forked from notadamking/RLTrader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
90 lines (69 loc) · 3.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
import gym
import optuna
import pandas as pd
import numpy as np
import cryptocompare
import datetime
from stable_baselines.common.policies import MlpLnLstmPolicy
from stable_baselines.common.vec_env import SubprocVecEnv, DummyVecEnv
from stable_baselines import A2C, ACKTR, PPO2
from env.BitcoinTradingEnv import BitcoinTradingEnv
from util.indicators import add_indicators
curr_idx = -1
reward_strategy = 'sortino'
input_data_file = os.path.join('data', 'coinbase_hourly.csv')
params_db_file = 'sqlite:///params.db'
study_name = 'ppo2_' + reward_strategy
study = optuna.load_study(study_name=study_name, storage=params_db_file)
params = study.best_trial.params
params = {'cliprange': 0.3838833398771404, 'confidence_interval': 0.8100538836579667, 'ent_coef': 2.2986983190512612e-06, 'forecast_len': 4.730444664178924, 'gamma': 0.9471575125156161, 'lam': 0.8983738705323411, 'learning_rate': 0.0015741188587479822, 'n_steps': 243.43124303268107, 'noptepochs': 35.778727741355404}
print("Training PPO2 agent with params:", params)
print("Best trial reward:", -1 * study.best_trial.value)
df = cryptocompare.get_historical_price_hour('BTC', curr='USD')
print(df)
df = pd.DataFrame(df['Data'])
df.columns = ['Close', 'High', 'Low', 'Open', 'Date', 'Volume BTC', 'Volume USD']
#df['Date'] = pd.to_datetime(df['Date'],unit='s')
df['Date'] = df['Date'].apply(lambda d: datetime.datetime.fromtimestamp(int(d)).strftime('%Y-%m-%d %H:%M:%S'))
df.set_index('Date')
#df['Date'] = df['Date'].dt.strftime('%Y-%m-%d %H:%M:%S')
df = df.sort_values(['Date'])
#df = pd.read_csv(input_data_file)
#df = df.drop(['Symbol'], axis=1)
#df = df.sort_values(['Date'])
df = add_indicators(df.reset_index())
print(df)
test_len = int(len(df) * 0.2)
train_len = int(len(df)) - test_len
train_df = df[:train_len]
test_df = df[train_len:]
train_env = DummyVecEnv([lambda: BitcoinTradingEnv(
train_df, reward_func=reward_strategy, forecast_len=int(params['forecast_len']), confidence_interval=params['confidence_interval'])])
test_env = DummyVecEnv([lambda: BitcoinTradingEnv(
test_df, reward_func=reward_strategy, forecast_len=int(params['forecast_len']), confidence_interval=params['confidence_interval'])])
model_params = {
'n_steps': int(params['n_steps']),
'gamma': params['gamma'],
'learning_rate': params['learning_rate'],
'ent_coef': params['ent_coef'],
'cliprange': params['cliprange'],
'noptepochs': int(params['noptepochs']),
'lam': params['lam'],
}
if curr_idx == -1:
model = PPO2(MlpLnLstmPolicy, train_env, verbose=0, nminibatches=1,
tensorboard_log=os.path.join('.', 'tensorboard'), **model_params)
else:
model = PPO2.load(os.path.join('.', 'agents', 'ppo2_' + reward_strategy + '_' + str(curr_idx) + '.pkl'), env=train_env)
for idx in range(curr_idx + 1, 10):
print('[', idx, '] Training for: ', train_len, ' time steps')
model.learn(total_timesteps=train_len)
obs = test_env.reset()
done, reward_sum = False, 0
while not done:
action, _states = model.predict(obs)
obs, reward, done, info = test_env.step(action)
reward_sum += reward
print('[', idx, '] Total reward: ', reward_sum, ' (' + reward_strategy + ')')
model.save(os.path.join('.', 'agents', 'ppo2_' + reward_strategy + '_' + str(idx) + '.pkl'))