-
Notifications
You must be signed in to change notification settings - Fork 907
/
Copy pathpyspark-rdd-map.py
66 lines (52 loc) · 1.29 KB
/
pyspark-rdd-map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# -*- coding: utf-8 -*-
"""
author SparkByExamples.com
"""
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('SparkByExamples.com').getOrCreate()
data = ["Project",
"Gutenberg’s",
"Alice’s",
"Adventures",
"in",
"Wonderland",
"Project",
"Gutenberg’s",
"Adventures",
"in",
"Wonderland",
"Project",
"Gutenberg’s"]
rdd=spark.sparkContext.parallelize(data)
rdd2=rdd.map(lambda x: (x,1))
for element in rdd2.collect():
print(element)
data = [('James','Smith','M',30),
('Anna','Rose','F',41),
('Robert','Williams','M',62),
]
columns = ["firstname","lastname","gender","salary"]
df = spark.createDataFrame(data=data, schema = columns)
df.show()
rdd2=df.rdd.map(lambda x:
(x[0]+","+x[1],x[2],x[3]*2)
)
df2=rdd2.toDF(["name","gender","new_salary"] )
df2.show()
#Referring Column Names
rdd2=df.rdd.map(lambda x:
(x["firstname"]+","+x["lastname"],x["gender"],x["salary"]*2)
)
#Referring Column Names
rdd2=df.rdd.map(lambda x:
(x.firstname+","+x.lastname,x.gender,x.salary*2)
)
def func1(x):
firstName=x.firstname
lastName=x.lastname
name=firstName+","+lastName
gender=x.gender.lower()
salary=x.salary*2
return (name,gender,salary)
rdd2=df.rdd.map(lambda x: func1(x)).toDF().show()
rdd2=df.rdd.map(func1).toDF().show()