6mt7/rOu55Pl6f7P%0AX36V54zZCjH3Rj9a97D4Nczk+mgxKKKK9QAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr0PwH4j0vRdQtLu/uDFBB%0AD5UjCNmwx8wgYAz3rzypVm22skO377q+c9MBh/7N+lZVqSqw5WB9ZSanaRWt%0ArcmQmG6eNImCn5i+NvHbrVyuCsNW/tfwnozeR5X2fULKDG/duwIznoMfe6e1%0Ad7XydWnyaPzEFFFFZAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFPULy%0AezjRoNMu78scFbZogV9z5jqPyzWZ4OkaXQHkeJ4WfUL5jG5BZCbqXg7SRkdO%0ACR7mt+sTwp/yB5/+wlf/APpXNQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQA%0AUUUUAFFFFABRRRQAViWv/I86r/2DbL/0bdVt1iWv/I86r/2DbL/0bdUAbdFF%0AFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWVf+JNI0yVo7y9SJ1YqQVY4%0AITfjgf3eacYuTslcCPxFf3NhBZPbSbDJdpG/yg5UqxI5+grx3xp4n1e50Dw3%0AdS3QaZnuJC3lqMsj7VOMY4FbHxJvI7fxnayyylIBCOTnHKSY4+przPU7uK40%0AzRokk3vBbOso5+VjNI38iD+Ne5gcMkozav8ALyYyOXULkaTDYBwLdlDMu0ck%0AO+Oev8RrPoor2EktgCiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA%0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAdf4b8V6utxaacLlfsgu4JhH5a/eD%0AooOcZ6AD8K9g8A69qWtWFrJqFx5zPZCZjsVct50q54H91FH4V84AkHIODXUJ%0AqtsmmwRrc7ZE0lrcgZBDmaRwv5MD+Nefi8JGpG0VZvyA+m6Kx4vEmkBre3N6%0AglkiSRV2tyrbcHp33r+dXrLULTUUZ7SYSqu3JAIxuUOOvqrKfxr5twktWhFq%0AiiipAKKKKACiiigAooooAKKKKACiiigAooooAKxPCn/IHn/7CV//AOlc1bdY%0AnhT/AJA8/wD2Er//ANK5qANuiiigAooooAKKKKACiiigAooooAKKKKACiiig%0AAooooAKKKKACsS1/5HnVf+wbZf8Ao26rbrEtf+R51X/sG2X/AKNuqANuiiig%0AAooooAKKKKACiiigAooooAKKKKACqmqXy6ZpdzfMhkWCMuVBwTjtVuuP8a6h%0AcRWeqWalfJ/see4wRzvVlA/QmtKUOeaiBfuPFcVu8ym1c+Utwx+cc+S8aH8/%0AMB/CvJvGPiSPUkudQW2ZE/tKaAIWyci3WPP5nNZev+MtXg1rULdHhEYluoh+%0A752vKC36xL+tcvcapc3Nq1tIVMbXDXJwMHewAP4cCvdwuB5GpsZv+N/FMfii%0A7t7mO1aAeUowzZ+6WFcnTmcsqA9FGB+ZP9abXpU6cacVGOwBRRRVgFFFFABR%0ARRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF%0AFABRRRQAUUUUAd9pvi2PUfEemIto6Hy4LQZcH7pjG7p/sdPeu8+H3ieKeKWE%0AWzgyCM53DgR2yL+vl/rXhlndy2N7Ddw482Fw6ZGRkHIrT0nxTqeiOGsnjUgE%0AfMgPVdv8jXBXwSnFxiB9Q6fdi/021vFQoLiFJQpOcbgDj9asV5P4L8Y6vcS6%0AbpsskRt10Z5h+7AO5HZF5+iiu9s9UuZ7vRY3K7bzT5LiUBf4x5WMen32rwa2%0AGlTk0/63/wAhG3RRRXMAUUUUAFFFFABRRRQAUUUUAFFFFABWJ4U/5A8//YSv%0A/wD0rmrbrE8Kf8gef/sJX/8A6VzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUU%0AUAFFFFABRRRQAUUVmar4g0/RpIYrp5mnmBZIbeB5pCoxltqAnAzyelAGnWJa%0A/wDI86r/ANg2y/8ARt1WnY31rqdjDe2UyzW0y7o5F6EVmWv/ACPOq/8AYNsv%0A/Rt1QBt0UVmXmuW9lqAs5I5TIfJwVAx+8kKDv2I5pqLlogNOis+/1aHT5/Jk%0ASRm+yzXWVxjbEUDDr1PmDH0NYl74+02xjkeS2u2CafHqB2qv3HZVA6/e+Ye3%0AvVxpTn8KA6uivNP+F2aBtDf2fqeCSPuR/wDxdXovizok2qQ2C2WoeZLKIgxR%0AMAl9n971rV4Out4gd7RXmi/GzQGUn+z9SGBk/JH/APF00/G7QO2nan/3xH/8%0AXVfUcR/IwPRLzULPTkje8uYoFkcIhkbG5j2FVW8RaMlmLx9TtVtipYSmQBcB%0Ath5/3uPrXkXi/wCJ2leIbezitrO9j+z3CzEyhRkDqOGNcxe+KbO48Ix6QkM4%0AmWKRC5A25a580d89OPrXTTy2copyunf8APedY8UaJZWs0M+r2kM8luXjVpQC%0AwIO0j615na+KrYaBIja0BOETAM53Z+2Fjjn+5z9K4TxXrlvr2oWlxbxyxrDZ%0AQ27CQDO5BgkYJ4rBruw+XRjD3nroxnpOpeJlbVPDLQ6wxij0REuStwcCby3y%0AG5+9kjrzXC3uqXtxdTs99cSK5ZfmlY5XOcdentVCiu6nQjT2Ac7tI7O7FnY5%0AZmOST6mm0UVsAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ%0AAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBLHdXETbo55U%0AIQplXI+U9R9Paug0rWp4hZtLqUqtF5gy0xyqkpx14HB/KuaoqJQUlqB69B4r%0AtB8YZ7l9aX+yS42uZz5OPs5Hrj72PxruLfxbog8RajM+tWgtTZ27IxmG378o%0AYj/vpPzFfNNX2vYjBIm18tapCOB94OrflgGuCrl0J216JfcB9OQ+KtAuYpZY%0ANYs5I4QDIyyghM5xn06GtC2vrW8eZLa4jlaB/LlCNnY3XB96+YNF1qDTdI1W%0A0ljkZ7wRhCoGBt3Zzz/tV3vh34p6Ro9zrEk1lfOL28NxGEVPlUqBg5brxXBW%0AyyUb8l3/AEv+CI9htdQs74E2lzFOAoYmNg3BJAPHup/KrNeH+E/ibpOgxSLc%0A2d65aGOMeWqHlWkPdh/fH610n/C7vD//AED9T/74j/8Ai6wqYCtGTUYtoD0y%0AivN0+NOgOQPsGpcqzfcToAT/AH/akHxq0AxNJ/Z+p4VguNkffP8At+1Z/UsR%0A/KwPSaKwNN8W2Wpz2EMUE6teQRzJuAwodZGAPPX90fzFSDxRaE6sPJnzpkyw%0AzcD5i2MFeffvisXSmnZoDboqrqF9Hp1obmVWZA6JheuWcKP1arVRZ2uAVieF%0AP+QPP/2Er/8A9K5q26xPCn/IHn/7CV//AOlc1IDbooooAKKKKACiiigAoooo%0AAKKKKACiiigAooooAKKKKACuWtc/8LR1HzcZ/smDyc/3fNk3Y/HGfw9q6msz%0AU9A07WJoZruKTzoQyxywTyQuFbqu5GBwfTOKAMnwJn+zdVx/qP7YvfIx93Z5%0ArdPbO6tK90N7nVH1C21a+sJpIUgk+zrCwdUZ2XIkjbBBkbpjrV+xsbXTLGGy%0AsoVhtoV2xxr0Aqtf6/o2lTrBqOr2FnMy71juLlI2K5IyAxHGQfyoAq/2HqP/%0AAENesf8Afq0/+MVm33gy9u7pLlfFOoiUbMtLBbt9xtyY2xqOGJPvXU29xDd2%0A8dxbTRzQyKGSSNgysD0II4IqSqjNxd0Bx9z4P1i8l8yfxdeO/kyW+fscA/dy%0Abd44XvsXnrxxWdcfDGW7R1n8SXbq9qtmw+zRDMKkELwOxUc9eOteg0VrHEVI%0A/C/wQHlX/Cj9O2gf2zd4Bz/q1qwnwdt47yO7TXrsTxuJFfyU4YNuzjp15r02%0AitHjsQ95fkB5UPgfpwBA1m75GD+7Wj/hR2m/9Bm7/wC/a16dLeW0Fzb20s8a%0AT3BYQxswDSFRk4HfA5qen9fxP835AeVf8KO03/oM3f8A37Wj/hR2m/8AQZu/%0A+/a16rRR9fxP835AeVf8KO03/oM3f/ftaP8AhR2m/wDQZu/+/a16rRR9fxP8%0A35AeVf8ACjtN/wCgzd/9+1o/4Udpv/QZu/8Av2teq1n2OvaRqlzLb2GqWd1N%0AF/rI4Z1dl+oBo+v4n+b8gPOv+FHab/0Gbv8A79rR/wAKO03/AKDN3/37WvVa%0AKPr+J/m/IDyr/hR2m/8AQZu/+/a0f8KO03/oM3f/AH7WvVaKPr+J/m/IDyr/%0AAIUdpv8A0Gbv/v2tH/CjtN/6DN3/AN+1r1Wobq7trG2e5u7iK3gjGXllcKqj%0A3J4FH1/E/wA35AeYf8KO03/oM3f/AH7Wj/hR2m/9Bm7/AO/a16Tp2radrFuZ%0A9Nvre7iB2l4JA4B9DjoauUfX8T/N+QHlX/CjtN/6DN3/AN+1o/4Udpv/AEGb%0Av/v2teq0UfX8T/N+QHlX/CjtN/6DN3/37Wj/AIUdpv8A0Gbv/v2teq0UfX8T%0A/N+QHlX/AAo7Tf8AoM3f/ftaP+FHab/0Gbv/AL9rXqNxcQ2tvJcXEqRQxKXe%0ARzhVUckk+lPVldFdSCrDII7ij6/if5vyA8r/AOFHab/0Gbv/AL9rR/wo7Tf+%0Agzd/9+1r1Wij6/if5vyA8q/4Udpv/QZu/wDv2tH/AAo7Tf8AoM3f/fta9Voo%0A+v4n+b8gPKv+FHab/wBBm7/79rR/wo7Tf+gzd/8Afta9Td1jRndgqKCWZjgA%0AepqnputaXrCyNpmo2t4IzhzbzK+0++DR9fxP835Aecf8KO03/oM3f/ftaP8A%0AhR2m/wDQZu/+/a16rRR9fxP835AeVf8ACjtN/wCgzd/9+1o/4Udpv/QZu/8A%0Av2teq0UfX8T/ADfkB5V/wo7Tf+gzd/8AftaP+FHab/0Gbv8A79rXqtFH1/E/%0AzfkB5V/wo7Tf+gzd/wDftaP+FHab/wBBm7/79rXp9vdQXaM9vMkqo7RsUbID%0AKcEfUHipqPr+J/m/IDyr/hR2m/8AQZu/+/a0f8KO03/oM3f/AH7WvVaKPr+J%0A/m/IDyr/AIUdpv8A0Gbv/v2tH/CjtN/6DN3/AN+1r1Wij6/if5vyA8q/4Udp%0Av/QZu/8Av2tH/CjtN/6DN3/37WvR9S1nS9GjSTU9QtbNXOEM8qpuPtk81agn%0AhuoEnt5UlhkG5JI2DKw9QR1FH1/E/wA35AeXf8KO03/oM3f/AH7Wj/hR2m/9%0ABm7/AO/a16rRR9fxP835AeVf8KO03/oM3f8A37Wj/hR2m/8AQZu/+/a16rRR%0A9fxP835AeVf8KO03/oM3f/ftaP8AhR2m/wDQZu/+/a16rWfNr2kW+ppps2qW%0Acd8+Ntu86iQ56fLnPNH1/E/zfkB51/wo7Tf+gzd/9+1o/wCFHab/ANBm7/79%0ArXqtFH1/E/zfkB5V/wAKO03/AKDN3/37Wj/hR2m/9Bm7/wC/a16rRR9fxP8A%0AN+QHlX/CjtN/6DN3/wB+1o/4Udpv/QZu/wDv2teq0UfX8T/N+QHli/BHT1OR%0ArV3wpX/VL0Oc/wAzSD4IacEKf2zd7SQSPKXqM/4mvTZby2gube2lnjSe4LCG%0ANmAaQqMnA74HNT0vr+I/m/IDhrT4fXtjLbSW3im8je2jWKE/ZYTtVQyqOV5w%0AHbr6/SnDwFfg3x/4Sq8/051kuf8ARIf3jDGD93joOmK7eis3iKjd7/ggOVn8%0ALazeRiG88X30sG9XZFs7dSSrBhg7OOQKv/2HqP8A0Nesf9+rT/4xW3RWUpOW%0A4GJ/Yeo/9DXrH/fq0/8AjFXtK01NJsBaRzSzfvJJWlm27neR2didoA5Zj0AF%0AWpporeCSeeRIoY1LvI7BVVQMkknoAKoWPiHRNUuPs+n6xp93NtLeXb3KSNgd%0A8Ak4qQNKiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM/Vta%0As9FhjlvPtG2Rtq+TbSTHPXkIpI/GuWl0zW9Q8QajremrpEkFxbW6266hDIz7%0AVUttK/KYyS565PTiu5rn73wpHcajdXtpqmoac96qrdraMgE2BgH5lJVsYG5c%0AHAoAt+GtVj1zw5Y6lFb/AGdZ48+TxhCDggY7Ag1q1W0+wttL0+Cxs4hFbQII%0A40HYCrNABRRRQAVjal4o0vSb0Wl410smAxZLOV0APcuqlR+J4rZooA8hh8T6%0APqXjLw9r91q9qJ5LiZVg84H7JAYXCK3ozMQW9yB2r16qF5pNve6jp19I0gls%0AJHkiCkbWLIUO7j0Y9Mc1foAKKKKACiiigDEuda0m9vbjQbj7XvkR4pf9GmSP%0AbtJb96FCjjPIb9a5+/gbS/GPhky2Vva6Rbu9pYyWz73Z3jIVJAQNq4DEY3cg%0AEkV2t5aQX9lPZ3UYkt542jkQ9GUjBH5VhWXhCG2u7Ka61TUNQjsDmzgunQpC%0AcbQ3yqC7AEgFicZ9eaAOjooooAKKKKAGu4jjZ2ztUEnAyfyrm5tU8O+IrQ3N%0A00y2ulypdO13byW6KwDBSd6gMBzxzzj2rpqxfEnhuDxNaW9tc3l3bJBOs4+z%0AMg3MvTcGVgQDzjHXFAGb4aim1LxDqXiYWzWdneQxQW8brtedULHznXtndhc8%0A7RXWVlaVo02mTSSS63qeoB12hLxoyq+42ovNatABRRRQAVU1LUrfSbNru683%0AylIB8qF5W5/2UBP6VbooA4jxrb2XibwFf6kJr37NBZXEscDB4Vd1U7WdGAY7%0ASuQDx3weK6/T/wDkG2v/AFxT+QpmqafFq2k3mnTs6w3cLwu0ZAYKwIOMgjPP%0ApViGJYII4lJKooUZ64AxQA+iiigAooooA5b4glj4UaHB8qe7toZv+ubTIGH0%0AIOPxpmoxrafEbw81tGsZuLK7hm2DG5E8tkB+hPH1rodU0221jTLjT7xC1vOu%0A1gDgjuCD2IOCD6iqGl+HEsNROoXOo3uo3gh8iOW7KZjjzkqAiqMkgZJGTgUA%0AbVFFFABRRRQAVU1KxGpWElobm4t1kwGkt32PjIJAbtnpxzg8Yq3RQBynw+to%0AbPQLu1t02Qw6neRxrknaomYAc+wrq6o6VpUGkW80Nu8jLNcS3LGQgkNI5dgM%0AAcZJxV6gAooooAKKKKAOf1ybR9Evhrd3G82oyxCztoUG+SXktsjX1JPJ9MZ4%0AFL4O0m50fQBDdpHFPNPLctbxHKW/mOW8tfZc4/Oo9V8IRapryayNY1Szuo4P%0AIT7M8e1Fzk4DI2Ce59hWvpli+nWnkSX93fNuLeddFS/0+VVGPwoAuUUUUAFF%0AFFABXBeNdK+z+FtUGl2Nu1lcSNd6lcCYtOmGDO0angsADjLDbgADtXe1zFz4%0AJtbhryJNS1CDTr2VpbqwidBFKzfe5Kl1Dc5CsAc0AdFbTx3VrFcQtuilQOh9%0AQRkVLTY40ijWONQqIAqqBgADoKdQAUUUUAFR3FxFaW0tzM2yKJDI7Y6KBkn8%0AqkooA8hh8T6PqXjLw9r91q9qJ5LiZVg84H7JAYXCK3ozMQW9yB2r16qF5pNv%0Ae6jp19I0glsJHkiCkbWLIUO7j0Y9Mc1foAKKKKACiiigDD8YWN1qfhPUdPsm%0AiW4uo/JUyvsXDEBsnB/hJrN0651DSPEtlpWp2elbb6GQ20+nwtGUMYBZGDE5%0AGCMEEdOldBq+k2ut6XNp96rGGXGSjbWUgghlPYggEfSqWneG0tNTXUrvUb3U%0AryOIwwyXZT90hIyFCKoycDLEZOKANuiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k="></p><p>2、获取直方图纵横坐标,使用polyfit进行多项式拟合。然后将拟合得到的多项式绘制出来。</p><figure class="highlight matlab"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br></pre></td><td class="code"><pre><span class="line">[y,x]=hist(A,<span class="number">1000</span>);</span><br><span class="line">p=polyfit(x,y, <span class="number">8</span>);</span><br><span class="line">y1=polyval(p,x);</span><br><span class="line"><span class="built_in">plot</span>(x,y,<span class="string">'*'</span>,x,y1,<span class="string">'-'</span>)</span><br></pre></td></tr></table></figure><p>得到拟合后的多项式为:<br>$$<br>y=0.0002\cdot x^8-0.01\cdot x^6-0.0003\cdot x^5+0.1806\cdot x^4+0.0023\cdot x^3-1.3501\cdot x^2-0.0027\cdot x+3.5628<br>$$<br>绘制图形为:</p><p><img src="%0Ac//+AB1NQVRMQUIsIFRoZSBNYXRoV29ya3MsIEluYy7/2wBDAAgGBgcGBQgH%0ABwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0%0AHyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIy%0AMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAINArwD%0AASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QA%0AtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0Kx%0AwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZ%0AWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKz%0AtLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6%0A/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQD%0ABAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLR%0AChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hp%0AanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6%0AwsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIR%0AAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA%0ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACkJCgkkADkk9qWqOs6XHrWj3WmzTzwRXKGN5IGCuAeuCQRz06dDQ%0ABy+l+Jb7U/GxbeI9BfTZprVdvMuySNfOPfB3NtHpg96pRa1rcPhqx8Yz6m7Q%0AXE0TTad5SeUlvJIEAUhd+8BgclucEYq5B4OvrfxjZ3J1bUrjT4rCSFmlaEcl%0A0xFhUB2kAngfwjkdDUj0TXJfDFj4Qn0srb288SS6j50flvBFIHBVQ2/ewUDB%0AUAEnmgDTkl1jX9c1qDT9Xk06HTGSCERxIwlmKByZN6k7RuAwMdznpVDSPEGo%0A+NJ7GC0v5NLjGmR3l09siM7SuzKEG9WAUFGPTJyBnrWg8Gs6Drmt3GnaO+ow%0A6kUniMc8aCKYIEIfewO07Qcrk9eKoaP4d1LwbcWMtnYPqcZ0yO0ukt5UR1lR%0AmYOPMZQVJdh1yMDigDoPCeqXOqaRKL1ke8s7qaznkRdqyNG5XcB2yMHHvV2/%0A17R9KlWLUdWsbOR13KlxcJGSOmQGI4ql4T0u50vSJTeqiXl5dTXk8aNuWNpH%0ALbQe+BgZ9qda/wDI86r/ANg2y/8ARt1QAf8ACZeFv+hk0f8A8Dov/iqP+Ey8%0ALf8AQyaP/wCB0X/xVbdFAGJ/wmXhb/oZNH/8Dov/AIqj/hMvC3/QyaP/AOB0%0AX/xVbdFAGJ/wmXhb/oZNH/8AA6L/AOKo/wCEy8Lf9DJo/wD4HRf/ABVbdFAG%0AJ/wmXhb/AKGTR/8AwOi/+Ko/4TLwt/0Mmj/+B0X/AMVVzR9PfTLKSB3Vy91c%0AT5A7SzPIB+AcD8Kv0AYn/CZeFv8AoZNH/wDA6L/4qj/hMvC3/QyaP/4HRf8A%0AxVbdFAGJ/wAJl4W/6GTR/wDwOi/+Ko/4TLwt/wBDJo//AIHRf/FVt0UAYn/C%0AZeFv+hk0f/wOi/8AiqP+Ey8Lf9DJo/8A4HRf/FVc1zT31bw/qWmxusb3drLA%0ArsMhS6Fcn86v0AYn/CZeFv8AoZNH/wDA6L/4qj/hMvC3/QyaP/4HRf8AxVbd%0AFAGJ/wAJl4W/6GTR/wDwOi/+Ko/4TLwt/wBDJo//AIHRf/FVt0UAYn/CZeFv%0A+hk0f/wOi/8AiqP+Ey8Lf9DJo/8A4HRf/FVt1Q1DT3vL3Sp1dVFldNOwI+8D%0ADLHgfjID+FAFP/hMvC3/AEMmj/8AgdF/8VR/wmXhb/oZNH/8Dov/AIqtuigD%0AE/4TLwt/0Mmj/wDgdF/8VR/wmXhb/oZNH/8AA6L/AOKrbooAxP8AhMvC3/Qy%0AaP8A+B0X/wAVR/wmXhb/AKGTR/8AwOi/+KrbooAxP+Ey8Lf9DJo//gdF/wDF%0AUf8ACZeFv+hk0f8A8Dov/iquTae8niCz1IOoSC1ngKY5JkeJgfw8o/nV+gDE%0A/wCEy8Lf9DJo/wD4HRf/ABVH/CZeFv8AoZNH/wDA6L/4qtuigDE/4TLwt/0M%0Amj/+B0X/AMVR/wAJl4W/6GTR/wDwOi/+KrbooAxP+Ey8Lf8AQyaP/wCB0X/x%0AVH/CZeFv+hk0f/wOi/8Aiq26oafp72d7qs7OrC9ulnUAfdAhijwfxjJ/GgCn%0A/wAJl4W/6GTR/wDwOi/+Ko/4TLwt/wBDJo//AIHRf/FVt0UAYn/CZeFv+hk0%0Af/wOi/8AiqP+Ey8Lf9DJo/8A4HRf/FVt0UAYn/CZeFv+hk0f/wADov8A4qj/%0AAITLwt/0Mmj/APgdF/8AFVt0UAYn/CZeFv8AoZNH/wDA6L/4qj/hMvC3/Qya%0AP/4HRf8AxVXND099J8P6bpsjrI9paxQM6jAYogXI/Kr9AGJ/wmXhb/oZNH/8%0ADov/AIqj/hMvC3/QyaP/AOB0X/xVbdFAGJ/wmXhb/oZNH/8AA6L/AOKo/wCE%0Ay8Lf9DJo/wD4HRf/ABVbdFAGJ/wmXhb/AKGTR/8AwOi/+Ko/4TLwt/0Mmj/+%0AB0X/AMVVzXNPfVvD+pabG6xvd2ssCuwyFLoVyfzq/QBif8Jl4W/6GTR//A6L%0A/wCKo/4TLwt/0Mmj/wDgdF/8VW3RQBif8Jl4W/6GTR//AAOi/wDiqP8AhMvC%0A3/QyaP8A+B0X/wAVW3RQBif8Jl4W/wChk0f/AMDov/iqP+Ey8Lf9DJo//gdF%0A/wDFVt1Q1DT3vL3Sp1dVFldNOwI+8DDLHgfjID+FAFP/AITLwt/0Mmj/APgd%0AF/8AFUf8Jl4W/wChk0f/AMDov/iq26KAMT/hMvC3/QyaP/4HRf8AxVH/AAmX%0Ahb/oZNH/APA6L/4qtuigDE/4TLwt/wBDJo//AIHRf/FUf8Jl4W/6GTR//A6L%0A/wCKrbooAxP+Ey8Lf9DJo/8A4HRf/FUf8Jl4W/6GTR//AAOi/wDiquQ6e8fi%0AC81IupSe1ggCY5BjeVifx80flV+gDE/4TLwt/wBDJo//AIHRf/FUf8Jl4W/6%0AGTR//A6L/wCKrbooAxP+Ey8Lf9DJo/8A4HRf/FUf8Jl4W/6GTR//AAOi/wDi%0Aq26KAMT/AITLwt/0Mmj/APgdF/8AFVq2t3bX1slzZ3EVxbyDKSwuHVu3BHBq%0AasTwp/yB5/8AsJX/AP6VzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF%0AABRRRQAUUUUAFYlr/wAjzqv/AGDbL/0bdVt1iWv/ACPOq/8AYNsv/Rt1QBt0%0AUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR%0ARQAUUUUAFFFFABRRRQAUUVl+Ibq4tdGla1LLK5EayARny9xxnDugPoBnqRwa%0AqMeZpEylyxbH32uadprlbu48rb5ZdijFUEhZULMBgAlSMk4HfGaq2PinTbu1%0As5JZlgkuVi+Q5KpJIhcR78Y3YB9O3qK8C1HU5bu9u3icxQTsoaKPKIyrwuV3%0AHGMdMkDoOKgivruCAwRXMqQsWJjDnaSVKk46Z2kjPoa9lZVHl1ep4bzeXNpH%0AQ+jtM1zTtXXNndRSNvkQIJFJOxtpIAJ45Ug+jKe9aNfN+geILrw/eJcWryDE%0AyPIiuAsiLuyrcHqG69uuCcEfQWj6pb6xpkN5bzQSh1G/yZN4RiASpOAQRkcE%0AA+1cOMwboO61TO/BY1YhWekkXqKKK4jvCiiigAooooAKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxPCn/IHn/wCw%0Alf8A/pXNW3WJ4U/5A8//AGEr/wD9K5qANuiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACsS1/5HnVf+wbZf+jbqtusS1/5HnVf+wbZf+jbq%0AgDbooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigBk00dvC80zqkUalndjgKB1JrxHxt42k1u4ubOz%0AcrYNtQlJGKzKp3AlWUYOcdMdDywwR6v4rAHh26ka4v4Y4l8yQ2EipKVXkgM3%0AQdzjnjHsfnacRrPIsTbowxCnJORnjkgfyH0FevldGEr1Hujxc2rzilTjsyOg%0AYzz0r2Lwb4H0qTTVvmu49RtLu3eJl8gqMkoGIYgNwyNgkDrxjvS8beARHYib%0ARNPxFbRjCJJLNM5L/cVCSAo3MxI7+nNdyx9J1PZnA8uqql7Q860u7s7S7he6%0AglkCzxyGSCUo6qM5UduSVOf9nAIzmvatG8b6ZdWNluug7m0aW4JbdIjq0ahC%0AoUFixc4wOccA5rxfWdHvdFvJLa5huFhWWRIZJYmRZQpwWXP4dM9ql8NSxQ61%0AE8jsrrnyT9o8hA/H3n3KVXbu5BznHB6ExOHp14c4YXE1MPPktufSAORmiqmm%0ANatp0RsrgXFuc7ZRcGfPJz85JLc5HXtirdfNtWdj6hO6uFFFFIYUUUUAFFFF%0AABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA%0AFYnhT/kDz/8AYSv/AP0rmrbrE8Kf8gef/sJX/wD6VzUAbdFFFABRRRQAUUUU%0AAFFFFABRRRQAUUUUAFQ3X2gWcxtBEbny28kSkhC+Pl3Ec4zjOKmqvfLdNYXC%0A2LxpdmNvJaUZQPj5dw9M0Acfp2o6jZ+L9P0h9f8A7XuJY5G1O38uMC0ITKsu%0AxQVBbC7WJJBzWXoXieTV7uGe48YXVr9pvZFgtBYR+SUEjBI/OMeCSoH8WefW%0Atea01vX9T0GW50U6XNp8/wBouLx5on3fIymOPYxYqxbJ3beB61Ff2niLXNBi%0A8P3ujRwStPH59/HLGLcIkgffGoYvuIXgFRgnrQBbkl1jX9c1qDT9Xk06HTGS%0ACERxIwlmKByZN6k7RuAwMdznpVDSPEGo+NJ7GC0v5NLjGmR3l09siM7SuzKE%0AG9WAUFGPTJyBnrWg8Gs6Drmt3GnaO+ow6kUniMc8aCKYIEIfewO07Qcrk9eK%0AoaP4d1LwbcWMtnYPqcZ0yO0ukt5UR1lRmYOPMZQVJdh1yMDigDoPCeqXOqaR%0AKL1ke8s7qaznkRdqyNG5XcB2yMHHvVObVbfTPHOo/aI7x/M02z2/ZrKa4xiW%0A56+WrY698Z59DVzwnpdzpekSm9VEvLy6mvJ40bcsbSOW2g98DAz7U61/5HnV%0Af+wbZf8Ao26oA2UcSRq4DAMARuUg/iDyKdRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZ2uTtb6Pcs%0AsF7KDGwY2RUSxrtOWXcw5HbGTnGBTiruwpPlTZ5f8U9SF7ewQB7MJbbwi7pP%0APDfKGDKQAoOQR1yEyDziuP8ADlubjWIIzHdtE7hC1oimVW+8u0twp3KOeDgH%0A3qpqM813qU08zzSPK24NNuLFT937xJ6Yxknjua9b+H/hZY7CK+1KGUzIpihi%0AmiVU2b94YDG4ndkgtjg+mDXu16iwmHVOO7/q58/h6TxmIlVl8K/Hy/rp8jq4%0AdPuL6KOTU5ZUG0YtI5SFT2dlOXPr/D7d6l/sHSxzHZpC3XfBmNvzXBrRor57%0A2cequfS+1n0dvQ4nxboon03ZqE6NGo8qHUJow5tg7LnevAOcAbxyM/jXiDoU%0AOCR0B4YHqM9q+hPFeg2+rae8hjtkmRfnney+0S+WMkomCGBPsc8nHPNeG6rp%0AdzpNxLb3kUQuVC+YofJjJVX6A+jAdx1x0r28sq8i5G7p/h/wH+fqeFmtL2r9%0Aoo2a381/mvy9D0r4b+Ibh7L7HeIRbQrFHFKJkKJuLgbtzbtzMMADI6cKOT6T%0AXzTot/JYapbyo8igOCPLlWI7h907mVgOT1I6EjoTX0Ro97Ff6ZDJHdwXTqoS%0AWSGZZRvAGQWUAZ59B16Cscxw/JPnWzNcsxPtKfI90XqKKK809QKKKKACiiig%0AAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK%0AeoanBpkaPPHduHOB9mtJZz+IjViPxrM8HSrPoDzIHCyahfMA6FGAN1KeVYAg%0A+xAIrfrE8Kf8gef/ALCV/wD+lc1AG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFF%0AABRRRQAUUUUAFFFFABWJa/8AI86r/wBg2y/9G3VbdYlr/wAjzqv/AGDbL/0b%0AdUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR%0ARQAUUUUAFFFFABRRRQAVyXjvxJZ6PpjWcrb5rhDuiRk3iPkZw6sCCcKeCcFi%0AOnHRald/YdPlud1suzHNzP5MYyQOXwcdfTrgV8/a5rN5qGo3cJnLIziHKXDy%0AK6IzbBknDDkc45wD1Jz3YLDqpLnlsjgx+JdOPJD4pEelyx3WtCe/+0SCdyX+%0AzhPNLdfk3cZzjAHrgelfRNlvNhb+YJg/lru8/bvzj+Lbxn1xxXjXgzwlDrb2%0A9w+ye3WUrLtyDAAkm0nI2sS+045wNuQQxr2DTNPh02yWCGC2hP3pPs0IiRnw%0AAW2j6CnjZRk79fyXRf11FgYyiuX7K6931fn5eSLlFFFcB6AVxnxDs9NfQZml%0Ak0+2unPmbplUSyqu3cEOQS2FQd+gHHBHZ1V1GxTUrCWzlkdIphtk2EAsv8S5%0A9CMg9+eMVdNpSTexFRNxfLufNpZbed5ljhZH8xFRhuABXAOCSRjdkE9x1ODX%0At/gjxG+tWskcz3E06BWkkkMO1MqCqAK248c5KjJDdMbR5L4p0eTStSmhaORU%0ASWRY3eIoJE3ZDD5FGBuA4yMg44xW18OrTVJtUSS1nEdpCxKu9qZovOZOhGVI%0AIUH5s8dOjc+1WUa+H5pPVdf67nhUXLD4nlgtJdP67ar/AIc9tooorwj6AKKK%0AKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo%0AAKKKKACsTwp/yB5/+wlf/wDpXNW3WJ4U/wCQPP8A9hK//wDSuagDbooooAKK%0AKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArEtf+R51X/sG2X/AKNu%0Aq26xLX/kedV/7Btl/wCjbqgDbooooAKKKKACiiigAooooAKKKKACiiigAooo%0AoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK1/LZw2MrX8kKWrLskMxG%0AwhuMHPHOcYr571q0trXW7qC3ud0Uc7weZJCsYVt5ycJnKgHrgegHGK9M+JGu%0Az2dq9hGmpQiWJkLpDG0E6spyC5yykYPQA4B7ENXluk6TLq+oxWMSzFVUvK8M%0AXmGNQMliuRkDgdfpkkA+tg6bjC7ekt/Rf1b5nkYyqpT91ax29Xt/n8jvvhpY%0A6hZyBpI2USOzpFNeyRAKCUkYRBSrsCMEMRjC9ODXqtZfh/TW0zSIoZQvnsWk%0Al2PIyhmOTjzGZh788nJwM1qVw4qr7Wq5HdhKPsaSiwooornOkKKKZLFHPE8U%0AsayRupV0cZDA8EEdxQB498SJrb+1kiMcsUqB3YXM0zs2WAwgOUCkHdwR93Hy%0AkAHF8I6rqOnassVqrnzVaDeHACbnQu67zs34VQM4BO3Oe/aeKPBNrCZb9dOj%0AmQQzMRb+XbRQkFDEGBZflwH3EEk57cY8xgnezuQXaWNM+Tcx/MN6AjKMAykg%0AgdMjp1HWvcoOEoJR1T0fruv1/A8GuqkZNy0ad16aJ/p6an0layvPbpJJby27%0AnOY5SpYc99pI9+D3qasbw3q/9qWG2V1a7gwtwI7WWFEYjIUCQZOBj9DxkVs1%0A4s4uMmme3CSlFNBRRRUlhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU%0AUUAFFFFABRRRQAUUUUAFFFFABWJ4U/5A8/8A2Er/AP8ASuatusTwp/yB5/8A%0AsJX/AP6VzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQ3STS2c0dtMIJ2j%0AZY5Sm8IxHDbcjODzjNTVXvoJbmwuIILhraaSNljnQAmNiOGAPXB5oA4WCVdB%0A8Y6ZYW+oapK/kzNqL30shjuiseQYvMO0vuwcR8AZB6VUSa8tfBWn+NX1G9fU%0AZZYJ54zcOYXillVTEIydoAV+CBnIzmt9tE1/WLnR11z+zUt9OmFw720ju9zI%0Aqso4ZFCL8xJGW9Kqw+FNa/sez8NzyWB0W2uEYziRzPLDG4dIym3aDkKC248D%0ApQBItpJ4p8Q6+k2oX9tHp8iWtotrcPEI38sO0hCkBjl8fNkYHTk1leHdSuPH%0AVxYxX91dRQQaTFcTJaztAZZ3dlLEoQcDy8gZxk+1dDcaTrun6xqt3oZ0949T%0ACOwupHQwTKoTeAqtvBAU4O3kdeaq2XhS/wDDc1jNoP2O48rT1sbiK7kaESbC%0AWWQMqtzlmyMdD14oA0PBl9c3ej3NvdzvcTWF9cWRnk+9KI3IVj77cZ96gm1W%0A30zxzqP2iO8fzNNs9v2aymuMYluevlq2OvfGefQ1peG9Hk0XSTDcSpLdzzyX%0ANzJGMK0sjFmwPQZwPYVHa/8AI86r/wBg2y/9G3VAGyjiSNXAYBgCNykH8QeR%0ATqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACobq6gsrd7i5nighTG6SVwijJwMk9OSKmoPTriheYPyPn/xlrL6%0A14iZ5FVUgXBWK8+0RMf7yHoARtGAO3POa6X4eeFftUv2+/tbWWFk3gTwCdJk%0Af+624qrKyHI25GSD6CtrXhbzfHiWKXk8k1z+8M14Vcysqs5xhdoX5VXDDjP3%0ASK9S0OwGnaXHCvmqD8/lyJEhjz1XESqvX+fWvUrYlKn+77WXp1t87r5HlUcN%0AJ1P3ndt+vS/ys/maVFFFeWeqFFFFABRRRQBU1OzF/p8tsUtn3YOLmDzo+CDy%0AmRnp69a8E1jQ57e+vGCZhY+ZiOHYYywkZVMeSUyEYgdlxnB4r6Grxj4k/wBo%0AWmqxK8148SqALifyV84kHhRGqkgAsOc43HpnnvwLlK9OL31Xqjz8coR5aslo%0AtH6PR/gd14EtYbTTpLe11OS7t7aQw/K0TQuxCvuQqu7OGGQScEkc4zXW14d4%0AEudWXWbezsIrZoWmZ0e5R3WAlRucKrDLbQBk9MgZXcc+41li4WmpXvfU1wc7%0AwcLW5XYKKKK5TrCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK%0AKACiiigAooooAKKKKAKeoanBpkaPPHduHOB9mtJZz+IjViPxrM8HSrPoDzIH%0ACyahfMA6FGAN1KeVYAg+xAIrfrE8Kf8AIHn/AOwlf/8ApXNQBt0UUUAFFFFA%0ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAViWv8AyPOq/wDYNsv/AEbd%0AVt1iWv8AyPOq/wDYNsv/AEbdUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXN+L/E9v4fsCpnVbiQYwjoZ%0AYlIIEgjYjeAwHHHf0NdJXj/xOm1CTVIxdRTxWKMTAslzEVfAGWEajcB15Yn7%0A38PSujDQjKfvbLU58TOUYWju9PTzZztlrWoXfiIMyPMZwVuLe3t94l4Uv+7V%0AlzkoC2CM4544r3qxaZrGFp3R5GXcWSBoRg8j5GJKnGOCfy6V4L4Hewi8T21x%0AqF1JD5bgxrGsjNKxyAoEYz1I/LGDmvoKunHx9nyU7bL731OTL5+1c6l93t2X%0AQKKKK849MKKKKACiiigArg/GvhGLUyLuSSSO3ikRnka4kkZQ8iiQ4YlY0VMt%0AwO3YLz3lUNZWVtLm8t4QoUmVZrZrgOmDlQispJ/P6VtQqSpzTizHEUo1KbjJ%0AXPHtDvdP8O+I1gENlqCpvj+0TPFsDhi0Uqyc7RtxnBzz0JAFez2F/banYQ3t%0AnKssEy7kdeh/+uDxivnW/muF1meR7iV5iQ6SFm3DABTBJJ4GAOT7EjmvdPB9%0A9DqWhLdQR3Sxs7DdcXDTbyOCylyWC5HQ478V142lyq/X/PX8728kceCq8zt0%0At+Wn5Wb82b9FFFecekFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ%0AAUUUUAFFFFABRRRQAUUUUAFYnhT/AJA8/wD2Er//ANK5q26xPCn/ACB5/wDs%0AJX//AKVzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF%0AYlr/AMjzqv8A2DbL/wBG3VbdYlr/AMjzqv8A2DbL/wBG3VAG3RRRQAUUUUAF%0AFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV4%0Ap49ubu91NoZomSRplUh4408oEfIjOsrKeNx+bBGWPAPHrWuX403SpbhhKF+6%0AZI5IkMeeA2ZGC9cDvyRxXgGo65d6hqAuL2RpizpLKpVBvYKAMjbt6ccgjr1y%0Ac92BpSnNW/q2v52ODH1owpu+9rffp+Vz074c+GPslmNRlknB81zCpAUOvTdl%0AXYMpAB4xz/eAU16FWV4d8o6Jbvb3T3EDrmMsYjsHTYPKAXAIP45rVrDEVJVK%0Ajcjow1ONOkoxCiiisDcKKKKACiiigAqjrBi/sm5E9+1hEV2tcpKsZTJxwzAh%0ASemffjnFXqD064pxdncUldNHzPqipHqjNG7szHe5kuEmO4nP+sXhs9c8ckjt%0Ak+ofDBrCGKRTPZfaZBtgU+UtwRyzjC/OV6HLHt0AHOH8QtLOk3/meSzNPCFj%0AvTegSSMA/ml0wCchgOOAAoHXbT/hnr1xa3YsppmazciNIjcRIFkZhghXIZuO%0Ay5+hJFezipOrRU49dP1/Rr5niYSKpVpQlunf9H990/kew0UUV4p7gUUUUAFF%0AFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVie%0AFP8AkDz/APYSv/8A0rmrbrE8Kf8AIHn/AOwlf/8ApXNQBt0UUUAFFFFABRRR%0AQAUUUUAFFFFABRRRQAVBepcS2FxHZyrDctGyxSsu4I5HDEd8HnFT1V1IXrab%0AcjTTCt8Y2EDTk7A+OC2ATjNAHGm0fRfFGhWGnanqF3qMpL6ks908qNAEOZHV%0AiQh37QuAO4rI0i+QtDqWunxXa/ab52Fw1zJHaR7pT5aFN+QuNq8rt564rf8A%0ADOi+JNFxHcWujubhw99fC8le4mbu3MYB9hkAUtzoPibVNKj0PVLmwlsvOUz3%0A6u3nzRo4cDy9gVWOACdxHXigBFtJPFPiHX0m1C/to9PkS1tFtbh4hG/lh2kI%0AUgMcvj5sjA6cmsrw7qVx46uLGK/urqKCDSYriZLWdoDLO7spYlCDgeXkDOMn%0A2robjSdd0/WNVu9DOnvHqYR2F1I6GCZVCbwFVt4ICnB28jrzVWy8KX/huaxm%0A0H7HceVp62NxFdyNCJNhLLIGVW5yzZGOh68UAaHgy+ubvR7m3u53uJrC+uLI%0AzyfelEbkKx99uM+9QTX1xZeOdR+z6TeX+/TbPd9meFdmJbnr5kidc9s9D04r%0AS8N6PJoukmG4lSW7nnkubmSMYVpZGLNgegzgewqO1/5HnVf+wbZf+jbqgDZR%0Ai0asUZCQCVbGR7HHFOoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC%0AiiigAooooAKKKKACiiigAooooA5D4iXkkWgNaJLaIlwreb5zyBioGcIEHUnA%0AyxC9AQd3HkXh3StS1jWYl06U29wSzRzZdQCMZAZQcHB9vrzXc/FWNBcQu2qX%0ABJjLGzLqUT+FSq5BySWyTk4zzhcVkfDGB/7eik/tGGFireTbuxcyDjzPlVxt%0AOFH3gQcZwdvHr4T3KEqi6L8d3+n3HjY1e0rwpvq7/LZfr957HaWy2lrHArSs%0AEHWWVpGPflmJJqeiivIbvqewlZWQUUUUDCiiigAooooAKKKKAOZ8dw2Uvhxj%0AfzRQQLKpMslm1xt68DaQUz03Z4zjgkGvF/DV7HYa1BPIbYJG4cPdRPIiEfxb%0AVIJIBJHv+dfQ97A11Y3Fur+W0sbIH5+UkYzwQfyI+orwDULZdK8QBIJJZULC%0ANkezeHzCApwY2P3SSOP/AB0DGfTwkuahOn1Wv3a9up5eLjyYiFTSz0fz079D%0A6BtZPNtIZPOim3orebEMI+R95eTweo5P1NS1naJetf6VFM7+Y+MM4tngVu4K%0Aq/JGCOQSD+g0a817nprYKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAKKKKACiiigAooooAKKKKAKeoXk9nGjQaZd35Y4K2zRAr7nzHUflmszwdI%0A0ugPI8Tws+oXzGNyCyE3UvB2kjI6cEj3Nb9YnhT/AJA8/wD2Er//ANK5qANu%0AiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsS1/5HnVf+wb%0AZf8Ao26rbrEtf+R51X/sG2X/AKNuqANuiiigAooooAKKKKACiiigAooooAKK%0AKKACiiigAooooAKKKKACiiigAooooAKKKKACmSyLDE8rBiqKWIRSxwPQDkn2%0AHNPqnqrlNKumFvFcjyzuhlJCuv8AEDhWPTPGDnpTSu7CbsrnhXi7xHc6zqcx%0AW/kuLMs4hBjEY8rcCAQOvI788CvQPhVaGLR5p4NS8+2dyslubbZ5coxyHzyC%0AuO3p06V5eNOlv9ZgsrcwpudI4/NcJgN8wySATx3x6Y6qK908KaMdI0lfOiiS%0A6mw8oSCKMrxwhMagNjnk9cnp0r1cQ408JGC66/fqeRh4zqYyU3ry6X9NDdoo%0AoryT2AooooAKKKKACiiigAooooAZLGs0TxMWCupUlGKnB9COQfcc14T4wlhs%0A/GO45nSF9jqt8826MHBQuWLKSNwI4xnGOMn3mvGPiL4WbTJmvra0c2pYfvIo%0AooooVPRCqAEnJPzHttHJ5r0ctlFVbSe55maQk6SlFbHR/DbxDJd28WmOt5M0%0AcX3gi+TCoJ6sW3FieMY6AYGATXolfPvhDW49Hv0kllkjjMqb386RY1UNkllj%0A5c4BAB4+bkGvfbW5hvLSG6t33wzIskbYIypGQcHnoawxVH2crJabf5fhY6cL%0AX9rFNvVq/wDn+NyWiiiuU6gooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACsTwp/yB5/+wlf/APpXNW3WJ4U/5A8//YSv/wD0%0ArmoA26KKKACiiigAooooAKKKKACiiigAooooAKKKKACikDqzMoYEr1APSjcu%0A4ruG4DOM84oAWikLKpAZgMnAyepoZlQZZgo6ZJxQAtYlr/yPOq/9g2y/9G3V%0AbdYlr/yPOq/9g2y/9G3VAG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA%0AUUUUAFFFFABRRRQAUUUUAFFFFABXCeO/ElnHplzZw3sRmUrt+zXnzhw2HSRV%0AOQCu4c5GeuDjPd15P8Vr7bqFtDHdxy7EG62OG8l87skZwSwxww6D3rWhBTmo%0AProZVpunBzXTX7hPBFja3d/JJFJcTSXE2Z1gu5U8qPy1dXLKw53My7WLHOcE%0A7WJ9ZrwX4fWsFxr6/aRpMkOVjaHUGGZNxx+7BBy4wOPfHeveq68xjy1bXOLL%0AJc1JuwUUUV556QUUUUAFFFFABRRRQAUUUUAFcJ8RdNsHsfNMOnrdzhgDI0MM%0AsjAABvMcg7V4yByflHTNd3VLVrD+1NKuLHzTEJkKFsZGO4I44PQ4IODwQea1%0AoVPZ1FIxxFP2lNxPAdAjtW1oRyjzrNZVfawiV5QHAC/O2OQ3IBP5DI+i68Mn%0A0O4tfEn2Uyobee4ul8uKAgR7QGYrHuDAbdh65OCBuGN3sWg3b3+hWd1JLFI8%0AkeS0SlV+gBJ6dM55xnjpXVmLTqKSejV/0/yOXLU1RcWtYu36r9TRooorgPQC%0AiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx%0APCn/ACB5/wDsJX//AKVzVt1ieFP+QPP/ANhK/wD/AErmoA26KKKACiiigAoo%0AooAKKKKACiiigAooooAKgvbd7uwuLaOeS3eWNkE0f3oyRjcPcdRU9VdSt7i7%0A025t7S6+yXEsbJHcBN5iJGNwGRkj60AcI+maXp3ibTLXwzZol3pe6XU7qEYz%0AF5bfu5WH33dtpwckYzWetlb2fw50zxckSnXTLb3cl7/y0lMkyh0ZupUq5Xb0%0AAx6V1Ph3wvrXh+K3tY9csnso23SxrppV5ifvEv5p+Y9yQabB4LuY7a10uTVw%0A+hWtys8dp9mxIQrb0jaTdgorAfwg4AGaAKtvo+n+KvEnidtXtkuRbSx2dsJB%0AkwJ5SsWT+6xZicjngelYvhBk8aXdiuvwpfRWmjQssVwN6NK7urSEHgtiMDPb%0AJ9a6+98O6h/al/e6RrCWH9oRqtyslr53zqu0SId67W24HO4cDiol8IyabLYz%0AaBfpZSWtkLFhcW/npLEpypIDKdwJJzn+I8UAL4Flc6NeWTO7x6fqNzZws7bm%0A8tJCEBJ64BA/CmzX1xZeOdR+z6TeX+/TbPd9meFdmJbnr5kidc9s9D04rX0L%0AR00PSks1meeQu8s07gBpZHYs7EDpkk8dqrWv/I86r/2DbL/0bdUAbKMWjVij%0AISASrYyPY44p1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFfP8A44mvLrxHdy3DmQRuEbZKZUiPOEDbVx91sDAPXryT%0A7frl8dP0madX8twOHNs86rxkllTkDAPJIA7+h8Hi1uSHWMzRwNbK4JtrmAtC%0ArqrgApnIUNI5wD3Jwelehl0G6vMlsr/p/n9x5+ZTSo8rduZpfr+Fl953nwx8%0AO6haMdRubqRLVk3R2yu4VmYD5mHCt8v159CMV6bVPS7v7ZYRud5dQFctbSQA%0AtgZKq4Bxz7/Wrlc2Iqyq1HKR0YajGlTUYhRRRWB0BRRRQAUUUUAFFFFABRRR%0AQAUUUUAeBeObfU9P8Ryfbbqa4kZNn2v7ItuJfl+YDbw3DAE/geAK7T4b+KPM%0AtF068lgQF28tnlji+YldsaRjBOSWPAwOB3rJ+I/hZba/fULOwlWOcg74QZPN%0AndzuDZfK8YxtXBJxWb8NtR/s7XA5ExjkDRy+XaGUgYyoBXLZJXsP4fqR7OIU%0AauFjNa2+W+nTzseJhnOli503opfPbXr5XPcaKKK8Y9sKKKKACiiigAooooAK%0AKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCnqF5PZxo0GmXd+WOCt%0As0QK+58x1H5ZrM8HSNLoDyPE8LPqF8xjcgshN1LwdpIyOnBI9zW/WJ4U/wCQ%0APP8A9hK//wDSuagDbooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC%0AiiigArEtf+R51X/sG2X/AKNuq26xLX/kedV/7Btl/wCjbqgDbooooAKKKKAC%0AiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDlfH9wF8%0ANy2rRSlLjO6SMIdgT94eGYZOFYjHp9M+M6NoN5q+oPawWs00sYLNCjIj4VlD%0AZ3H5fvdcHnjHXHR/EjXTqGsSWu1xHbkxJHNAEKEEEupDEsGwMEgDGOO9O+HF%0AjaXWrJDd2iTJKrsoudP81JAoXOHJIUg+2Dnk5IFezg1KhQnU7/p/TPEx0o18%0ARCl2/X/gW/rQ9d0bTU0jR7awSWeRIU2q07h3AznGQAMDOBx0Aq9RRXjybk7s%0A9qMVFJIKKKKQwooooAKKKKACiiigAooooAKKKKAOX8efbToDCwsVnlBLtO8q%0ARrbqB8xyxByVJXjHBPI4z4npN9Po+qo3kxebFKp23EZOx1PGR169R/UAj6L1%0ACzS/sJrZ1Q71+UuCQrdVbgg8HB4IPHBHWvAvEGk3Ola7uu44wktzJtkcShZA%0AH5Y7iWxzjgk4Gechm9bAuNSjOi92ePj1KlXhXWyPf7OY3FjBMW3GSNWLeWY8%0A5HXaeV+h5FT1g+DmV/DNtIJzOzFg0nmSOCQdvy7ySBgDpgdwBnFb1eTe+p7F%0AraMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgArE8Kf8gef/ALCV/wD+lc1bdYnhT/kDz/8AYSv/AP0rmoA26KKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACik3DdtyM4ziloAKKQsqkBmAycDJ6mhmVBl%0AmCjpknFAC1iWv/I86r/2DbL/ANG3VbdYlr/yPOq/9g2y/wDRt1QBt0UUUAFF%0AFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVe/hluLC%0AaGCVYpHXbvZWYAHrwrK2cZwQQQeasVQ1u/8A7M0a6uw2JEQiL5C+ZDwgwOuW%0AIFF7ahy83u9zwm/0C8utahtrG0G24QyRLFHIAkfmMm9gxZlGVyck4yPpXb/D%0A/wAIXVhcR6hcs0b5cHy0iYxPHI0boxYE4IHVCM5PTgnh21iSTxDE9s0cqBfs%0AxCpKI7hQTjcgbcVY4YjjJJ+Unr7xpF1JdaejTMzSqSrsbSS2BPXhJOcYI56H%0An6D18TUq0sPGD67/AK/ieNhqdGtiZTj0enotvwL1FFFeQeyFFFFABRRRQAUU%0AUUAFFFFABRRRQAUUUUAFeHeP9N1CPV5DMsUnzs4eITAykoGdgju2FUKASvGM%0ADthfca80+J1rC4LfbIPtBi3tHN9mDLGvRU3ASctk8Mejd8A92Xzca1u55+ZU%0A1KhfsJ8KdTklS5svKLR7TKZPOYrFggLGEb2ycgngAHtj0yvC/hxdWUXiKCO+%0AW3YM4WESwqSHPIYMRwQVUD/e4717pWWLh7OvKPn+ev62N8HUdShCT7flp+l/%0AmFFFFcx0hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR%0AQAVieFP+QPP/ANhK/wD/AErmrbrE8Kf8gef/ALCV/wD+lc1AG3RRRQAUUUUA%0AFFFFABRRRQAUUUUAFFFFABQc4460UUAcV4fsLqw+IOqJe6jLf3Mum28kkrqF%0AUEySjaij7qgAcc9zkk1zljpsejQx6z4k8G2+ZL5prjUGnVp4mkmJRjGB90Fl%0AHDZ74r0RNHC+JLrVzPkT2cdr5O3GNjO27dnvvxjHasX/AIQ+/msYdJvddNzo%0A8UyyGJ7f9/IqtuVHlLnIBAyQoJA60AVbfR9P8VeJPE7avbJci2ljs7YSDJgT%0AylYsn91izE5HPA9KxfCDJ40u7FdfhS+itNGhZYrgb0aV3dWkIPBbEYGe2T61%0A1974d1D+1L+90jWEsP7QjVblZLXzvnVdokQ712ttwOdw4HFRL4Rk02Wxm0C/%0ASyktbIWLC4t/PSWJTlSQGU7gSTnP8R4oAXwLK50a8smd3j0/UbmzhZ23N5aS%0AEICT1wCB+FNml1SLxzqP9m2dnc502z8z7TdtDt/e3OMbY3z39Mcdc8a+haOm%0Ah6UlmszzyF3lmncANLI7FnYgdMknjtVa1/5HnVf+wbZf+jbqgDZQuY1Miqr4%0AG4KcgH2OBn8qdRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB%0ARRRQAUUUUAFeefFPUZrSztIQzrFJuZQkuN7D++pQgqMqfvc5PHAI766m+z2k%0A02Yh5aM+ZX2IMDPzNg7R6nBxXgvjXUzfaxKvmLLGCSuy9a5iUnBJjJAwO2MY%0Azn2x04Wj7Sol0v8A8P8AgcuLreypyfW3/AX42K/hG3S8162WdZ5I4WDOsayP%0AmLncu1EYnO72GMjIzkfQcEKW8EcMZYoihRvYscD1J5NeU/C/Rblb8X0tqqRC%0APzI7lWLeYpyNmVkCggjOChPBzjivWq6MyqKVXlXQ5srpONHmfUKKKK849MKK%0AKKACiiigAooooAKKKKACiiigAooooAK5vxxoKeIPDcsLXS2zW5+0I7kBMqp+%0A8ewwTz2689K6SmSxrNE8TFgrqVJRipwfQjkH3HNXTm4SUl0IqQVSDg+p8vRH%0AbKueh4P0NfRfhjVjqui27T3VrNfJEv2kW8yybWI6tt4UnBOOxyB0rxHxZpN7%0Ap+rXEt2buZmmZDcSwyLG2PuhXckt8vr6cFhyfSfhjrsl9pj6dIbmZ7cb/McL%0AsiQ8KgOdx5DHpx07CvVzFKcY1V1X5f8ADv7jycsbg5Un0f5/8MvvO+ooorxz%0A2QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAp6hJq%0AUcaHTbS0uHJ+cXNy0IA9isb5/IVmeDjK2gOZ0RJjqF8XRHLKrfapcgEgZGe+%0AB9BW/WJ4U/5A8/8A2Er/AP8ASuagDbooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKKKKACiiigArEtf8AkedV/wCwbZf+jbqtusS1/wCR51X/ALBtl/6N%0AuqANuiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo%0AooAD06Zr5x8Q3M2p60ZnSRrmfDMpg8sszHI2jccggrj+vU+2eNtQtNP8L3P2%0AuNZBP+6RDGHy3XODx8oBYZ7gV4vozw3urLJdWE1wftEcgFpah9wXOY/LBC4Y%0Ack/7PfJNellsLTlVfRfn/wAMeZmk7040k/if5f8ADo9g8B3LXOiM5tpY1Lgp%0AM9mtsJF2jAVVdtwUYAbgYwOSDXVVT0uyt9P0yC2tbU2sSoMQkglCeSCQSCfU%0A5P1q5XDVkpTckd1GDhTUWFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA%0AUUUUAeYfE/Romd9Qt45vPeJftG2xLptUkhjLt+Q8bTzk/LnA5rC+G72H9sRL%0AeywYUh4w9sr/ALwnCjzGXKHOCMEZJAzniu7+JWnz33hOVraOR3hPmOFkIURj%0A5mJG4A42jqGPoOcjxjTbm8sr9fslx5M6yAowkAUODwck7cdRk8YJ7V69Ne1w%0Ae+sX+HX8LnjVH7LG7aSX3vdfikfTFFVdMuFutMt5luYrnKANNFIsisw4bDKA%0ADyD0A+g6VaryWrOx7Cd1dBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF%0AFFFABRRRQAUUUUAFYnhT/kDz/wDYSv8A/wBK5q26xPCn/IHn/wCwlf8A/pXN%0AQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFQi6ga7a0EyG4RBI0Qb%0A5gpJAJHoSD+VVU1zSZdUbTI9Ts2v1+9bLMpkHr8uc0AaFFUL/XNJ0qaKHUNT%0As7SSb/VpPMqFvoCadqOsaZpEKS6lqFrZxudqNPKqBj7ZPNAF2sS1/wCR51X/%0AALBtl/6Nuq2IpY54klikWSNwGV0OQwPQg9xWPa/8jzqv/YNsv/Rt1QBt0UUU%0AAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFV764+y2M%0A0wLAqvBWB5sE8A7E+ZhnqB27jrTSu7CbsrnkHxU1C5uPEAtpEKW9tGEhyR85%0AbDO44zjgL3Hyn3qr8OPDUmq+IYb64i3WNoPOJJ4ZwcKvB4ORux6Dngiud1pX%0Ak1l4BEgn37XWISndITycSZfJPXPOe1ex/DnTo7Hw6rxxWBE4Vzc2sru0x5++%0AGUFSPQHGSeB39hz9hhPd3l/w1/mtfmeLye3xtpbR/Pe3ybt8jsKKKK8Y9sKK%0AKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCG7iE9nNEYYp96MvlSnC%0APkdGODwfofpXztq+oyT65PeSWtxbSvI7bZJDvXjbszgfKpBGMDjIPSvo+vBf%0AiLp62fi68cXUczTbZXVTzGWzhSCxPRQfT5hwBgV6eWcspShJbo8rNeeMY1Iv%0AZ/8ADHrPgzXm1/w+k8quLiBvImZ8fOwUHcMdiCD065+p6GvJPhbqsy3b2W+/%0AuAycW6bPKiUMAZCWYEfeHCjn34x63XDWp+zlynoUqiqR5l/V9QooorI1Ciii%0AgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsTwp/yB5/8AsJX/%0AAP6VzVt1ieFP+QPP/wBhK/8A/SuagDbooooAKKKKACiiigAooooAKKKKACii%0AigAoPI9KKKAOG0bS49D8c6yltJcXEz6VBNJLcSGSSaTzJRkn6ADAwMAYFZBi%0ASH4M6RqEKA3sctpdpLjLec86bmz3J3MD9a9CTSoI9dn1cPJ9omt0tmUkbAqM%0AzAgYznLnv6VkQ+CrGCWBRe37WFvc/aodOZ08iOTO4Y+XeQG5CliAe1AFXRLW%0ADUvEnjD7dAkpaeK1KuM/uRCpC89iWY/jXPfDiWXUtQspb8eY9voECQFxn5Wk%0AkBIz6hFBPfFdlqPhWC/vrm7h1HULCS7iEV0LR0AnUcDO5WIIBxlcHHeifwpZ%0Al7OSwurvS5bS3+yRyWbJkw8YRg6sCBjIOMg96AKfgPMelalaqu23tdWu4LdR%0A0WMSnAHsMkfhSzS6pF451H+zbOzuc6bZ+Z9pu2h2/vbnGNsb57+mOOueNzSd%0AKttF0yGwtA/lR5O523M7EkszHuSSSfrVG1/5HnVf+wbZf+jbqgDZQuY1Miqr%0A4G4KcgH2OBn8qdRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA%0ABRRRQAV598R/FYsoToVnMn2m4Qi4wNxjQ4+U9lJBJ7kYHAyDXoNeIePdaubr%0AUbi0klXYkm5oYrsTxrJt2fKdileN2QT1zwOK6cLByk2um3q9F+JzYqajFJ7P%0Af0Wr/A5zRkuLzXonghlnlD+YNiSOVI6MfLIfAOMkHI9zxX0Tp8UUOnwpCJhG%0AV3KJndnGeeS/zd+h5HTivKPhj4atL66fVJrmQy2zK0aQTKo5B++Ad457YAOO%0ArA17BXTmNSPMqUdonLltOXK6s95O4UUUV5p6YUUUUAFFFFABRRRQAUUUUAFF%0AFFABRRRQAUUUUAFFFFABXD/ErTILjR1vZpSoQiP97JN5MZPSQpGD8w5AJwPm%0A5zwK7iqeq2MWpaVdWc0Ec6SxlfLkYqrHtkgEjnHIGR1rWhU9nUUjGvT9pTcT%0AwDwtq40XV4rtl3KjAlfOeMY7klASQOCRg5A6GvoiKWOeJJYpFkjdQyOhyGB5%0ABB7ivmq+tH0rV5ba4eCWSKQrKIjlMgkEcY/TpnseB7j4H1xNZ0QKZLIT25CN%0Ab2sbIsK4+UYYnPQ8jjt2zXdmNJc/Ouuv6f16nBltV8ns5dNP1/z+46eiiivM%0APVCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKeoSalHGh0%0A20tLhyfnFzctCAPYrG+fyFZng4ytoDmdESY6hfF0Ryyq32qXIBIGRnvgfQVv%0A1ieFP+QPP/2Er/8A9K5qANuiiigAooooAKKKKACiiigAooooAKKKKACiiigA%0AooooAKKKKACsS1/5HnVf+wbZf+jbqtusS1/5HnVf+wbZf+jbqgDbooooAKKK%0AKACiiigAooooAKKKKACiiigAooooAKKKKAM3XppYNGmaGRo3ZkjDr1Xe6qSP%0AfBqAeG9GxzpsB92XJP1J61J4j/5Azf8AXeD/ANGpWieBTQGX/wAI3ov/AEDL%0Ab/vij/hG9F/6Blt/3xUlpren3mmS6jHcBbaEuJWkBQxFPvBgeQRjvVmyu4r+%0Ayhu4Q4imUOm9CpIPQ4PIpgUv+Eb0X/oGW3/fFRf8Il4e/wCgNZf9+RWpc3MN%0AnbSXFxIscMYyzt0AqjpviDTNXleKzud8ijcUZGUlfUZAyKuNObi5JOy6mcql%0ANSUJNXfQYnhfQoxhNKtFHXCxgU7/AIRvRf8AoGW3/fFX7m5hs7WS5uHCRRqW%0AZj2FVTrVgujjVnm22RAbzCh6E4HGM9aSpylqlfp8+w3UhF2bS0v8u5F/wjei%0A/wDQMtv++KP+Eb0X/oGW3/fFJY+JNI1JJ3tbxXWBd8rMjIFX1ywFO03xDper%0ATvDZ3O+RRu2lGUlfUZHIq3QqxveL0302IjiKMrWknfbVa+hQ1jR9P07Rb2/s%0ArVLe5tYHnjkh+VgyqT1HY4wR0rpqx/Ev/Iq6x/14zf8AoBrYrFmwUUUUgCii%0AigAooooAKKKKACiiigAooooAKKKKACmSxRzxPFLGskbqVdHGQwPBBHcU+igD%0AwPx34WPhvVEaNYks7ouYFjdiQFxwd2SPvDuc8njoI/COtz6Tr9m0Et0sVyVi%0Anig2MZmB+UANwOdoznIBbB5r2Dxpplxqvhm5ggupoAoMkghh8x5VAPyAZHU4%0A79sd68OFrNouqva6ivkTQYdlMKT7cqDjax2ngivbpVlXorn3Wj9Hp+dn8jwq%0AtB0KzUNE9V6rX8rr5n0dE7SRI7RtGzKCUfGVPocEjI9iRT6zdCk01tKii0u4%0Atp4IRsLW+wLu6nhPlBJOSAO9aVeNJWbR7cXeKYUUUVJQUUUUAFFFFABRRRQA%0AUUUUAFFFFABRRRQAUUUUAFFFFABWJ4U/5A8//YSv/wD0rmrbrE8Kf8gef/sJ%0AX/8A6VzUAbdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWXeeJdB0+6%0Ae1vdb022uExuimu40dcjIyCcjgg0AalFZ99r2kaZJDHfapZ2zz8xLNOqFx6j%0AJ5HvU99qNlpdo13f3cFrbrwZZpAi57DJ70AWaxLX/kedV/7Btl/6Nuq1bS8t%0Ar+1S5s7iK4t5BlJYnDK30I4rKtf+R51X/sG2X/o26oA26KKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigDK8R/8gZv+u8H/AKNStGs7xH/yBm/67wf+%0AjUq+6CRGQ5AYEHaSD+BHIpoDzPXGt38TXV9FFK/h2K4iTWfLb93JMucNtxyF%0AOzfjrxwcGvTUZXRWQhlIyCDkEVUtNKsbHSxptvbItmEKeUfmBB65zyc5Oc9c%0A0+wsbfTLGGytEZLeFdsas7PtHpliTTAxl1SPU7K7TWtHms7KNN7tc/dbB6fW%0Aq2i79Z1z+3pEW3to4TDaREgMy55dvQdeP8nob/T7XVLRrW8jMkDEEruK5xyO%0AhFZ9r4S0OylaS3stjsjRk+a5+Vhgjk+ld0a9FU5JXTfzVuu73fU8+eHrupFt%0AqSXfRt9NlsunmYHi/VI7i8/s6ZZ/sMUJlZokLCWTHyAkfwjqajtBDq/gGxsv%0AtiWeJ1iZ514dgd2F9eo/I12kOn2tvpwsIottqEMYTcT8p6jOc96hfRdOk0pd%0AMe1VrNRhYyxOPoc5/HNaRxlOMIwimuVp3089bd/6uZywVWVSU5NPmTVtfLS/%0Abz/DU4fX7rUbe01nR550uhHFFN56xLGwUuuVIXjuK2dMmubXxDp9tdPa3Yub%0APfFJHAqNAAM7QRyVrcs9B0ywtp7eC1Xy5xiXeS5ce5OaTTfD+l6RM8tlaiOR%0Aht3FmYgegyTgU54yi6bgl+C1bSV/La+m5MMFWjVU3L8W7JNu3no7a7CeJf8A%0AkVdY/wCvGb/0A1sVj+Jf+RV1j/rxm/8AQDWxXls9YKKKKQBRRRQAUUUUAFFF%0AFABRRRQAUUUUAFFFFABRRRQAyWKOeJ4pY1kjdSro4yGB4II7ivnjxPY3ekeJ%0AJ7S98ljHgK8FusCyIejBVAHQ89eQRk4r6KrhfiN4egvdKe9hsTLdg8C1tt00%0Ar4AXc4BOxVySCOcKMjiu3A1VGbhLaWhw4+lKUFUhvHU5L4f+LZdKv00u+uJm%0AsRlIoo4U2oS25pHckEKoySeeMnjFezg5GR0r5e8yRAssbsjFTGxU4OCMEfQg%0A4/Ovb/h5eajd6Oz3cdqsbMWRY5GDRLgBE8ojCrtGQQeRg4JJNb42heCrddn6%0A9TDBV+Wbo9N16PY7KiiivLPVCiiigAooooAKKKKACiiigAooooAKKKKACiii%0AgAooooAKxPCn/IHn/wCwlf8A/pXNW3WJ4U/5A8//AGEr/wD9K5qANuiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigArzy4sde0f/hIddFvol3AbqS7aKZWe%0AWSJFChQ/RCFToQ3Neh1zNx4Js5vtsKahqMFheymW5sYZEEUjN97kqXUN3CsA%0AcmgDP8Li11/VfFF3c26vHctBCElXpAbdGVcdgd5P1NY3hSabUJfAa3uZEj0y%0A5mj3jq6lEVvchD1/2q6++8JW11dTz2t/facbmFYLhLJ0VZUUYXIZWwQOMrg4%0Aqa78MWU9rp0NtJPYPpuBaTWrKHiXbtK/MGBBGAQQelAGf4YH2fxT4ts4lCWs%0Ad5DKiKOA7wIz4+p5/Glmi1SXxzqP9m3lnbY02z8z7TaNNu/e3OMbZEx39c8d%0AMc7Gj6Nb6LbzRxSzTyzytPPcTsGklc4GTgAdAAAAAABVW1/5HnVf+wbZf+jb%0AqgDZQOI1EjKz4G4qMAn2GTj86dRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR%0AQAUUUUAZXiP/AJAzf9d4P/RqVfkZkidkQuwBIUHG4+nNUPEf/IGb/rvB/wCj%0AUrRpoDIsvEdheaDJq7O0EEIf7Qsow8LL95WHqPT6etXdOvDqGmwXjW8tt5yb%0AxFNgOoPTOOhxziuS1LRoJPiBa2251sr6I3l1bD7kssJAUkf8CBI77Rmu2OMH%0APTvmmBz0XjKwlnjAt7tbWWXyUu2jxEzfXPSrt74gsrLVLXTi3mXNw4TYhB2e%0A7elcxJq2n+INWitjdW1ppFnMHVCwVrmQHjA7Lk/jn8r+vWVta6/ocsECJJPf%0AF5HA5c8dTXqPDUlNRlFptPT5XV3+djyI4qs6cpRkmk0r/Ozsu3a50eo6hBpd%0AhNeXLbYolycdSewHuaTTL+PVNNgvYkZEmXcFbqK5XxY1/PqDI+mXFxp1vAzo%0AU+6ZCp+dvZfStTwVO83he1DwPEI8opb+Mddw9ucfhWE8Mo4ZVerffpr+J0Qx%0AUp4p0tkk+nVW19DoaKKK4jvMvxL/AMirrH/XjN/6Aa2Kx/Ev/Iq6x/14zf8A%0AoBrYpMAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUc8KXFvJBI%0AWCSKVbYxU4PoRyPqKkooDc8B8a6L/Y/ia7t0tYbe2n/eW0cc2/jHXHVcnPBG%0AOoGQM1J8P/ETaFr8cbmJbO6Oy4Z2C4GPlbLEAYOfqCepxj1rxfoUOt6JMv2S%0AWe7QZhEMixuTkHG5uNuQCQc9MgZAr5/vIfJuXXa6jccCRNrDBwQR2OR0r28L%0AVjXi6c+q/Ff5r8meFjKUsPJVIfZf4N/o7/ekfUAORkdKK8/+H/jK1v4YtIub%0AmZr0R7lMkUUUQAAAjjCnsPbsTx0r0CvJrUZUp8sj2KNaNaCnEKKKKyNQoooo%0AAKKKKACiiigAooooAKKKKACiiigAooooAp6hHqUkaDTbu0t3B+c3Ns0wI9gs%0AiY/M1meDhKugOJ3R5hqF8HdEKqzfapckAk4Ge2T9TW/WJ4U/5A8//YSv/wD0%0ArmoA26KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxLX/ke%0AdV/7Btl/6Nuq26xLX/kedV/7Btl/6NuqANumGWMTCHePMKlgvcgHBP6in1m3%0Ag8rW9On6BxJbk/UBx/6BUydlcqEeZ29TSoooqiQooooAKKKKACiiigAooooA%0AKKKKACiiqeo6nbaZazT3Dj91A8/lqRvZUGW2gnnt+YppNuyE2krsreI/+QM3%0A/XeD/wBGpWjXl3jb4q6bpevJoUumz3NvG0MtzKsuwr92Rdox82PlJBI9Pet7%0AVfiTpWk6nLYy2l5JIm07o1UqwZQwIywPQinTjKo7RTbJnUhBXm7I65raBrlL%0AloYzOilUlKjcoPUA9QDgflUjKrqVYAqRggjgisHTvEs2qQNNa6DqRRW2nzPK%0AjOcA9GcHvVz+0tQ/6AF7/wB/oP8A45RcseNC0hWDLpViCDkEW6cfpVuW2gne%0AN5YY5HiO6NnUEofUehqj/aWof9AC9/7/AEH/AMco/tLUP+gBe/8Af6D/AOOV%0ATqSerZCpwSskjSdFkRkdQysMFSMgj0psMMVvEsUMaRxqMKiKAB9AKz/7S1D/%0AAKAF7/3+g/8AjlH9pah/0AL3/v8AQf8AxypvpYqyvc06KzP7S1D/AKAF7/3+%0Ag/8AjlH9pah/0AL3/v8AQf8AxykMTxL/AMirrH/XjN/6Aa2K5+/bUdVsJ9OG%0AkT263UbQvNNLFtRWBBOFYknHQY64roKGAUUUUgCiiigAooooAKKKKACiiigA%0AooooAKKKKACiiigAooooACMjB6V5N8SfCcVs8Oo2EVvBC+yEp5wXL4wNqkAA%0ABVGcH8Bgk+s1Fc20V3bSW86B4pFKsCOxGK0p1JU5c0d0RUpRqR5ZbP8Ar+vM%0A+YIpXhcMhHbIIBBwQcEHgjIHB4r3/wAHeKYPEWlRGW4tP7RAJlt4crtGeMK3%0AOMFQTyM55ryHxL4SvNE1K4iiikngTL7kRm2R4B3MQMAHn/vk1j6bqU+lXJuL%0AYJ5pUoGIOVBxnaQQVJGRkEHBOMda96rTp46ipwev9aM+dpVKmX13Ca0/qzR9%0AN0VzfhnxlpviG1jxLDb3jMU+ytMGYkKG+XOCwwcE46g9QMnpK8CdOVOXLJWZ%0A9FTqRqR5oO6CiiioLCiiigAooooAKKKKACiiigAooooAKKpahcSQm0jhba89%0AysecZ+UAs3/jqmrtJO7sNxaSfcKxPCn/ACB5/wDsJX//AKVzVt1ieFP+QPP/%0AANhK/wD/AErmpiNuiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK%0AKzNV8Qafo0kMV08zTzAskNvA80hUYy21ATgZ5PSgDTrEtf8AkedV/wCwbZf+%0AjbqtOxvrXU7GG9splmtpl3RyL0IrMtf+R51X/sG2X/o26oA26zdd+TTDcd7a%0AWOfOOgVgW/8AHdw/GtKsHW/FPh/SpDYareiNpotxQRO+UOR1UEdjR7OVROMV%0AdgqsKTU5uyN6iuM074h+HIdOt4rvVMTogVj5Ep3Y4DZC9xz+NWf+Fj+E/wDo%0AK/8AkvL/APE1rGhWlFSUHr5MynXowk4ua080dVRXK/8ACx/Cf/QV/wDJeX/4%0Amj/hY/hP/oK/+S8v/wATT+rVv5H9zJ+tUP5196OqorlH+JHhYRu0eoPK6qSI%0A0t5MtjsMqB+ZArIn+I2jXt4kMmoz2tmzMC0ETb+O7tjKg9AEBPqVqXRrX5VB%0A39C1Wotczmku9/6/rc7m61GysiFuruCFj0WSQAn6DvVf+3tLH3r2NB/efKj8%0AzxXKp4/8GaXJDHZGRxIdrzRW7ZQZHLlsM34bjx9Khk+L2iBR5VjqDNuGQyoo%0AxkZP3jyBkgdzxkdapYPFS+z+H/DCljcHHTmv8/8AgM7yC5guU3wTRyp/ejYM%0AP0qWvLbz4j+Gbi7jdNHvF3Z825j2xTJj7u0q3zc9ckY96z4vi1qEbFVtI2i2%0Anb9obe4ODjLKF4Bx2yR371SweJWsof16b/mQ8bhG7Rnr5/57ffY9iqK4ure1%0AQPcTxQoc/NI4UcAsevoFJ+gJ7V4pe/E7xPMCYpbW2U7fmghDAYzn7+7rkZ/3%0ARjHOeUvNW1DULx7y7vJ5bhlZTIznIU5yo9F5IwOOTXXRy2VRXclby1OOvmka%0AT5VF389D2XWvidoumOiWp/tAskhPkNgKynCgkjGD83IzgAHBBFeW+IPGOseJ%0AU8q+liFuHEiQRRgKjAYyCct3PUnr9KwK3tN8GeINVmiS302ZY5EWQTyjZHsb%0AGG3Hg8EHAyevHFelSwtDDe89+7PKq4vEYp8q27Imtr2x128tG1DwzDquqRCO%0AGObz2jD4IVPMUcNyVGTjsDXYaP4XuZ74aprMAOsXzLNaxsShtiCSXZAfugbM%0AA85wMVv6F4Z03whbRRGJNR1iRi8bCMBxxjg/wIO5PqfYV1FjZNAXuLhlkvJs%0AebIowAB0VfRRk/qe9eLiMTTUpQwytfd/5dj3cLg58samKd7bL/PvYls7WOyt%0AI7eLO1B1PVieST7kkk+5qeiiuNKysjtbbd2FFFFMQUUUUAFFFFABRRRQAUUU%0AUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAY3iHRotWtM%0AtAszKpVoiceahwSmex4BB7EA14z4t8L/ANkzi+02OeXSJ13pIVz5LZwY2PYg%0A8c49OSDXv9YuqaSHEskUPnwTEG6sw20TYIO4c43cDIPDDg9iN8Nip4afMtYv%0Adfr6mGKwkMXT5HpJbP8AR+R8729xPaTrPbTSQzLnbJGxVhkY4I9q7/QPirda%0AfbRWup2jXiqyr5yy4dYwoHQj5m4LZJ5J7Dpb1j4dQahbXWoaDKssuW22iKIs%0AOZScNuOF2owXbgfdB74Pnl5pOoafePZ3dnPFcKrMY2Q5KjOWHqvBORxwa96M%0A8NjI9/zPnZQxWBnbVfkfQHh/xZpPiSENYz7Zud1tLhZVA74ycjkcjI59citu%0AvlpJHjYsjspIK5U44IwR+IJFa+meKtb0mR3tL+be0KwL5h8wIinKgBsjjkDj%0AgMcda46uVbunL7zto5vsqkfu/wAj6OorxWH4p+IocGZbB8IqEPEckjOWwrDk%0A556DgYA5zMfiteT8Xdm5ToUtbjyQ31O1mH4MK4PqdZ/w1zem33v9D0vrtCP8%0AR8vk1r9yv+Nj2J5EjGXdVHqxxTY54pTiOVH/AN1ga8sj+IfhdJGdvD0rvuG2%0ASUJI5G4gkliTnbhsZOWJGRjcbp+IPgqdHMmjzKUXcubSPLHIGFIbg8k844B5%0AzgGHg8WvsFrHYN/8vPw/4J6VRXmafEbRYLeeewudSiePG2zu4/NWXPGFO4lc%0Ae7AegPSt62+JPhqW2Ek96YHzhl8mRgD7EL0+uPpUOhWi7Sg0Wq9CSvCaaOuo%0Arlf+Fj+E/wDoK/8AkvL/APE0f8LH8J/9BX/yXl/+Jqvq1b+R/cyPrVD+dfej%0AqqK5X/hY/hP/AKCv/kvL/wDE0f8ACx/Cf/QV/wDJeX/4mj6tW/kf3MPrVD+d%0AfejZf9/4hiT+G1tzIR/tO21T+SP+daNcbpPjbw/NqlwjagPtV5crHCnkycrw%0AqDO3AzyeTxu5xXYghhkEEeorBQlFc0la+p0ynGT5Yu/Lp8+v4i1ieFP+QPP/%0AANhK/wD/AErmrbrE8Kf8gef/ALCV/wD+lc1Mk26KKKACiiigAooooAKKKKAC%0AiiigAooooAKKKKACiiigArlrXP8AwtHUfNxn+yYPJz/d82Tdj8cZ/D2rqazN%0AT0DTtYmhmu4pPOhDLHLBPJC4Vuq7kYHB9M4oAyfAmf7N1XH+o/ti98jH3dnm%0At09s7qJotUl8c6j/AGbeWdtjTbPzPtNo02797c4xtkTHf1zx0xz0NjY2umWM%0ANlZQrDbQrtjjXoBWZa/8jzqv/YNsv/Rt1QBpzpdNZFYZoVuNo/ePCXTPf5Aw%0APrxu/OvnXxFbm31y5xatbRu2+NDbNACvTKoxJAJBwM/l0H0lVK80fTNQlEt7%0AptncyBdoeaBXIHXGSOnJ/Ou3B4v6u3dXTOHG4P6zFJOzR80n54Qe6cH6dqjr%0A6JvvCWjT2rLbaTp0MykMjC1TBI5wwA5B7imWWleGrwbDoemQ3K8SW72se9D9%0AMcj0PQ11QzWEG4uOl7r5/wDBOWpk86iU1JXSs/ls/u/E+eaciFzgduSfSvoC%0A4sPDSS/Z7TQdNvLvOPJhtozt93OMKPr+ANS2PhDSYVeW70zTpZ5cb1W1QRJj%0AoFXHv1PJ/QOWcRekI6/kTHJJR96pLTt1f/A8/uPnxnAGxPu9z3ao6+kv+EY0%0AD/oB6Z/4CR/4Uf8ACMaB/wBAPTP/AAEj/wAKcMzpwVlF/wCZNTK6tR3cl+i9%0AD5tor6Xi0LSIEdIdKsY0f7ypboA3BXnA54Zh9GI71Yexs5FjV7SBljl89AYw%0AQsmSd49GySc9ck1TzaPSH4krJpdZ/gfMaRSSLIyRsyxrucgZCjIGT6DJA+pF%0AXbfQtXukL2+lX0yDHzR27sOQGHQdwwP0IPevpeioebvpD8TRZNHrP8P+CeDW%0APw48U3IWT7EtsrqrAzSqpwSByoJIwDkgjoD3wD0tt8IZJLQG91SNLonkQREo%0ABz3JGc8dhjnr1r1SiuOrjalR32fdb/ed1HA0qS5d12eq+44vQvBg8OyCW20y%0AwurkbcXE1y6spC4JUeW23Jyevf0wB0XlavccST21oh6+Qpkf8GbAH/fJ6+1a%0AVFcc3Ko7zk2dtPkpq1OKX9fcVrSxgsg5iUl5CDJI7Fnc+5P8ug7VZoopJJKy%0ABtt3YUUUUxBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR%0ARRQAUUUUAFFFFABRRRQAUUUUAFFFFAFO60yC5kMwLwXHH7+Btr8evYj2ORVG%0A90i9vbdra4uLO7hZWX/SLU7wGUqfmVhg7WIyADya2qKnlSd1oXztrleq89Tz%0A/VfhlHq1zcXT3Vrb3E0vmEw2zYHygEY8zGCRuJxnJPNcvqfwv121DnTmS7US%0A7ABtiZl2qd/LdNxZcE54B5B49oorpp4mpDd8y89Tlq4anO9lyvvHR/gfO9z4%0AK8R2k8UEulSmWVJJESNlkJVMbj8pOOo+pIAyTWUdM1APIhsbkPGjSOvlNlUU%0AlWY8cAEEE9iCK+naK745tPrFHmyyeH2ZM+WKK+opLW3luIbiSCJ5od3lSMgL%0AR5GDtPUZHXFMubGzvGRrq0gnZFZVMsYYqGGGAz0BHB9RWn9rr+T8f+AZ/wBj%0AP+f8P+CfMFOVyhyPxHrX0qNC0hdm3SrEbEaNMW6fKjZ3KOOAdzZHfcfWov8A%0AhGNA/wCgHpn/AICR/wCFN5pTkrShoEcpqwalGdmfOJUONydR1X0+lR19Jf8A%0ACM6AOmiaaD6i1T/Css+F9P02TKaFYX1mf4TbRmaP6Ej5x168+56VnHNVT0cW%0A1+P/AAf69TWWTurqpJS/B+nb027djwGnxKC+W+6vJ+le+m18JBf+QHaeZj/V%0Af2X85Ppt2Zp9j4X0yaZ7y60OwhV1Cx2v2eMhF65bAwWP44HA6nJPOITjywWr%0A/D+ugU8kqU5KdRqy6d/+B38jwBEkuJ1REZ5JGAVUXJYk9AO5r6F8IwSW+hQJ%0AtjitwgEUC2b27xnnduDOxJJ7/XrmrkXh3RIJUli0bT45EYMjpaoCpHIIOODW%0AlXPi8Yq0VCKskb4PBSoTc5yu2U9Qj1KSNBpt3aW7g/Obm2aYEewWRMfmazPB%0AwlXQHE7o8w1C+DuiFVZvtUuSAScDPbJ+prfrE8Kf8gef/sJX/wD6VzVwHom3%0ARRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWJa/8jzqv/YN%0Asv8A0bdVt1iWv/I86r/2DbL/ANG3VAG3RRRQAVXubG0vQBdWsE4XoJYw2Pzq%0AxRSaT0Y02ndEcMENtEIoIkijHRUUKB+AqSiimJu+rCiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACsTwp/yB5/+wlf/APpXNW3WJ4U/5A8//YSv/wD0%0ArmoA26KKKACiiigAooooAKKKKACiiigAooooAKKKKACiisC98Z6HYajcWE9x%0Acm5tyBKsNlPKEJUMAWRCOhB60Ab9FYupeK9I0qfybqebzBGJpBFbSS+TGejy%0AbVOwcfxYqTUPEml6aLbzZpJXuUMkMdrC87ugxlwqAnaMjnpQBrViWv8AyPOq%0A/wDYNsv/AEbdVp2N9a6nYw3tlMs1tMu6ORehFZlr/wAjzqv/AGDbL/0bdUAb%0AdFFFABRRRQAUUUUAFFV7K9h1CBpoCxRZpYTkY+aN2Rv/AB5TVigAooooAKKK%0AKACiq+oXsOmabdX9wWEFtC80hUZO1QScD6CrFABRRRQAUUUUAFFFV7m9htJ7%0AOGUtvu5jDFgZywR359PlRqALFFFFABRRRQAUUUUAFFV3vYY9SgsGLefNDJMg%0AxxtQoG5+si1YoAKKKKACiiigAooqvbXsN3PeQxFt9pMIZcjGGKI/Hr8rrQBY%0AooooAKKKKACiiigAoqvp97Dqem2t/bljBcwpNGWGDtYAjI+hqxQAUUUUAFFF%0AFABRVfUL2HTNNur+4LCC2heaQqMnaoJOB9BVigAooooAKKKKACiiq9zew2k9%0AnDKW33cxhiwM5YI78+nyo1AFiiiigAooooAKKKKACiq6XsMmpT2ClvPhhjmc%0AY42uXC8/WNqsUAFFFFABRRRQAVieFP8AkDz/APYSv/8A0rmrbrE8Kf8AIHn/%0AAOwlf/8ApXNQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZV3rFxbar%0AFZJouo3EblQbqIR+UmTgk5cNx1OB+dcnNaalpmneI9f0rxPCypdT3jW626NE%0ASgAMcjHLZAQL8pGPSvQaw7nwfoV3dTXE1mxM8glmiW4kWKVx/E8QbYx4HUHN%0AAGP4OuVvdT8T3d3Gsbzy28jo+Plia2QqD7ct+tYfwxE32+0+153/APCP232f%0Ad18rzZent939Pau41Lwto+r3LXF3bSGV4vJkMVxJF5qddrhGAcdeGzT7/wAN%0A6VqP2YzWzo1shjhe2meBkQgAqGjZTt4HHTigDL8CZ/s3Vcf6j+2L3yMfd2ea%0A3T2zurSvdDe51R9QttWvrCaSFIJPs6wsHVGdlyJI2wQZG6Y61fsbG10yxhsr%0AKFYbaFdsca9AKrX+v6NpU6wajq9hZzMu9Y7i5SNiuSMgMRxkH8qAKv8AYeo/%0A9DXrH/fq0/8AjFH9h6j/ANDXrH/fq0/+MVr29xDd28dxbTRzQyKGSSNgysD0%0AII4IqSgDE/sPUf8Aoa9Y/wC/Vp/8Yo/sPUf+hr1j/v1af/GK26KAMT+w9R/6%0AGvWP+/Vp/wDGKP7D1H/oa9Y/79Wn/wAYrbooA5208L3VjC0Vv4o1hEaWSUjy%0A7Q/O7l2PMHdmJ/Gp/wCw9R/6GvWP+/Vp/wDGK1Jby2gube2lnjSe4LCGNmAa%0AQqMnA74HNT0AYn9h6j/0Nesf9+rT/wCMUf2HqP8A0Nesf9+rT/4xW3RQBif2%0AHqP/AENesf8Afq0/+MUf2HqP/Q16x/36tP8A4xW3RQBzt74XutQsbiyuvFGs%0ASW9xE0UqeXaDcjDBGRBkcHtU/wDYeo/9DXrH/fq0/wDjFbdZ9jr2kapcy29h%0AqlndTRf6yOGdXZfqAaAKn9h6j/0Nesf9+rT/AOMUf2HqP/Q16x/36tP/AIxW%0A3RQBif2HqP8A0Nesf9+rT/4xR/Yeo/8AQ16x/wB+rT/4xW3RQBif2HqP/Q16%0Ax/36tP8A4xUE/he6uZraWbxRrDPaymWE+XaDa5RkzxBz8rsOfWuiqG6u7axt%0Anubu4it4Ixl5ZXCqo9yeBQBlf2HqP/Q16x/36tP/AIxR/Yeo/wDQ16x/36tP%0A/jFX9O1bTtYtzPpt9b3cQO0vBIHAPocdDVygDE/sPUf+hr1j/v1af/GKP7D1%0AH/oa9Y/79Wn/AMYrbooAxP7D1H/oa9Y/79Wn/wAYo/sPUf8Aoa9Y/wC/Vp/8%0AYrbooA51/C9099Fet4o1g3EUTxI/l2nCOVLDHkY5KL+X1qf+w9R/6GvWP+/V%0Ap/8AGK17i4htbeS4uJUihiUu8jnCqo5JJ9KerK6K6kFWGQR3FAGL/Yeo/wDQ%0A16x/36tP/jFH9h6j/wBDXrH/AH6tP/jFbdFAGJ/Yeo/9DXrH/fq0/wDjFH9h%0A6j/0Nesf9+rT/wCMVt0UAYn9h6j/ANDXrH/fq0/+MVBB4Xuraa5lh8Uawr3U%0AolmPl2h3OEVM8wcfKijj0roqz7LXNJ1K6mtbHU7O5uIf9ZFDMrsv1AP4UAVP%0A7D1H/oa9Y/79Wn/xij+w9R/6GvWP+/Vp/wDGK26KAMT+w9R/6GvWP+/Vp/8A%0AGKP7D1H/AKGvWP8Av1af/GK26KAMT+w9R/6GvWP+/Vp/8Yo/sPUf+hr1j/v1%0Aaf8AxituigDnbLwvdafY29la+KNYjt7eJYok8u0O1FGAMmDJ4Hep/wCw9R/6%0AGvWP+/Vp/wDGK1be6gu0Z7eZJVR2jYo2QGU4I+oPFTUAYn9h6j/0Nesf9+rT%0A/wCMUf2HqP8A0Nesf9+rT/4xW3RQBif2HqP/AENesf8Afq0/+MUf2HqP/Q16%0Ax/36tP8A4xW3RQBzt74XutQsbiyuvFGsSW9xE0UqeXaDcjDBGRBkcHtU/wDY%0Aeo/9DXrH/fq0/wDjFXdS1nS9GjSTU9QtbNXOEM8qpuPtk81agnhuoEnt5Ulh%0AkG5JI2DKw9QR1FAGR/Yeo/8AQ16x/wB+rT/4xR/Yeo/9DXrH/fq0/wDjFbdF%0AAGJ/Yeo/9DXrH/fq0/8AjFH9h6j/ANDXrH/fq0/+MVt0UAYn9h6j/wBDXrH/%0AAH6tP/jFQT+F7q5mtpZvFGsM9rKZYT5doNrlGTPEHPyuw59a6Ks+bXtIt9TT%0ATZtUs4758bbd51Ehz0+XOeaAKn9h6j/0Nesf9+rT/wCMUf2HqP8A0Nesf9+r%0AT/4xW3RQBif2HqP/AENesf8Afq0/+MUf2HqP/Q16x/36tP8A4xW3RQBif2Hq%0AP/Q16x/36tP/AIxR/Yeo/wDQ16x/36tP/jFbdFAHOr4Xukvpb1fFGsC4liSJ%0A38u05RCxUY8jHBdvz+lT/wBh6j/0Nesf9+rT/wCMVqS3ltBc29tLPGk9wWEM%0AbMA0hUZOB3wOanoAxP7D1H/oa9Y/79Wn/wAYo/sPUf8Aoa9Y/wC/Vp/8Yrbo%0AoAxP7D1H/oa9Y/79Wn/xij+w9R/6GvWP+/Vp/wDGK26KAMT+w9R/6GvWP+/V%0Ap/8AGKvaVpqaTYC0jmlm/eSStLNt3O8js7E7QByzHoAKtTTRW8Ek88iRQxqX%0AeR2CqqgZJJPQAVQsfEOiapcfZ9P1jT7ubaW8u3uUkbA74BJxQBpUUUUAFFFF%0AABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBn6trVnosMct59o2yNtXyb%0AaSY568hFJH41y0uma3qHiDUdb01dIkguLa3W3XUIZGfaqltpX5TGSXPXJ6cV%0A3Nc/e+FI7jUbq9tNU1DTnvVVbtbRkAmwMA/MpKtjA3Lg4FAFvw1qseueHLHU%0Aorf7Os8efJ4whBwQMdgQa1arafYW2l6fBY2cQitoEEcaDsBVmgAooooAKxtS%0A8UaXpN6LS8a6WTAYslnK6AHuXVSo/E8Vs0UAeQw+J9H1Lxl4e1+61e1E8lxM%0AqwecD9kgMLhFb0ZmILe5A7V69VC80m3vdR06+kaQS2EjyRBSNrFkKHdx6Mem%0AOav0AFFFFABRRRQBiXOtaTe3txoNx9r3yI8Uv+jTJHt2kt+9ChRxnkN+tc/f%0AwNpfjHwyZbK3tdIt3e0sZLZ97s7xkKkgIG1cBiMbuQCSK7W8tIL+yns7qMSW%0A88bRyIejKRgj8qwrLwhDbXdlNdapqGoR2BzZwXToUhONob5VBdgCQCxOM+vN%0AAHR0UUUAFFFFADXcRxs7Z2qCTgZP5Vzc2qeHfEVobm6aZbXS5Uuna7t5LdFY%0ABgpO9QGA5455x7V01YviTw3B4mtLe2uby7tkgnWcfZmQbmXpuDKwIB5xjrig%0ADN8NRTal4h1LxMLZrOzvIYoLeN12vOqFj5zr2zuwuedorrKytK0abTJpJJdb%0A1PUA67Ql40ZVfcbUXmtWgAooooAKqalqVvpNm13deb5SkA+VC8rc/wCygJ/S%0ArdFAHEeNbey8TeAr/UhNe/ZoLK4ljgYPCruqnazowDHaVyAeO+DxXX6f/wAg%0A21/64p/IUzVNPi1bSbzTp2dYbuF4XaMgMFYEHGQRnn0qxDEsEEcSklUUKM9c%0AAYoAfRRRQAUUUUAYfjOee18E65PbkrMljKVZeq/KeR9OtYeq2sGmx+B3sYUj%0AeK+itkKD/lk8L71+hwD+Ga7SeCK6t5bedBJDKhR0boykYIP4Vg6b4Rt7C8s5%0A5dRv71LBStlDcuhW3BG3jCgscZALEkA0AdFRRRQAUUUUAFVNSsRqVhJaG5uL%0AdZMBpLd9j4yCQG7Z6cc4PGKt0UAcp8PraGz0C7tbdNkMOp3kca5J2qJmAHPs%0AK6uqOlaVBpFvNDbvIyzXEtyxkIJDSOXYDAHGScVeoAKKKKACiiigDn9cm0fR%0AL4a3dxvNqMsQs7aFBvkl5LbI19STyfTGeBS+DtJudH0AQ3aRxTzTy3LW8Ryl%0Av5jlvLX2XOPzqPVfCEWqa8msjWNUs7qODyE+zPHtRc5OAyNgnufYVr6ZYvp1%0Ap5El/d3zbi3nXRUv9PlVRj8KALlFFFABRRRQAVwXjXSvs/hbVBpdjbtZXEjX%0AepXAmLTphgztGp4LAA4yw24AA7V3tcxc+CbW4a8iTUtQg069laW6sInQRSs3%0A3uSpdQ3OQrAHNAHRW08d1axXELbopUDofUEZFS02ONIo1jjUKiAKqgYAA6Cn%0AUAFFFFABUdxcRWltLczNsiiQyO2OigZJ/KpKKAPIYfE+j6l4y8Pa/davaieS%0A4mVYPOB+yQGFwit6MzEFvcgdq9eqheaTb3uo6dfSNIJbCR5IgpG1iyFDu49G%0APTHNX6ACiiigAooooAw/GFjdan4T1HT7JoluLqPyVMr7FwxAbJwf4SazdOud%0AQ0jxLZaVqdnpW2+hkNtPp8LRlDGAWRgxORgjBBHTpXQavpNrrelzafeqxhlx%0Ako21lIIIZT2IIBH0qlp3htLTU11K71G91K8jiMMMl2U/dISMhQiqMnAyxGTi%0AgDbooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK%0AACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA%0AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo%0AoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii%0AigAooooAKKKKAP/Z"></p></div><div class="reward-container"><div></div><button onclick='var qr=document.getElementById("qr");qr.style.display="none"===qr.style.display?"block":"none"'>打赏</button><div id="qr" style="display:none"><div style="display:inline-block"><img src="/images/wechatpay.png" alt="青酒 微信支付"><p>微信支付</p></div><div style="display:inline-block"><img src="/images/alipay.png" alt="青酒 支付宝"><p>支付宝</p></div></div></div><div><ul class="post-copyright"><li class="post-copyright-author"><strong>本文作者: </strong>青酒</li><li class="post-copyright-link"><strong>本文链接:</strong> <a href="https://qingjiu.life/%E7%A7%91%E7%A0%94%E6%96%B9%E6%B3%95%E8%AE%BA%E7%AD%94%E6%A1%88.html" title="科研方法论答案">https://qingjiu.life/科研方法论答案.html</a></li><li class="post-copyright-license"><strong>版权声明: </strong>本博客所有文章除特别声明外,均采用 <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/zh-CN" rel="noopener" target="_blank"><i class="fab fa-fw fa-creative-commons"></i>BY-NC-SA</a> 许可协议。转载请注明出处!</li></ul></div><footer class="post-footer"><div class="post-tags"><a href="/tags/%E5%9F%BA%E7%A1%80%E7%90%86%E8%AE%BA/" rel="tag"># 基础理论</a></div><div class="post-widgets"><div class="wp_rating"><div id="wpac-rating"></div></div></div><div class="post-nav"><div class="post-nav-item"><a href="/Hexo%E9%85%8D%E7%BD%AE%E4%B9%8B%E6%95%B0%E5%AD%A6%E5%85%AC%E5%BC%8F(Mathjax).html" rel="prev" title="Hexo配置之数学公式(Mathjax)"><i class="fa fa-chevron-left"></i> Hexo配置之数学公式(Mathjax)</a></div><div class="post-nav-item"><a href="/%E6%8E%92%E5%BA%8F%E7%AE%97%E6%B3%95.html" rel="next" title="排序算法(更新中)">排序算法(更新中) <i class="fa fa-chevron-right"></i></a></div></div></footer></article></div><script>window.addEventListener('tabs:register', () => {
let { activeClass } = CONFIG.comments;
if (CONFIG.comments.storage) {
activeClass = localStorage.getItem('comments_active') || activeClass;
}
if (activeClass) {
let activeTab = document.querySelector(`a[href="#comment-${activeClass}"]`);
if (activeTab) {
activeTab.click();
}
}
});
if (CONFIG.comments.storage) {
window.addEventListener('tabs:click', event => {
if (!event.target.matches('.tabs-comment .tab-content .tab-pane')) return;
let commentClass = event.target.classList[1];
localStorage.setItem('comments_active', commentClass);
});
}</script></div><div class="toggle sidebar-toggle"><span class="toggle-line toggle-line-first"></span> <span class="toggle-line toggle-line-middle"></span> <span class="toggle-line toggle-line-last"></span></div><aside class="sidebar"><div class="sidebar-inner"><ul class="sidebar-nav motion-element"><li class="sidebar-nav-toc">文章目录</li><li class="sidebar-nav-overview">站点概览</li></ul><div class="post-toc-wrap sidebar-panel"><div class="post-toc motion-element"><ol class="nav"><li class="nav-item nav-level-3"><a class="nav-link" href="#%E7%AC%AC3%E7%AB%A0-%E6%95%B0%E5%80%BC%E8%AE%A1%E7%AE%97%E6%96%B9%E6%B3%95"><span class="nav-text">第3章 数值计算方法</span></a><ol class="nav-child"><li class="nav-item nav-level-4"><a class="nav-link" href="#3-1-%E5%B8%B8%E7%94%A8%E7%AE%97%E6%B3%95%E5%92%8C%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%BE%85%E5%8A%A9%E8%BD%AF%E4%BB%B6"><span class="nav-text">3.1 常用算法和计算机辅助软件</span></a><ol class="nav-child"><li class="nav-item nav-level-5"><a class="nav-link" href="#3-1-1%E3%80%90%E7%AE%80%E7%AD%94%E9%A2%98%E3%80%91"><span class="nav-text">3.1.1【简答题】</span></a></li><li class="nav-item nav-level-5"><a class="nav-link" href="#3-1-2%E3%80%90%E7%AE%80%E7%AD%94%E9%A2%98%E3%80%91"><span class="nav-text">3.1.2【简答题】</span></a></li></ol></li><li class="nav-item nav-level-4"><a class="nav-link" href="#3-2-%E7%BA%BF%E6%80%A7%E8%A7%84%E5%88%92%E6%A8%A1%E5%9E%8B%E7%9A%84%E6%B1%82%E8%A7%A3%E6%96%B9%E6%B3%95"><span class="nav-text">3.2 线性规划模型的求解方法</span></a><ol class="nav-child"><li class="nav-item nav-level-5"><a class="nav-link" href="#3-2-1%E3%80%90%E7%AE%80%E7%AD%94%E9%A2%98%E3%80%91"><span class="nav-text">3.2.1【简答题】</span></a></li><li class="nav-item nav-level-5"><a class="nav-link" href="#3-2-2%E3%80%90%E7%AE%80%E7%AD%94%E9%A2%98%E3%80%91"><span class="nav-text">3.2.2【简答题】</span></a></li></ol></li><li class="nav-item nav-level-4"><a class="nav-link" href="#3-3-%E9%9D%9E%E7%BA%BF%E6%80%A7%E8%A7%84%E5%88%92%E6%A8%A1%E5%9E%8B%E6%B1%82%E8%A7%A3%E6%96%B9%E6%B3%95"><span class="nav-text">3.3 非线性规划模型求解方法</span></a></li><li class="nav-item nav-level-4"><a class="nav-link" href="#3-4-%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B%E6%A8%A1%E5%9E%8B%E6%B1%82%E8%A7%A3%E6%96%B9%E6%B3%95"><span class="nav-text">3.4 微分方程模型求解方法</span></a></li><li class="nav-item nav-level-4"><a class="nav-link" href="#3-5-%E7%BB%9F%E8%AE%A1%E6%A8%A1%E5%9E%8B%E6%B1%82%E8%A7%A3%E6%96%B9%E6%B3%95"><span class="nav-text">3.5 统计模型求解方法</span></a></li></ol></li></ol></div></div><div class="site-overview-wrap sidebar-panel"><div class="site-author motion-element" itemprop="author" itemscope itemtype="http://schema.org/Person"><img class="site-author-image" itemprop="image" alt="青酒" src="/images/avatar.png"><p class="site-author-name" itemprop="name">青酒</p><div class="site-description" itemprop="description"></div></div><div class="site-state-wrap motion-element"><nav class="site-state"><div class="site-state-item site-state-posts"><a href="/archives/"><span class="site-state-item-count">7</span> <span class="site-state-item-name">日志</span></a></div><div class="site-state-item site-state-categories"><a href="/categories/"><span class="site-state-item-count">2</span> <span class="site-state-item-name">分类</span></a></div><div class="site-state-item site-state-tags"><a href="/tags/"><span class="site-state-item-count">8</span> <span class="site-state-item-name">标签</span></a></div></nav></div><div class="links-of-author motion-element"><span class="links-of-author-item"><a href="https://github.com/codinglibrary" title="GitHub → https://github.com/codinglibrary" rel="noopener" target="_blank"><i class="fab fa-github fa-fw"></i>GitHub</a> </span><span class="links-of-author-item"><a href="mailto:[email protected]" title="E-Mail → mailto:[email protected]" rel="noopener" target="_blank"><i class="fa fa-envelope fa-fw"></i>E-Mail</a> </span><span class="links-of-author-item"><a href="/qingjiu.life/atom.xml" title="RSS → qingjiu.life/atom.xml"><i class="fa fa-rss fa-fw"></i>RSS</a></span></div></div><div class="back-to-top motion-element"><i class="fa fa-arrow-up"></i> <span>0%</span></div></div></aside><div id="sidebar-dimmer"></div></div></main><footer class="footer"><div class="footer-inner"><div class="copyright">© <span itemprop="copyrightYear">2022</span> <span class="with-love"><i class="fa fa-heart"></i> </span><span class="author" itemprop="copyrightHolder">青酒</span></div><div class="powered-by">由 <a href="https://hexo.io/" class="theme-link" rel="noopener" target="_blank">Hexo</a> & <a href="https://theme-next.org/" class="theme-link" rel="noopener" target="_blank">NexT.Gemini</a> 强力驱动</div><div class="busuanzi-count"><script async src="https://busuanzi.ibruce.info/busuanzi/2.3/busuanzi.pure.mini.js"></script><span class="post-meta-item" id="busuanzi_container_site_uv" style="display:none"><span class="post-meta-item-icon"><i class="fa fa-user"></i> </span><span class="site-uv" title="总访客量"><span id="busuanzi_value_site_uv"></span> </span></span><span class="post-meta-divider">|</span> <span class="post-meta-item" id="busuanzi_container_site_pv" style="display:none"><span class="post-meta-item-icon"><i class="fa fa-eye"></i> </span><span class="site-pv" title="总访问量"><span id="busuanzi_value_site_pv"></span></span></span></div></div></footer></div><script color="0,0,255" opacity="0.5" zindex="-1" count="20" src="/lib/canvas-nest/canvas-nest.min.js"></script><script src="/lib/anime.min.js"></script><script src="/lib/velocity/velocity.min.js"></script><script src="/lib/velocity/velocity.ui.min.js"></script><script src="/js/utils.js"></script><script src="/js/motion.js"></script><script src="/js/schemes/pisces.js"></script><script src="/js/next-boot.js"></script><script>!function(){var e,t,o,n,r,a=document.getElementsByTagName("link");if(0<a.length)for(i=0;i<a.length;i++)"canonical"==a[i].rel.toLowerCase()&&a[i].href&&(e=a[i].href);t=e?e.split(":")[0]:window.location.protocol.split(":")[0],e=e||window.location.href,window,n=e,r=document.referrer,/([http|https]:\/\/[a-zA-Z0-9\_\.]+\.baidu\.com)/gi.test(n)||(o="https"===String(t).toLowerCase()?"https://sp0.baidu.com/9_Q4simg2RQJ8t7jm9iCKT-xh_/s.gif":"//api.share.baidu.com/s.gif",r?(o+="?r="+encodeURIComponent(document.referrer),n&&(o+="&l="+n)):n&&(o+="?l="+n),(new Image).src=o)}()</script><script>if (CONFIG.page.isPost) {
wpac_init = window.wpac_init || [];
wpac_init.push({
widget: 'Rating',
id : ,
el : 'wpac-rating',
color : 'fc6423'
});
(function() {
if ('WIDGETPACK_LOADED' in window) return;
WIDGETPACK_LOADED = true;
var mc = document.createElement('script');
mc.type = 'text/javascript';
mc.async = true;
mc.src = '//embed.widgetpack.com/widget.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(mc, s.nextSibling);
})();
}</script><script>if (typeof MathJax === 'undefined') {
window.MathJax = {
loader: {
source: {
'[tex]/amsCd': '[tex]/amscd',
'[tex]/AMScd': '[tex]/amscd'
}
},
tex: {
inlineMath: {'[+]': [['$', '$']]},
tags: 'ams'
},
options: {
renderActions: {
findScript: [10, doc => {
document.querySelectorAll('script[type^="math/tex"]').forEach(node => {
const display = !!node.type.match(/; *mode=display/);
const math = new doc.options.MathItem(node.textContent, doc.inputJax[0], display);
const text = document.createTextNode('');
node.parentNode.replaceChild(text, node);
math.start = {node: text, delim: '', n: 0};
math.end = {node: text, delim: '', n: 0};
doc.math.push(math);
});
}, '', false],
insertedScript: [200, () => {
document.querySelectorAll('mjx-container').forEach(node => {
let target = node.parentNode;
if (target.nodeName.toLowerCase() === 'li') {
target.parentNode.classList.add('has-jax');
}
});
}, '', false]
}
}
};
(function () {
var script = document.createElement('script');
script.src = '//cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js';
script.defer = true;
document.head.appendChild(script);
})();
} else {
MathJax.startup.document.state(0);
MathJax.texReset();
MathJax.typeset();
}</script></body></html>