-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
128 lines (105 loc) · 3.36 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import pandas as pd
import streamlit as st
import plotly.express as px
st.set_page_config(page_title="Sales Dashboard",
page_icon=":chart_with_upwards_trend:",
layout="wide"
)
# ---- READ EXCEL ----
@st.cache
def get_data_from_excel():
df = pd.read_excel(
io="supermarkt_sales.xlsx",
engine="openpyxl",
sheet_name="Sales",
skiprows=3,
usecols="B:R",
nrows=1000,
)
# Add 'hour' column to dataframe
df["hour"] = pd.to_datetime(df["Time"], format="%H:%M:%S").dt.hour
return df
df = get_data_from_excel()
###--- SIDEBAR ---
st.sidebar.header("Apply Filters")
city = st.sidebar.selectbox(
"Select City",
options=df["City"].unique(),
index = 0
)
customer_type = st.sidebar.multiselect(
"Select Customer Type",
options=df["Customer_type"].unique(),
default=df["Customer_type"].unique()
)
gender = st.sidebar.multiselect(
"Select Gender",
options=df["Gender"].unique(),
default=df["Gender"].unique()
)
df_filtered = df.query(
"City == @city & Customer_type ==@customer_type & Gender == @gender"
)
##---MAINPAGE----
st.title(":bar_chart: Sales Dashboard")
st.markdown("##")
## --- TOP KPI's
total_sales = int(df_filtered["Total"].sum())
average_rating = round(df_filtered["Rating"].mean(), 1)
star_rating = ":star:" * int(round(average_rating, 0))
average_sale_by_transaction = round(df_filtered["Total"].mean(), 2)
left_column, middle_column, right_column = st.columns(3)
with left_column:
st.subheader("Total Sales:")
st.subheader(f"US $ {total_sales:,}")
with middle_column:
st.subheader("Average Rating:")
st.subheader(f"{average_rating} {star_rating}")
with right_column:
st.subheader("Avg Sales Per Transaction:")
st.subheader(f"US $ {average_sale_by_transaction}")
st.markdown("""---""")
# SALES BY PRODUCT LINE [BAR CHART]
sales_by_product_line = (
df_filtered.groupby(by=["Product line"]).sum()[["Total"]].sort_values(by="Total")
)
fig_product_sales = px.bar(
sales_by_product_line,
x="Total",
y=sales_by_product_line.index,
orientation="h",
title="<b>Sales by Product Line</b>",
color_discrete_sequence=["#0083B8"] * len(sales_by_product_line),
template="plotly_white",
)
fig_product_sales.update_layout(
plot_bgcolor="rgba(0,0,0,0)",
xaxis=(dict(showgrid=False))
)
# SALES BY HOUR [BAR CHART]
sales_by_hour = df_filtered.groupby(by=["hour"]).sum()[["Total"]]
fig_hourly_sales = px.bar(
sales_by_hour,
x=sales_by_hour.index,
y="Total",
title="<b>Sales by hour</b>",
color_discrete_sequence=["#0083B8"] * len(sales_by_hour),
template="plotly_white",
)
fig_hourly_sales.update_layout(
xaxis=dict(tickmode="linear"),
plot_bgcolor="rgba(0,0,0,0)",
yaxis=(dict(showgrid=False)),
)
left_column, right_column = st.columns(2)
left_column.plotly_chart(fig_hourly_sales, use_container_width=True)
right_column.plotly_chart(fig_product_sales, use_container_width=True)
# ---- HIDE STREAMLIT STYLE ----
hide_st_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)