forked from PolymathicAI/multiple_physics_pretraining
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_basic.py
554 lines (508 loc) · 28.8 KB
/
train_basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
import argparse
import os
import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.distributed as dist
import torch.cuda.amp as amp
from torch.nn.parallel import DistributedDataParallel
from einops import rearrange
from ruamel.yaml import YAML
from ruamel.yaml.comments import CommentedMap as ruamelDict
from dadaptation import DAdaptAdam, DAdaptAdan
from adan_pytorch import Adan
from collections import OrderedDict
import wandb
import pickle as pkl
import gc
from torchinfo import summary
from collections import defaultdict
try:
from data_utils.datasets import get_data_loader, DSET_NAME_TO_OBJECT
from models.avit import build_avit
from utils import logging_utils
from utils.YParams import YParams
except:
from .data_utils.datasets import get_data_loader, DSET_NAME_TO_OBJECT
from .models.avit import build_avit
from .utils import logging_utils
from .utils.YParams import YParams
def add_weight_decay(model, weight_decay=1e-5, inner_lr=1e-3, skip_list=()):
""" From Ross Wightman at:
https://discuss.pytorch.org/t/weight-decay-in-the-optimizers-is-a-bad-idea-especially-with-batchnorm/16994/3
Goes through the parameter list and if the squeeze dim is 1 or 0 (usually means bias or scale)
then don't apply weight decay.
"""
decay = []
no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue
if (len(param.squeeze().shape) <= 1 or name in skip_list):
no_decay.append(param)
else:
decay.append(param)
return [
{'params': no_decay, 'weight_decay': 0.,},
{'params': decay, 'weight_decay': weight_decay}]
class Trainer:
def __init__(self, params, global_rank, local_rank, device, sweep_id=None):
self.device = device
self.params = params
self.global_rank = global_rank
self.local_rank = local_rank
self.world_size = int(os.environ.get("WORLD_SIZE", 1))
self.sweep_id = sweep_id
self.log_to_screen = params.log_to_screen
# Basic setup
self.train_loss = nn.MSELoss()
self.startEpoch = 0
self.epoch = 0
self.mp_type = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.half
self.iters = 0
self.initialize_data(self.params)
print(f"Initializing model on rank {self.global_rank}")
self.initialize_model(self.params)
self.initialize_optimizer(self.params)
if params.resuming:
print("Loading checkpoint %s"%params.checkpoint_path)
self.restore_checkpoint(params.checkpoint_path)
if params.resuming == False and params.pretrained:
print("Starting from pretrained model at %s"%params.pretrained_ckpt_path)
self.restore_checkpoint(params.pretrained_ckpt_path)
self.iters = 0
self.startEpoch = 0
# Do scheduler after checking for resume so we don't warmup every time
self.initialize_scheduler(self.params)
def single_print(self, *text):
if self.global_rank == 0 and self.log_to_screen:
print(' '.join([str(t) for t in text]))
def initialize_data(self, params):
if params.tie_batches:
in_rank = 0
else:
in_rank = self.global_rank
if self.log_to_screen:
print(f"Initializing data on rank {self.global_rank}")
self.train_data_loader, self.train_dataset, self.train_sampler = get_data_loader(params, params.train_data_paths,
dist.is_initialized(), split='train', rank=in_rank, train_offset=self.params.embedding_offset)
self.valid_data_loader, self.valid_dataset, _ = get_data_loader(params, params.valid_data_paths,
dist.is_initialized(),
split='val', rank=in_rank)
if dist.is_initialized():
self.train_sampler.set_epoch(0)
def initialize_model(self, params):
if self.params.model_type == 'avit':
self.model = build_avit(params).to(device)
if self.params.compile:
print('WARNING: BFLOAT NOT SUPPORTED IN SOME COMPILE OPS SO SWITCHING TO FLOAT16')
self.mp_type = torch.half
self.model = torch.compile(self.model)
if dist.is_initialized():
self.model = DistributedDataParallel(self.model, device_ids=[self.local_rank],
output_device=[self.local_rank], find_unused_parameters=True)
self.single_print(f'Model parameter count: {sum([p.numel() for p in self.model.parameters()])}')
def initialize_optimizer(self, params):
parameters = add_weight_decay(self.model, self.params.weight_decay) # Dont use weight decay on bias/scaling terms
if params.optimizer == 'adam':
if self.params.learning_rate < 0:
self.optimizer = DAdaptAdam(parameters, lr=1., growth_rate=1.05, log_every=100, decouple=True )
else:
self.optimizer = optim.AdamW(parameters, lr=params.learning_rate)
elif params.optimizer == 'adan':
if self.params.learning_rate < 0:
self.optimizer = DAdaptAdan(parameters, lr=1., growth_rate=1.05, log_every=100)
else:
self.optimizer = Adan(parameters, lr=params.learning_rate)
elif params.optimizer == 'sgd':
self.optimizer = optim.SGD(self.model.parameters(), lr=params.learning_rate, momentum=0.9)
else:
raise ValueError(f"Optimizer {params.optimizer} not supported")
self.gscaler = amp.GradScaler(enabled= (self.mp_type == torch.half and params.enable_amp))
def initialize_scheduler(self, params):
if params.scheduler_epochs > 0:
sched_epochs = params.scheduler_epochs
else:
sched_epochs = params.max_epochs
if params.scheduler == 'cosine':
if self.params.learning_rate < 0:
self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer,
last_epoch = (self.startEpoch*params.epoch_size) - 1,
T_max=sched_epochs*params.epoch_size,
eta_min=params.learning_rate / 100)
else:
k = params.warmup_steps
if (self.startEpoch*params.epoch_size) < k:
warmup = torch.optim.lr_scheduler.LinearLR(self.optimizer, start_factor=.01, end_factor=1.0, total_iters=k)
decay = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer, eta_min=params.learning_rate / 100, T_max=sched_epochs)
self.scheduler = torch.optim.lr_scheduler.SequentialLR(self.optimizer, [warmup, decay], [k], last_epoch=(params.epoch_size*self.startEpoch)-1)
else:
self.scheduler = None
def save_checkpoint(self, checkpoint_path, model=None):
""" Save model and optimizer to checkpoint """
if not model:
model = self.model
torch.save({'iters': self.epoch*self.params.epoch_size, 'epoch': self.epoch, 'model_state': model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict()}, checkpoint_path)
def restore_checkpoint(self, checkpoint_path):
""" Load model/opt from path """
checkpoint = torch.load(checkpoint_path, map_location='cuda:{}'.format(self.local_rank))
if 'model_state' in checkpoint:
model_state = checkpoint['model_state']
else:
model_state = checkpoint
try: # Try to load with DDP Wrapper
self.model.load_state_dict(model_state)
except: # If that fails, either try to load into module or strip DDP prefix
if hasattr(self.model, 'module'):
self.model.module.load_state_dict(model_state)
else:
new_state_dict = OrderedDict()
for key, val in model_state.items():
# Failing means this came from DDP - strip the DDP prefix
name = key[7:]
new_state_dict[name] = val
self.model.load_state_dict(new_state_dict)
if self.params.resuming: #restore checkpoint is used for finetuning as well as resuming. If finetuning (i.e., not resuming), restore checkpoint does not load optimizer state, instead uses config specified lr.
self.iters = checkpoint['iters']
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.startEpoch = checkpoint['epoch']
self.epoch = self.startEpoch
else:
self.iters = 0
if self.params.pretrained:
if self.params.freeze_middle:
self.model.module.freeze_middle()
elif self.params.freeze_processor:
self.model.module.freeze_processor()
else:
self.model.module.unfreeze()
# See how much we need to expand the projections
exp_proj = 0
# Iterate through the appended datasets and add on enough embeddings for all of them.
for add_on in self.params.append_datasets:
exp_proj += len(DSET_NAME_TO_OBJECT[add_on]._specifics()[2])
self.model.module.expand_projections(exp_proj)
checkpoint = None
self.model = self.model.to(self.device)
def train_one_epoch(self):
self.model.train()
self.epoch += 1
tr_time = 0
data_time = 0
data_start = time.time()
self.model.train()
logs = {'train_rmse': torch.zeros(1).to(self.device),
'train_nrmse': torch.zeros(1).to(self.device),
'train_l1': torch.zeros(1).to(self.device)}
steps = 0
last_grads = [torch.zeros_like(p) for p in self.model.parameters()]
grad_logs = defaultdict(lambda: torch.zeros(1, device=self.device))
grad_counts = defaultdict(lambda: torch.zeros(1, device=self.device))
loss_logs = defaultdict(lambda: torch.zeros(1, device=self.device))
loss_counts = defaultdict(lambda: torch.zeros(1, device=self.device))
self.single_print('train_loader_size', len(self.train_data_loader), len(self.train_dataset))
for batch_idx, data in enumerate(self.train_data_loader):
steps += 1
inp, file_index, field_labels, bcs, tar = map(lambda x: x.to(self.device), data)
dset_type = self.train_dataset.sub_dsets[file_index[0]].type
loss_counts[dset_type] += 1
inp = rearrange(inp, 'b t c h w -> t b c h w')
data_time += time.time() - data_start
dtime = time.time() - data_start
self.model.require_backward_grad_sync = ((1+batch_idx) % self.params.accum_grad == 0)
with amp.autocast(self.params.enable_amp, dtype=self.mp_type):
model_start = time.time()
output = self.model(inp, field_labels, bcs)
spatial_dims = tuple(range(output.ndim))[2:] # Assume 0, 1, 2 are T, B, C
residuals = output - tar
# Differentiate between log and accumulation losses
tar_norm = (1e-7 + tar.pow(2).mean(spatial_dims, keepdim=True))
raw_loss = ((residuals).pow(2).mean(spatial_dims, keepdim=True)
/ tar_norm)
# Scale loss for accum
loss = raw_loss.mean() / self.params.accum_grad
forward_end = time.time()
forward_time = forward_end-model_start
# Logging
with torch.no_grad():
logs['train_l1'] += F.l1_loss(output, tar)
log_nrmse = raw_loss.sqrt().mean()
logs['train_nrmse'] += log_nrmse # ehh, not true nmse, but close enough
loss_logs[dset_type] += loss.item()
logs['train_rmse'] += residuals.pow(2).mean(spatial_dims).sqrt().mean()
# Scaler is no op when not using AMP
self.gscaler.scale(loss).backward()
backward_end = time.time()
backward_time = backward_end - forward_end
# Only take step once per accumulation cycle
optimizer_step = 0
if self.model.require_backward_grad_sync:
self.gscaler.unscale_(self.optimizer)
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1)
self.gscaler.step(self.optimizer)
self.gscaler.update()
self.optimizer.zero_grad(set_to_none=True)
if self.scheduler is not None:
self.scheduler.step()
optimizer_step = time.time() - backward_end
tr_time += time.time() - model_start
if self.log_to_screen and batch_idx % self.params.log_interval == 0 and self.global_rank == 0:
print(f"Epoch {self.epoch} Batch {batch_idx} Train Loss {log_nrmse.item()}")
if self.log_to_screen:
print('Total Times. Batch: {}, Rank: {}, Data Shape: {}, Data time: {}, Forward: {}, Backward: {}, Optimizer: {}'.format(
batch_idx, self.global_rank, inp.shape, dtime, forward_time, backward_time, optimizer_step))
data_start = time.time()
logs = {k: v/steps for k, v in logs.items()}
# If distributed, do lots of logging things
if dist.is_initialized():
for key in sorted(logs.keys()):
dist.all_reduce(logs[key].detach())
logs[key] = float(logs[key]/dist.get_world_size())
for key in sorted(loss_logs.keys()):
dist.all_reduce(loss_logs[key].detach())
for key in sorted(grad_logs.keys()):
dist.all_reduce(grad_logs[key].detach())
for key in sorted(loss_counts.keys()):
dist.all_reduce(loss_counts[key].detach())
for key in sorted(grad_counts.keys()):
dist.all_reduce(grad_counts[key].detach())
for key in loss_logs.keys():
logs[f'{key}/train_nrmse'] = loss_logs[key] / loss_counts[key]
self.iters += steps
if self.global_rank == 0:
logs['iters'] = self.iters
self.single_print('all reduces executed!')
return tr_time, data_time, logs
def validate_one_epoch(self, full=False):
"""
Validates - for each batch just use a small subset to make it easier.
Note: need to split datasets for meaningful metrics, but TBD.
"""
# Don't bother with full validation set between epochs
self.model.eval()
if full:
cutoff = 999999999999
else:
cutoff = 40
self.single_print('STARTING VALIDATION!!!')
with torch.inference_mode():
# There's something weird going on when i turn this off.
with amp.autocast(False, dtype=self.mp_type):
field_labels = self.valid_dataset.get_state_names()
distinct_dsets = list(set([dset.title for dset_group in self.valid_dataset.sub_dsets
for dset in dset_group.get_per_file_dsets()]))
counts = {dset: 0 for dset in distinct_dsets}
logs = {} #
# Iterate through all folder specific datasets
for subset_group in self.valid_dataset.sub_dsets:
for subset in subset_group.get_per_file_dsets():
dset_type = subset.title
self.single_print('VALIDATING ON', dset_type)
# Create data loader for each
if self.params.use_ddp:
temp_loader = torch.utils.data.DataLoader(subset, batch_size=self.params.batch_size,
num_workers=self.params.num_data_workers,
sampler=torch.utils.data.distributed.DistributedSampler(subset,
drop_last=True)
)
else:
# Seed isn't important, just trying to mix up samples from different trajectories
temp_loader = torch.utils.data.DataLoader(subset, batch_size=self.params.batch_size,
num_workers=self.params.num_data_workers,
shuffle=True, generator= torch.Generator().manual_seed(0),
drop_last=True)
count = 0
for batch_idx, data in enumerate(temp_loader):
# Only do a few batches of each dataset if not doing full validation
if count > cutoff:
del(temp_loader)
break
count += 1
counts[dset_type] += 1
inp, bcs, tar = map(lambda x: x.to(self.device), data)
# Labels come from the trainset - useful to configure an extra field for validation sets not included
labels = torch.tensor(self.train_dataset.subset_dict.get(subset.get_name(), [-1]*len(self.valid_dataset.subset_dict[subset.get_name()])),
device=self.device).unsqueeze(0).expand(tar.shape[0], -1)
inp = rearrange(inp, 'b t c h w -> t b c h w')
output = self.model(inp, labels, bcs)
# I don't think this is the true metric, but PDE bench averages spatial RMSE over batches (MRMSE?) rather than root after mean
# And we want the comparison to be consistent
spatial_dims = tuple(range(output.ndim))[2:] # Assume 0, 1, 2 are T, B, C
residuals = output - tar
nmse = (residuals.pow(2).mean(spatial_dims, keepdim=True)
/ (1e-7 + tar.pow(2).mean(spatial_dims, keepdim=True))).sqrt()#.mean()
logs[f'{dset_type}/valid_nrmse'] = logs.get(f'{dset_type}/valid_nrmse',0) + nmse.mean()
logs[f'{dset_type}/valid_rmse'] = (logs.get(f'{dset_type}/valid_mse',0)
+ residuals.pow(2).mean(spatial_dims).sqrt().mean())
logs[f'{dset_type}/valid_l1'] = (logs.get(f'{dset_type}/valid_l1', 0)
+ residuals.abs().mean())
for i, field in enumerate(self.valid_dataset.subset_dict[subset.type]):
field_name = field_labels[field]
logs[f'{dset_type}/{field_name}_valid_nrmse'] = (logs.get(f'{dset_type}/{field_name}_valid_nrmse', 0)
+ nmse[:, i].mean())
logs[f'{dset_type}/{field_name}_valid_rmse'] = (logs.get(f'{dset_type}/{field_name}_valid_rmse', 0)
+ residuals[:, i:i+1].pow(2).mean(spatial_dims).sqrt().mean())
logs[f'{dset_type}/{field_name}_valid_l1'] = (logs.get(f'{dset_type}/{field_name}_valid_l1', 0)
+ residuals[:, i].abs().mean())
else:
del(temp_loader)
self.single_print('DONE VALIDATING - NOW SYNCING')
for k, v in logs.items():
dset_type = k.split('/')[0]
logs[k] = v/counts[dset_type]
logs['valid_nrmse'] = 0
for dset_type in distinct_dsets:
logs['valid_nrmse'] += logs[f'{dset_type}/valid_nrmse']/len(distinct_dsets)
if dist.is_initialized():
for key in sorted(logs.keys()):
dist.all_reduce(logs[key].detach()) # There was a bug with means when I implemented this - dont know if fixed
logs[key] = float(logs[key].item()/dist.get_world_size())
if 'rmse' in key:
logs[key] = logs[key]
self.single_print('DONE SYNCING - NOW LOGGING')
return logs
def train(self):
# This is set up this way based on old code to allow wandb sweeps
if self.params.log_to_wandb:
if self.sweep_id:
wandb.init(dir=self.params.experiment_dir)
hpo_config = wandb.config.as_dict()
self.params.update_params(hpo_config)
params = self.params
else:
wandb.init(dir=self.params.experiment_dir, config=self.params, name=self.params.name, group=self.params.group,
project=self.params.project, entity=self.params.entity, resume=True)
if self.sweep_id and dist.is_initialized():
param_file = f"temp_hpo_config_{os.environ['SLURM_JOBID']}.pkl"
if self.global_rank == 0:
with open(param_file, 'wb') as f:
pkl.dump(hpo_config, f)
dist.barrier() # Stop until the configs are written by hacky MPI sub
if self.global_rank != 0:
with open(param_file, 'rb') as f:
hpo_config = pkl.load(f)
dist.barrier() # Stop until the configs are written by hacky MPI sub
if self.global_rank == 0:
os.remove(param_file)
# If tuning batch size, need to go from global to local batch size
if 'batch_size' in hpo_config:
hpo_config['batch_size'] = int(hpo_config['batch_size'] // self.world_size)
self.params.update_params(hpo_config)
params = self.params
self.initialize_data(self.params) # This is the annoying redundant part - but the HPs need to be set from wandb
self.initialize_model(self.params)
self.initialize_optimizer(self.params)
self.initialize_scheduler(self.params)
if self.global_rank == 0:
summary(self.model)
if self.params.log_to_wandb:
wandb.watch(self.model)
self.single_print("Starting Training Loop...")
# Actually train now, saving checkpoints, logging time, and logging to wandb
best_valid_loss = 1.e6
for epoch in range(self.startEpoch, self.params.max_epochs):
if dist.is_initialized():
self.train_sampler.set_epoch(epoch)
start = time.time()
# with torch.autograd.detect_anomaly(check_nan=True):
tr_time, data_time, train_logs = self.train_one_epoch()
valid_start = time.time()
# Only do full validation set on last epoch - don't waste time
if epoch==self.params.max_epochs-1:
valid_logs = self.validate_one_epoch(True)
else:
valid_logs = self.validate_one_epoch()
post_start = time.time()
train_logs.update(valid_logs)
train_logs['time/train_time'] = valid_start-start
train_logs['time/train_data_time'] = data_time
train_logs['time/train_compute_time'] = tr_time
train_logs['time/valid_time'] = post_start-valid_start
if self.params.log_to_wandb:
wandb.log(train_logs)
gc.collect()
torch.cuda.empty_cache()
if self.global_rank == 0:
if self.params.save_checkpoint:
self.save_checkpoint(self.params.checkpoint_path)
if epoch % self.params.checkpoint_save_interval == 0:
self.save_checkpoint(self.params.checkpoint_path + f'_epoch{epoch}')
if valid_logs['valid_nrmse'] <= best_valid_loss:
self.save_checkpoint(self.params.best_checkpoint_path)
best_valid_loss = valid_logs['valid_nrmse']
cur_time = time.time()
self.single_print(f'Time for train {valid_start-start}. For valid: {post_start-valid_start}. For postprocessing:{cur_time-post_start}')
self.single_print('Time taken for epoch {} is {} sec'.format(epoch + 1, time.time()-start))
self.single_print('Train loss: {}. Valid loss: {}'.format(train_logs['train_nrmse'], valid_logs['valid_nrmse']))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--run_name", default='00', type=str)
parser.add_argument("--use_ddp", action='store_true', help='Use distributed data parallel')
parser.add_argument("--yaml_config", default='./config/multi_ds.yaml', type=str)
parser.add_argument("--config", default='basic_config', type=str)
parser.add_argument("--sweep_id", default=None, type=str, help='sweep config from ./configs/sweeps.yaml')
args = parser.parse_args()
params = YParams(os.path.abspath(args.yaml_config), args.config)
params.use_ddp = args.use_ddp
# Set up distributed training
local_rank = int(os.environ.get("LOCAL_RANK", 0))
global_rank = int(os.environ.get("RANK", 0))
world_size = int(os.environ.get("WORLD_SIZE", 1))
if args.use_ddp:
dist.init_process_group("nccl")
torch.cuda.set_device(local_rank) # Torch docs recommend just using device, but I had weird memory issues without setting this.
device = torch.device(local_rank) if torch.cuda.is_available() else torch.device("cpu")
# Modify params
params['batch_size'] = int(params.batch_size//world_size)
params['startEpoch'] = 0
if args.sweep_id:
jid = os.environ['SLURM_JOBID'] # so different sweeps dont resume
expDir = os.path.join(params.exp_dir, args.sweep_id, args.config, str(args.run_name), jid)
else:
expDir = os.path.join(params.exp_dir, args.config, str(args.run_name))
params['old_exp_dir'] = expDir # I dont remember what this was for but not removing it yet
params['experiment_dir'] = os.path.abspath(expDir)
params['checkpoint_path'] = os.path.join(expDir, 'training_checkpoints/ckpt.tar')
params['best_checkpoint_path'] = os.path.join(expDir, 'training_checkpoints/best_ckpt.tar')
params['old_checkpoint_path'] = os.path.join(params.old_exp_dir, 'training_checkpoints/best_ckpt.tar')
# Have rank 0 check for and/or make directory
if global_rank==0:
if not os.path.isdir(expDir):
os.makedirs(expDir)
os.makedirs(os.path.join(expDir, 'training_checkpoints/'))
params['resuming'] = True if os.path.isfile(params.checkpoint_path) else False
# WANDB things
params['name'] = str(args.run_name)
# params['group'] = params['group'] #+ args.config
# params['project'] = "pde_bench"
# params['entity'] = "flatiron-scipt"
if global_rank==0:
logging_utils.log_to_file(logger_name=None, log_filename=os.path.join(expDir, 'out.log'))
logging_utils.log_versions()
params.log()
if global_rank==0:
logging_utils.log_to_file(logger_name=None, log_filename=os.path.join(expDir, 'out.log'))
logging_utils.log_versions()
params.log()
params['log_to_wandb'] = (global_rank==0) and params['log_to_wandb']
params['log_to_screen'] = (global_rank==0) and params['log_to_screen']
torch.backends.cudnn.benchmark = False
if global_rank == 0:
hparams = ruamelDict()
yaml = YAML()
for key, value in params.params.items():
hparams[str(key)] = str(value)
with open(os.path.join(expDir, 'hyperparams.yaml'), 'w') as hpfile:
yaml.dump(hparams, hpfile )
trainer = Trainer(params, global_rank, local_rank, device, sweep_id=args.sweep_id)
if args.sweep_id and trainer.global_rank==0:
print(args.sweep_id, trainer.params.entity, trainer.params.project)
wandb.agent(args.sweep_id, function=trainer.train, count=1, entity=trainer.params.entity, project=trainer.params.project)
else:
trainer.train()
if params.log_to_screen:
print('DONE ---- rank %d'%global_rank)