-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnnasl.py
186 lines (129 loc) · 5.48 KB
/
cnnasl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import keras.models
import numpy as np
import pandas as pd
import os
import cv2
from skimage.transform import resize
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from keras import losses
from keras.datasets import cifar10
from keras import layers, models
from keras.callbacks import EarlyStopping
from keras.utils import to_categorical
import pickle
import gc
# globals
imgdir = 'C:/Users/soyon/Documents/Codes/ASL-Alphabet-Recognition/dataset/train'
testdir = 'C:/Users/soyon/Documents/Codes/ASL-Alphabet-Recognition/dataset/test'
letters = sorted(os.listdir(imgdir))
# for loading data from files
class Data:
def __init__(self):
self.X = np.empty((580, 64, 64, 3), dtype=np.float32)
self.y = np.empty((580,), dtype=int)
self.labels = []
def load_data(self, datadir):
label = 0
count = 0
folders = sorted(os.listdir(datadir))
self.labels = folders
# print(folders)
# separate folder for each letter
for folder in folders:
print("Loading images from folder", folder, "has started.")
cnt = -1
for image in os.listdir(datadir + '/' + folder):
img = cv2.imread(datadir + '/' + folder + '/' + image)
if img is not None:
cnt += 1
# print(cnt)
if cnt >= 20:
break
img = resize(img, (64, 64, 3))
# plt.imshow(img)
# plt.show()
img = np.asarray(img).reshape((-1, 64, 64, 3))
# img = img * (.1/255)
# print(img)
# print(np.size(img))
self.X[count] = img
self.y[count] = label
count += 1
label += 1
self.X = np.array(self.X)
# print(np.shape(self.X))
self.y = np.array(self.y)
# print(self.y)
# print(np.shape(self.y))
return self.X, self.y
# build the model architecture
class CNN:
def __init__(self, train_images, train_labels, test_images, test_labels):
self.model = models.Sequential()
self.train_images = train_images
self.train_labels = train_labels
self.test_images = test_images
self.test_labels = test_labels
def build_model(self):
# create convolutional base
self.model.add(layers.Conv2D(32, (5, 5), activation='relu', input_shape=(64, 64, 3)))
self.model.add(layers.MaxPooling2D(pool_size=(2, 2)))
self.model.add(layers.Conv2D(64, (3, 3), activation='relu'))
self.model.add(layers.MaxPooling2D(pool_size=(2, 2)))
self.model.add(layers.Conv2D(64, (3, 3), activation='relu'))
self.model.add(layers.MaxPooling2D(pool_size=(2, 2)))
# add dense layers
self.model.add(layers.Flatten())
self.model.add(layers.Dense(128, activation='relu'))
self.model.add(layers.Dense(29, activation='softmax'))
self.model.summary()
self.model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
return self.model
def fit_model(self, num_epochs):
early_stop = EarlyStopping(monitor='val_loss', patience=2)
self.model.fit(self.train_images, self.train_labels, epochs=num_epochs,
batch_size=64, verbose=2,
validation_data=(self.test_images, self.test_labels),
callbacks=[early_stop])
return self.model
def print_acc(self):
est_loss, train_acc = self.model.evaluate(self.train_images, self.train_labels, verbose=2)
print("Estimated training loss: ", est_loss)
print("Training accuracy: ", train_acc)
est_loss, test_acc = self.model.evaluate(self.test_images, self.test_labels, verbose=2)
print("Estimated loss: ", est_loss)
print("Testing accuracy: ", test_acc)
def save_model(self, dir):
self.model.save(dir)
print("** Current model has been saved! **")
def load_model(self, dir):
self.model = models.load_model(dir)
print("** Model was loaded! **")
def update_size(self, index, dimensions):
self.model.layers[index].input_shape = dimensions
return self.model
# run file to train and save fitted model
if __name__ == "__main__":
myData = Data()
data, target = myData.load_data(imgdir)
# pickle.dump(data, open("norm_alphabet_X_color.sav", 'wb'))
# pickle.dump(target, open("norm_alphabet_y_color.sav", 'wb'))
# data = pickle.load(open("alphabet_X_color.sav", 'rb'))
# # print(np.shape(data))
# target = pickle.load(open("alphabet_y_color.sav", 'rb'))
# # print(np.shape(target))
print("Done loading data!")
X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.3, random_state=77)
y_train = to_categorical(y_train, 29)
y_test = to_categorical(y_test, 29)
del data
del target
gc.collect()
new_cnn_class = CNN(X_train, y_train, X_test, y_test)
new_cnn_class.build_model()
new_cnn_model = new_cnn_class.fit_model(num_epochs=99)
new_cnn_class.print_acc()
new_cnn_class.save_model("CNN_on_ASL_alphabet")