-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vaesan.py
225 lines (161 loc) · 7.96 KB
/
train_vaesan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import json
import torch
import torch.optim as optim
import models.vaesan as vaesan
import utils.losses as losses
import options.option_vaesan as option_vaesan
import utils.utils_model as utils_model
from dataset import dataset_VAESAN, dataset_TM_flag_eval
import utils.eval_mola as eval_mola
from options.get_eval_option import get_opt
from models.evaluator_wrapper import EvaluatorModelWrapper
import warnings
warnings.filterwarnings('ignore')
from utils.word_vectorizer import WordVectorizer
import numpy as np
def update_lr_warm_up(optimizer, nb_iter, warm_up_iter, lr):
current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
for param_group in optimizer.param_groups:
param_group["lr"] = current_lr
return optimizer, current_lr
##### ---- Exp dirs ---- #####
args = option_vaesan.get_args_parser()
torch.manual_seed(args.seed)
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
os.makedirs(args.out_dir, exist_ok = True)
##### ---- Logger ---- #####
logger = utils_model.get_logger(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
w_vectorizer = WordVectorizer('./glove', 'our_vab')
if args.dataname == 'kit' :
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt'
args.nb_joints = 21
else :
dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
args.nb_joints = 22
logger.info(f'Training on {args.dataname}, motions are with {args.nb_joints} joints')
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
##### ---- Dataloader ---- #####
train_loader = dataset_VAESAN.DATALoader(args.dataname,
args.batch_size,
window_size=args.window_size,
unit_length=2**args.down_t)
train_loader_iter = dataset_VAESAN.cycle(train_loader)
val_loader = dataset_TM_flag_eval.DATALoader(args.dataname, False,
32,
w_vectorizer,
unit_length=2**args.down_t)
##### ---- Network ---- #####
net = vaesan.HumanVAESAN(args, ## use args to define different parameters in different quantizers
args.latent_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate,
args.vae_act,
args.vae_norm)
if args.resume_vae :
logger.info('loading checkpoint from {}'.format(args.resume_vae))
ckpt = torch.load(args.resume_vae, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
net.train()
net.cuda()
##### ---- Optimizer & Scheduler ---- #####
g_optimizer = optim.AdamW(net.vae.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay)
g_scheduler = torch.optim.lr_scheduler.MultiStepLR(g_optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
d_optimizer = optim.AdamW(net.discriminator.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay)
d_scheduler = torch.optim.lr_scheduler.MultiStepLR(d_optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
Loss = losses.ReConsLossMask(args.recons_loss, args.nb_joints)
##### ------ warm-up ------- #####
avg_recons, avg_kl = 0., 0.
avg_gen, avg_disc = 0., 0.
for nb_iter in range(1, args.warm_up_iter):
g_optimizer, current_lr = update_lr_warm_up(g_optimizer, nb_iter, args.warm_up_iter, args.lr)
gt_motion = next(train_loader_iter)
if np.isnan(gt_motion).any():
continue
gt_motion = gt_motion.cuda().float() # (bs, 64, dim)
if args.decoder_output == 'except_rot':
nb_joints = 21 if args.dataname == 'kit' else 22
gt_motion = torch.cat((gt_motion[:, :, :(4+(nb_joints-1)*3)], gt_motion[:, :, (4+(nb_joints-1)*9):]), dim=2)
pred_motion, loss_kl = net(gt_motion)
loss_motion = Loss(pred_motion, gt_motion)
loss_vel = Loss.forward_vel(pred_motion, gt_motion)
#===============================
# Generator training part
#===============================
vae_loss = loss_motion + args.kl_weight * loss_kl + args.loss_vel * loss_vel
g_loss = args.gan_weight*net.adversarial(pred_motion, target='gen', flg_train=True)
g_loss += vae_loss
g_optimizer.zero_grad()
g_loss.backward()
g_optimizer.step()
#===============================
# Discriminator training part
#===============================
d_loss = args.gan_weight*net.adversarial(gt_motion, target='real', flg_train=True)
d_loss += args.gan_weight*net.adversarial(pred_motion.detach(), target='fake', flg_train=True)
d_optimizer.zero_grad()
d_loss.backward()
d_optimizer.step()
avg_recons += loss_motion.item()
avg_kl += loss_kl.item()
avg_gen += g_loss.item()
avg_disc += d_loss.item()
if nb_iter % args.print_iter == 0 :
avg_recons /= args.print_iter
avg_kl /= args.print_iter
avg_gen /= args.print_iter
avg_disc /= args.print_iter
logger.info(f"Warmup. Iter {nb_iter} : lr {current_lr:.5f} \t kl. {avg_kl:.5f} \t Recons. {avg_recons:.5f} \t Gen_loss. {avg_gen:.5f} \t Disc_loss. {avg_disc:.5f}" )
avg_recons, avg_kl = 0., 0.
##### ---- Training ---- #####
avg_recons, avg_kl = 0., 0.
best_mpjpe, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, logger = eval_mola.evaluation_vae(args.out_dir, val_loader, net, logger, 0, best_mpjpe=10000, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper)
for nb_iter in range(1, args.total_iter + 1):
gt_motion = next(train_loader_iter)
if np.isnan(gt_motion).any():
continue
gt_motion = gt_motion.cuda().float() # bs, nb_joints, joints_dim, seq_len
if args.decoder_output == 'except_rot':
nb_joints = 21 if args.dataname == 'kit' else 22
gt_motion = torch.cat((gt_motion[:, :, :(4+(nb_joints-1)*3)], gt_motion[:, :, (4+(nb_joints-1)*9):]), dim=2)
pred_motion, loss_kl = net(gt_motion)
loss_motion = Loss(pred_motion, gt_motion)
loss_vel = Loss.forward_vel(pred_motion, gt_motion)
#===============================
# Generator training part
#===============================
vae_loss = loss_motion + args.kl_weight * loss_kl + args.loss_vel * loss_vel
g_loss = args.gan_weight*net.adversarial(pred_motion, target='gen', flg_train=True)
g_loss += vae_loss
g_optimizer.zero_grad()
g_loss.backward()
g_optimizer.step()
g_scheduler.step()
#===============================
# Discriminator training part
#===============================
d_loss = args.gan_weight*net.adversarial(gt_motion, target='real', flg_train=True)
d_loss += args.gan_weight*net.adversarial(pred_motion.detach(), target='fake', flg_train=True)
d_optimizer.zero_grad()
d_loss.backward()
d_optimizer.step()
d_scheduler.step()
avg_recons += loss_motion.item()
avg_kl += loss_kl.item()
avg_gen += g_loss.item()
avg_disc += d_loss.item()
if nb_iter % args.print_iter == 0 :
avg_recons /= args.print_iter
avg_kl /= args.print_iter
avg_gen /= args.print_iter
avg_disc /= args.print_iter
logger.info(f"Train. Iter {nb_iter} : \t kl. {avg_kl:.5f} \t Recons. {avg_recons:.5f} \t Gen_loss. {avg_gen:.5f} \t Disc_loss. {avg_disc:.5f}")
avg_recons, avg_kl = 0., 0.,
if nb_iter % args.eval_iter==0 :
best_mpjpe, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, logger = eval_mola.evaluation_vae(args.out_dir, val_loader, net, logger, nb_iter, best_mpjpe, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper=eval_wrapper)