-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataio.py
124 lines (109 loc) · 5.38 KB
/
dataio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
import torch
from utils import *
from tools import *
from einops import rearrange, repeat
from icecream import ic
import config
class MetaDataset(Dataset):
def __init__(self, dataset, var, t_range=None, dims=None, s=4, subsample_half=False):
if dims is None:
dims = [64, 64, 64]
dims = config.get_dims_of_dataset(dataset)
self.v_dir = config.root_data_dir + dataset + '/' + var + '/'
self.v_paths = getFilePathsInDir(self.v_dir)
if var != "all":
self.v_paths = self.v_paths[t_range[0]:t_range[1]]
if subsample_half:
self.v_paths = self.v_paths[::2]
ic(self.v_paths)
self.v_dataset = self.get_volumes(self.v_paths)
self.total_coords = torch.tensor(get_mgrid(dims, dim=3, s=1), dtype=torch.float32)
self.subsample_indices = self.Space_Subsample(dims, s)
self.v_sub_dataset = torch.zeros((self.subsample_indices.shape[0], self.v_dataset.shape[1]), dtype=torch.float32)
self.coords = self.total_coords[self.subsample_indices]
for i in range(self.v_dataset.shape[1]):
self.v_sub_dataset[:, i] = self.v_dataset[:, i][self.subsample_indices]
self.dims = dims
def Space_Subsample(self, dim, s):
space_sampled_indices = []
for z in range(0, dim[2], s):
for y in range(0, dim[1], s):
for x in range(0, dim[0], s):
index = (((z)*dim[1]+y)*dim[0]+x)
space_sampled_indices.append(index)
space_sampled_indices = np.asarray(space_sampled_indices)
return space_sampled_indices
def get_volumes(self, paths):
volumes = []
for path in paths:
v = readDat(path)
volumes.append(torch.tensor(v, dtype=torch.float32).unsqueeze(-1))
volumes = torch.cat(volumes, dim=-1)
# normalize the data to [-1, 1]
volumes = (volumes - volumes.min()) / (volumes.max() - volumes.min()) * 2 - 1
return volumes
def __len__(self):
return len(self.v_paths)
def __getitem__(self, idx):
sel_volume = self.v_sub_dataset[:, idx]
indices = torch.randperm(self.coords.shape[0])[:self.coords.shape[0]]
support_indices = indices[:indices.shape[0]//2]
query_indices = indices[indices.shape[0]//2:]
meta_dict = {'context': {'x': self.coords[support_indices], 'y': sel_volume[support_indices]},
'total': {'x': self.total_coords, 'y': self.v_dataset[:, idx]},
'query': {'x': self.coords[query_indices], 'y': sel_volume[query_indices]},
'all': {'x': self.coords, 'y': sel_volume},
'volume_idx': idx}
return meta_dict
# * reference from: https://cs330.stanford.edu/materials/cs330_multitask_transfer_2023.pdf (page 20)
class PretrainDataset(Dataset):
def __init__(self, dataset, var, t_range, s=4, split='train'):
dims = config.get_dims_of_dataset(dataset)
self.v_dir = config.root_data_dir + dataset + '/' + var + '/'
self.split = split
self.v_paths = getFilePathsInDir(self.v_dir)[t_range[0]:t_range[1]:2] if split == 'train' else getFilePathsInDir(self.v_dir)[t_range[0]:t_range[1]]
self.dims = dims
self.s = s
ic(self.v_paths)
self.dataset = self.get_TrainDataSet()
def get_TrainDataSet(self):
self.v_dataset = self.get_volumes(self.v_paths)
self.total_coords = torch.tensor(get_mgrid(self.dims, dim=3, s=1), dtype=torch.float32)
self.subsample_indices = self.Space_Subsample(self.dims, self.s)
self.v_sub_dataset = torch.zeros((self.subsample_indices.shape[0], self.v_dataset.shape[1]), dtype=torch.float32) # 32768,5
self.coords = self.total_coords[self.subsample_indices]
for i in range(self.v_dataset.shape[1]):
self.v_sub_dataset[:, i] = self.v_dataset[:, i][self.subsample_indices]
train_coords = (repeat(self.coords, 'n d -> n t d', t=self.v_dataset.shape[1])) #.reshape(-1, 3)
train_values = self.v_sub_dataset.unsqueeze(-1) #.reshape(-1, 1) # 32768*5, 1
train_data = torch.cat([train_coords, train_values], dim=-1)
return train_data
def Space_Subsample(self, dim, s):
space_sampled_indices = []
for z in range(0, dim[2], s):
for y in range(0, dim[1], s):
for x in range(0, dim[0], s):
index = (((z)*dim[1]+y)*dim[0]+x)
space_sampled_indices.append(index)
space_sampled_indices = np.asarray(space_sampled_indices)
return space_sampled_indices
def get_volumes(self, paths):
volumes = []
for path in paths:
v = readDat(path)
volumes.append(torch.tensor(v, dtype=torch.float32).unsqueeze(-1))
volumes = torch.cat(volumes, dim=-1)
return volumes
def __len__(self):
return self.dataset.shape[0]
def __getitem__(self, idx):
return self.dataset[idx, :, :]
if __name__ == "__main__":
pretrain_dataset = PretrainDataset(v_dir="/mnt/d/data/vorts/default",
dims=[128, 128, 128],
t_range=(0, 10),
s=4)
pretrain_dataloader = DataLoader(pretrain_dataset, batch_size=1, shuffle=True, num_workers=0)
exit()