-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
228 lines (196 loc) · 8.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""
MetaINR
Efficiently adapt to time series simulation data with MetaINR.
This method is based on the INR architecture and uses a meta-learning approach to adapt to new time series data.
The model is trained on a range of time steps and can be adapted to new time steps with a few gradient steps.
Achieves significantly better performance than training INR from scratch or using a simple baseline pretrained model.
"""
from models import SIREN
from dataio import *
from collections.abc import Mapping
from tqdm import tqdm
import config
from torch import nn
import fire
from copy import deepcopy
import time
import os
import numpy as np
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
loss_func = nn.MSELoss()
def dict_to_gpu(ob):
if isinstance(ob, Mapping):
return {k: dict_to_gpu(v) for k, v in ob.items()}
else:
return ob.cuda()
def get_volumes(paths):
volumes = []
for path in paths:
v = readDat(path)
volumes.append(torch.tensor(v, dtype=torch.float32))
volumes = torch.cat(volumes, dim=0)
return volumes
def shuffle_and_batch(total_coords, total_values, BatchSize, s=1):
indices = torch.randperm(total_coords.shape[0]//s)
total_coords = total_coords[indices]
total_values = total_values[indices]
split_coords = torch.split(total_coords, BatchSize, dim=0)
split_values = torch.split(total_values, BatchSize, dim=0)
return split_coords, split_values
def fast_adapt(batch, learner, adapt_opt, adaptation_steps, batch_size):
data, labels = batch
total_loss = 0
for step in range(adaptation_steps):
split_coords, split_values = shuffle_and_batch(data, labels, batch_size)
for t_coords, t_value in zip(split_coords, split_values):
t_coords = t_coords.to(device)
t_value = t_value.to(device)
preds = learner(t_coords).squeeze(-1)
loss = loss_func(preds, t_value)
adapt_opt.zero_grad()
loss.backward()
total_loss += loss
adapt_opt.step()
return total_loss
def evaluate(batch, learner, batch_size):
data, labels = batch
total_loss = 0
split_coords, split_values = shuffle_and_batch(data, labels, batch_size)
v_res = []
y_vals = []
for t_coords, t_value in zip(split_coords, split_values):
t_coords = t_coords.to(device)
t_value = t_value.to(device)
preds = learner(t_coords).squeeze(-1)
v_res += list(preds.cpu().detach().numpy())
y_vals += list(t_value.cpu().detach().numpy())
v_res = np.asarray(v_res, dtype=np.float32)
y_vals = np.asarray(y_vals, dtype=np.float32)
GT_range = y_vals.max()-y_vals.min()
MSE = np.mean((v_res-y_vals)**2)
PSNR = 20*np.log10(GT_range)-10*np.log10(MSE)
return PSNR
def run(dataset="earthquake", var="default", train=True, ts_range=None, lr=1e-4, fast_lr=1e-4, adapt_lr=1e-5):
# config.enable_logging = True
if ts_range is None or len(ts_range) != 2:
ts_range = (0, 598)
var = str(var)
config.target_dataset = dataset
config.target_var = var
config.seed_everything(42)
config.set_status("train")
meta_lr = float(lr)
fast_lr = float(fast_lr)
config.log({"lr": meta_lr, "fast_lr": fast_lr, "adapt_lr": adapt_lr})
outer_steps = 500
inner_steps = 16
BatchSize = 50000
net = SIREN(in_features=3, out_features=1, init_features=64, num_res=5) # num_res kind of sensitive
net = net.to(device)
opt = torch.optim.Adam(net.parameters(), lr=meta_lr)
adapt_opt = torch.optim.Adam(net.parameters(), lr=fast_lr)
adapt_opt_state = adapt_opt.state_dict()
# train
if train:
train_dataset = MetaDataset(dataset, var, t_range=ts_range, s=4, subsample_half=True)
total_pretrain_time = 0
tic = time.time()
for step in tqdm(range(outer_steps)):
opt.zero_grad()
# randomly select half the time steps
for p in net.parameters():
p.grad = torch.zeros_like(p.data)
total_loss = 0
for ind in range(len(train_dataset)):
learner = deepcopy(net)
adapt_opt = torch.optim.Adam(learner.parameters(), lr=fast_lr)
adapt_opt.load_state_dict(adapt_opt_state)
train_coords = train_dataset[ind]["all"]["x"]
train_value = train_dataset[ind]["all"]["y"]
batch = (train_coords, train_value)
loss = fast_adapt(batch, learner, adapt_opt, inner_steps, BatchSize)
total_loss += loss
adapt_opt_state = adapt_opt.state_dict()
for p, l in zip(net.parameters(), learner.parameters()):
p.grad.data.add_(l.data, alpha=-1.0)
for p in net.parameters():
p.grad.data.mul_(1.0/(len(train_dataset))).add_(p.data)
opt.step()
config.log({"loss": total_loss})
total_pretrain_time += time.time()-tic
os.makedirs(config.model_dir, exist_ok=True)
os.makedirs(config.model_dir+f"{dataset}_{var}", exist_ok=True)
try:
torch.save(net.state_dict(), config.model_dir+f"{dataset}_{var}/{ts_range[0]}_{ts_range[1]}.pth")
except Exception as e:
print(e)
config.log({"total_pretrain_time": total_pretrain_time})
else:
net.load_state_dict(torch.load(config.model_dir+f"{dataset}_{var}/{ts_range[0]}_{ts_range[1]}.pth"))
config.set_status("eval")
# evaluation
total_encoding_time = 0.0
PSNRs = []
eval_batch = 50 # avoid memory overflow
ts_batch_range = list(range(ts_range[0], ts_range[1], eval_batch))
pbar = tqdm(total=ts_range[1]-ts_range[0])
for batch_num, ts_start in enumerate(ts_batch_range):
ts_end = min(ts_start+eval_batch, ts_range[1])
full_dataset = MetaDataset(dataset, var, t_range=(ts_start, ts_end), s=1)
full_dataloader = DataLoader(full_dataset, batch_size=1, shuffle=False, num_workers=0)
total_coords = full_dataset.total_coords
split_total_coords = torch.split(total_coords, BatchSize, dim=0)
for inside_num, meta_batch in enumerate(full_dataloader):
steps = batch_num*eval_batch+inside_num
# init
train_coords = meta_batch['all']['x'].squeeze()
train_value = meta_batch['all']['y'].squeeze()
# encoding
tic = time.time()
learner = deepcopy(net)
optimizer = torch.optim.Adam(learner.parameters(), lr=float(adapt_lr))
for step in tqdm(range(inner_steps)):
# shuffle the data
indices = torch.randperm(train_coords.shape[0])
train_coords = train_coords[indices]
train_value = train_value[indices]
split_coords = torch.split(train_coords, BatchSize, dim=0)
split_values = torch.split(train_value, BatchSize, dim=0)
for t_coords, t_value in zip(split_coords, split_values):
t_coords = t_coords.to(device)
t_value = t_value.to(device)
preds = learner(t_coords)
loss = loss_func(preds, t_value.unsqueeze(-1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# config.log({"loss": loss})
toc = time.time()
total_encoding_time += toc-tic
# decoding
v_res = []
for inf_coords in split_total_coords:
inf_coords = inf_coords.to(device)
preds = learner(inf_coords).detach().squeeze().cpu().numpy()
v_res += list(preds)
v_res = np.asarray(v_res, dtype=np.float32)
y_vals = meta_batch['total']['y'].squeeze().cpu()
y_vals = np.asarray(y_vals, dtype=np.float32)
GT_range = y_vals.max()-y_vals.min()
MSE = np.mean((v_res-y_vals)**2)
PSNR = 20*np.log10(GT_range)-10*np.log10(MSE)
PSNRs.append(PSNR)
config.log({"PSNR": PSNR})
try:
os.makedirs(config.model_dir, exist_ok=True)
os.makedirs(config.model_dir+f"{dataset}_{var}", exist_ok=True)
torch.save(learner.state_dict(), config.model_dir+f"{dataset}_{var}/eval_metainr_{ts_range[0]+steps}.pth")
except Exception as e:
print(e)
pbar.update(1)
pbar.set_description(f"volume time step: {steps}, PSNR: {PSNR}")
print("Total encoding time: ", total_encoding_time)
config.log({"total_encoding_time": total_encoding_time})
config.log({"average_PSNR": np.mean(PSNRs)})
if __name__ == '__main__':
fire.Fire(run)