-
Notifications
You must be signed in to change notification settings - Fork 82
/
news_classification_by_PassiveAggressive.py
169 lines (94 loc) · 3.18 KB
/
news_classification_by_PassiveAggressive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# coding: utf-8
# IMPORTING NECESSARY PYTHON MODULES
# In[48]:
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
import matplotlib.pyplot as plt
from sklearn.linear_model import PassiveAggressiveClassifier
import sklearn.metrics as metrics
import numpy as np
import itertools
from sklearn.externals import joblib
# READING THE DATASET AND EXPLORATION
# In[49]:
# Import `fake_or_real_news.csv`
df = pd.read_csv("news.csv")
# Inspect shape of `df`
df.shape
# Print first lines of `df`
df.head()
# In[50]:
# Set index
df = df.set_index("Unnamed: 0")
# Print first lines of `df`
df.head()
# In[34]:
# Set `y`
y = df.label
# Drop the `label` column
df.drop("label", axis=1)
# Make training and test sets
X_train, X_test, y_train, y_test = train_test_split(df['text'], y, test_size=0.33, random_state=53)
# BUILDING A TfidVectorizer
# In[35]:
# Initialize the `tfidf_vectorizer`
tfidf_vectorizer = TfidfVectorizer(stop_words='english', max_df=0.7)
# Fit and transform the training data
tfidf_train = tfidf_vectorizer.fit_transform(X_train)
# Transform the test set
tfidf_test = tfidf_vectorizer.transform(X_test)
# In[36]:
# Get the feature names of `tfidf_vectorizer`
print(tfidf_vectorizer.get_feature_names()[-10:])
# In[37]:
tfidf_df = pd.DataFrame(tfidf_train.A, columns=tfidf_vectorizer.get_feature_names())
# In[38]:
tfidf_df.head()
# FUNCTION TO PLOT CONFUSION MATRIX
# In[39]:
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
See full source and example:
http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# MODEL BUILDING
# In[40]:
linear_clf = PassiveAggressiveClassifier()
# MODEL FITTING
# In[42]:
linear_clf.fit(tfidf_train, y_train)
# CALCULATING THE ACCURRACY AND PLOTTING THE CONFUSION MATRIX
# In[53]:
pred = linear_clf.predict(tfidf_test)
score = metrics.accuracy_score(y_test, pred)
print("accuracy: %0.3f" % score)
cm = metrics.confusion_matrix(y_test, pred, labels=['FAKE', 'REAL'])
plot_confusion_matrix(cm, classes=['FAKE', 'REAL'])
# MODEL SAVING
# In[46]:
joblib.dump(linear_clf, 'model.pkl')