diff --git a/src/stcal/outlier_detection/utils.py b/src/stcal/outlier_detection/utils.py index 88d27ce0c..bc0485f36 100644 --- a/src/stcal/outlier_detection/utils.py +++ b/src/stcal/outlier_detection/utils.py @@ -77,12 +77,7 @@ def compute_weight_threshold(weight, maskpt): weight_masked = np.ma.array(weight, mask=np.logical_or( mask_zero_weight, mask_nans)) # Sigma-clip the unmasked data - weight_masked = sigma_clip(weight_masked, - sigma=3, - maxiters=5, - masked=False, - copy=False, - ) + weight_masked = sigma_clip(weight_masked, sigma=3, maxiters=5) mean_weight = np.mean(weight_masked) # Mask pixels where weight falls below maskpt percent weight_threshold = mean_weight * maskpt diff --git a/tests/outlier_detection/test_utils.py b/tests/outlier_detection/test_utils.py index 4112391bc..0a59f3c2e 100644 --- a/tests/outlier_detection/test_utils.py +++ b/tests/outlier_detection/test_utils.py @@ -16,7 +16,6 @@ reproject, medfilt, ) -from stcal.testing_helpers import MemoryThreshold @pytest.mark.parametrize("shape,diff", [ @@ -73,23 +72,6 @@ def test_compute_weight_threshold_zeros(): np.testing.assert_allclose(result, 21) -def test_compute_weight_threshold_memory(): - """Test that weight threshold function modifies - the weight array in place""" - arr = np.zeros([500, 500], dtype=np.float32) - arr[:250, :250] = 42 - arr[10,10] = 0 - arr[-10,-10] = np.nan - - # buffer to account for memory overhead needs to be small enough - # to ensure that the array was not copied - fractional_memory_buffer = 1.9 - expected_mem = int(arr.nbytes*fractional_memory_buffer) - with MemoryThreshold(str(expected_mem) + " B"): - result = compute_weight_threshold(arr, 0.5) - np.testing.assert_allclose(result, 21) - - def test_flag_crs(): sci = np.zeros((10, 10), dtype=np.float32) err = np.ones_like(sci)