forked from VisualComputingInstitute/triplet-reid
-
Notifications
You must be signed in to change notification settings - Fork 1
/
embed.py
executable file
·249 lines (199 loc) · 9.81 KB
/
embed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#!/usr/bin/env python3
from argparse import ArgumentParser
from importlib import import_module
from itertools import count
import os
import h5py
import json
import numpy as np
import tensorflow as tf
from aggregators import AGGREGATORS
import common
parser = ArgumentParser(description='Embed a dataset using a trained network.')
# Required
parser.add_argument(
'--experiment_root', required=True,
help='Location used to store checkpoints and dumped data.')
parser.add_argument(
'--dataset', required=True,
help='Path to the dataset csv file to be embedded.')
# Optional
parser.add_argument(
'--image_root', type=common.readable_directory,
help='Path that will be pre-pended to the filenames in the train_set csv.')
parser.add_argument(
'--checkpoint', default=None,
help='Name of checkpoint file of the trained network within the experiment '
'root. Uses the last checkpoint if not provided.')
parser.add_argument(
'--loading_threads', default=8, type=common.positive_int,
help='Number of threads used for parallel data loading.')
parser.add_argument(
'--batch_size', default=256, type=common.positive_int,
help='Batch size used during evaluation, adapt based on available memory.')
parser.add_argument(
'--filename', default=None,
help='Name of the HDF5 file in which to store the embeddings, relative to'
' the `experiment_root` location. If omitted, appends `_embeddings.h5`'
' to the dataset name.')
parser.add_argument(
'--flip_augment', action='store_true', default=False,
help='When this flag is provided, flip augmentation is performed.')
parser.add_argument(
'--crop_augment', choices=['center', 'avgpool', 'five'], default=None,
help='When this flag is provided, crop augmentation is performed.'
'`avgpool` means the full image at the precrop size is used and '
'the augmentation is performed by the average pooling. `center` means'
'only the center crop is used and `five` means the four corner and '
'center crops are used. When not provided, by default the image is '
'resized to network input size.')
parser.add_argument(
'--aggregator', choices=AGGREGATORS.keys(), default=None,
help='The type of aggregation used to combine the different embeddings '
'after augmentation.')
parser.add_argument(
'--quiet', action='store_true', default=False,
help='Don\'t be so verbose.')
def flip_augment(image, fid, pid):
""" Returns both the original and the horizontal flip of an image. """
images = tf.stack([image, tf.reverse(image, [1])])
return images, [fid]*2, [pid]*2
def five_crops(image, crop_size):
""" Returns the central and four corner crops of `crop_size` from `image`. """
image_size = tf.shape(image)[:2]
crop_margin = tf.subtract(image_size, crop_size)
assert_size = tf.assert_non_negative(
crop_margin, message='Crop size must be smaller or equal to the image size.')
with tf.control_dependencies([assert_size]):
top_left = tf.floor_div(crop_margin, 2)
bottom_right = tf.add(top_left, crop_size)
center = image[top_left[0]:bottom_right[0], top_left[1]:bottom_right[1]]
top_left = image[:-crop_margin[0], :-crop_margin[1]]
top_right = image[:-crop_margin[0], crop_margin[1]:]
bottom_left = image[crop_margin[0]:, :-crop_margin[1]]
bottom_right = image[crop_margin[0]:, crop_margin[1]:]
return center, top_left, top_right, bottom_left, bottom_right
def main():
# Verify that parameters are set correctly.
args = parser.parse_args()
# Possibly auto-generate the output filename.
if args.filename is None:
basename = os.path.basename(args.dataset)
args.filename = os.path.splitext(basename)[0] + '_embeddings.h5'
args.filename = os.path.join(args.experiment_root, args.filename)
# Load the args from the original experiment.
args_file = os.path.join(args.experiment_root, 'args.json')
if os.path.isfile(args_file):
if not args.quiet:
print('Loading args from {}.'.format(args_file))
with open(args_file, 'r') as f:
args_resumed = json.load(f)
# Add arguments from training.
for key, value in args_resumed.items():
args.__dict__.setdefault(key, value)
# A couple special-cases and sanity checks
if (args_resumed['crop_augment']) == (args.crop_augment is None):
print('WARNING: crop augmentation differs between training and '
'evaluation.')
args.image_root = args.image_root or args_resumed['image_root']
else:
raise IOError('`args.json` could not be found in: {}'.format(args_file))
# Check a proper aggregator is provided if augmentation is used.
if args.flip_augment or args.crop_augment == 'five':
if args.aggregator is None:
print('ERROR: Test time augmentation is performed but no aggregator'
'was specified.')
exit(1)
else:
if args.aggregator is not None:
print('ERROR: No test time augmentation that needs aggregating is '
'performed but an aggregator was specified.')
exit(1)
if not args.quiet:
print('Evaluating using the following parameters:')
for key, value in sorted(vars(args).items()):
print('{}: {}'.format(key, value))
# Load the data from the CSV file.
_, data_fids = common.load_dataset(args.dataset, args.image_root)
net_input_size = (args.net_input_height, args.net_input_width)
pre_crop_size = (args.pre_crop_height, args.pre_crop_width)
# Setup a tf Dataset containing all images.
dataset = tf.data.Dataset.from_tensor_slices(data_fids)
# Convert filenames to actual image tensors.
dataset = dataset.map(
lambda fid: common.fid_to_image(
fid, 'dummy', image_root=args.image_root,
image_size=pre_crop_size if args.crop_augment else net_input_size),
num_parallel_calls=args.loading_threads)
# Augment the data if specified by the arguments.
# `modifiers` is a list of strings that keeps track of which augmentations
# have been applied, so that a human can understand it later on.
modifiers = ['original']
if args.flip_augment:
dataset = dataset.map(flip_augment)
dataset = dataset.apply(tf.contrib.data.unbatch())
modifiers = [o + m for m in ['', '_flip'] for o in modifiers]
if args.crop_augment == 'center':
dataset = dataset.map(lambda im, fid, pid:
(five_crops(im, net_input_size)[0], fid, pid))
modifiers = [o + '_center' for o in modifiers]
elif args.crop_augment == 'five':
dataset = dataset.map(lambda im, fid, pid:
(tf.stack(five_crops(im, net_input_size)), [fid]*5, [pid]*5))
dataset = dataset.apply(tf.contrib.data.unbatch())
modifiers = [o + m for o in modifiers for m in [
'_center', '_top_left', '_top_right', '_bottom_left', '_bottom_right']]
elif args.crop_augment == 'avgpool':
modifiers = [o + '_avgpool' for o in modifiers]
else:
modifiers = [o + '_resize' for o in modifiers]
# Group it back into PK batches.
dataset = dataset.batch(args.batch_size)
# Overlap producing and consuming.
dataset = dataset.prefetch(1)
images, _, _ = dataset.make_one_shot_iterator().get_next()
# Create the model and an embedding head.
model = import_module('nets.' + args.model_name)
head = import_module('heads.' + args.head_name)
endpoints, body_prefix = model.endpoints(images, is_training=False)
with tf.name_scope('head'):
endpoints = head.head(endpoints, args.embedding_dim, is_training=False)
with h5py.File(args.filename, 'w') as f_out, tf.Session() as sess:
# Initialize the network/load the checkpoint.
if args.checkpoint is None:
checkpoint = tf.train.latest_checkpoint(args.experiment_root)
else:
checkpoint = os.path.join(args.experiment_root, args.checkpoint)
if not args.quiet:
print('Restoring from checkpoint: {}'.format(checkpoint))
tf.train.Saver().restore(sess, checkpoint)
# Go ahead and embed the whole dataset, with all augmented versions too.
emb_storage = np.zeros(
(len(data_fids) * len(modifiers), args.embedding_dim), np.float32)
for start_idx in count(step=args.batch_size):
try:
emb = sess.run(endpoints['emb'])
print('\rEmbedded batch {}-{}/{}'.format(
start_idx, start_idx + len(emb), len(emb_storage)),
flush=True, end='')
emb_storage[start_idx:start_idx + len(emb)] = emb
except tf.errors.OutOfRangeError:
break # This just indicates the end of the dataset.
print()
if not args.quiet:
print("Done with embedding, aggregating augmentations...", flush=True)
if len(modifiers) > 1:
# Pull out the augmentations into a separate first dimension.
emb_storage = emb_storage.reshape(len(data_fids), len(modifiers), -1)
emb_storage = emb_storage.transpose((1,0,2)) # (Aug,FID,128D)
# Store the embedding of all individual variants too.
emb_dataset = f_out.create_dataset('emb_aug', data=emb_storage)
# Aggregate according to the specified parameter.
emb_storage = AGGREGATORS[args.aggregator](emb_storage)
# Store the final embeddings.
emb_dataset = f_out.create_dataset('emb', data=emb_storage)
# Store information about the produced augmentation and in case no crop
# augmentation was used, if the images are resized or avg pooled.
f_out.create_dataset('augmentation_types', data=np.asarray(modifiers, dtype='|S'))
if __name__ == '__main__':
main()