-
Notifications
You must be signed in to change notification settings - Fork 2
/
model_base.py
737 lines (597 loc) · 33.1 KB
/
model_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
"""
Classes to create and run models.
- model classes: UnmixingModel (parent), ModulationNet, SpatialNet, DaleRateNet (, DirectDemixNet)
- running models: Runner class contains train and test method
- revive_model function can be used to continue running a previous created model from its last state
"""
# import packages (requires PyTorch installation)
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import time
import torch.utils.tensorboard as tb
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' # needed to fix bug (on Mac OS)
class UnmixingModel(nn.Module):
"""Parent class for unmixing models. Contains forward pass method.
How readout weights are computed is specific to the model architecture.
In this basic example the RNN output ("network_output") directly determines the readout weights (w_new)."""
def __init__(self, signal_dim, hidden_dim, output_dim, input_to_net='xy', mix_noise=0.001, **kwargs):
super(UnmixingModel, self).__init__()
# core model parameters
self.signal_dim = signal_dim # dimension of signal
self.hidden_dim = hidden_dim # number of hidden states in LSTM
self.x_dim = signal_dim # x and y have same dimension as input signals
self.y_dim = signal_dim
self.w_dim = (self.x_dim, self.y_dim)
self.output_dim = output_dim # number of outputs, here x_dim x y_dim
if len(input_to_net) > 1: # i.e. input_to_net = xy, then concatenate x (signals) and y (FF net output)
self.input_dim = self.x_dim+self.y_dim
else:
self.input_dim = eval('self.'+input_to_net+'_dim')
self.input_to_net = input_to_net
self.w0 = torch.zeros(1) # not relevant for the base class
# self.learn_baseline = 0
self.mix_noise = mix_noise
# self.Ni = 0
# model architecture
self.rec_net = nn.LSTM(self.input_dim, self.hidden_dim, batch_first=True)
self.hidden2out = nn.Linear(self.hidden_dim, self.output_dim)
def forward(self, x, w_old, hidden):
"""
Runs the forward pass of the unmixing model.
Note: w_old, w_out and hidden are lists for compatibility with more complex models.
Input: signal mixtures x, readout weights and hidden states from previous time step
Output: output signals y, new readout weights and hidden states
"""
# compute output signal y from previous readout and mixture
y = torch.einsum("bsij, bsj -> bsi", w_old[0], x)
# determine model input (x, y or both)
if 'xy' in self.input_to_net:
network_input = torch.cat((x, y), 2)
elif self.input_to_net == 'x':
network_input = x
else: # network input is only the input signal
network_input = y
# run model (LSTM & readout layer)
lstm_out, hidden_out = self.rec_net(network_input, hidden)
network_output = self.hidden2out(lstm_out)
# get new readout weights (particular to model architecture)
w_out = self.get_new_w(w_old[0], network_output.reshape((-1, 1)+self.w_dim))
return (w_out,), y, hidden_out, network_output
def get_new_w(self, w_old, net_out):
""" w_new = LSTM(input) """
return net_out
class ModulationNet(UnmixingModel):
"""Instantaneous or integrated modulation, multiplicative or additive."""
def __init__(self, input_dim, hidden_dim, output_dim, input_to_net='xy', w0_var=0.001, add=0, tau=1,
mix_noise=0.001, **kwargs):
super(ModulationNet, self).__init__(input_dim, hidden_dim, output_dim, input_to_net=input_to_net,
mix_noise=mix_noise)
# modulation type and timescale
self.add = add
self.tau = tau
# init of baseline weight
if add == 0:
w0_mean = 1
else:
w0_mean = 0
self.w0 = torch.normal(w0_mean, w0_var, size=self.w_dim)
def get_new_w(self, w_old, net_out):
""" tau dW = W0 */+ LSTM(input) - W
Note that this is the same as tau dM = LSTM(input) - M ; W = W0 */+ M """
if self.add:
w_new = w_old + (self.w0 + net_out - w_old) / self.tau
else:
w_new = w_old + (self.w0 * net_out - w_old) / self.tau
return w_new
class SpatialNet(ModulationNet):
"""Network with reduced spatial specificity. Mixture is projected into a higher dimensional 'middle layer' z.
The input weights to the middle layer are modulated by a small number of modulation units m. The spatial
specificity of modulation is determined by the modulation kernel Wm."""
def __init__(self, input_dim, hidden_dim, output_dim, input_to_net='xy', w0_var=0.001, tau=1, mix_noise=0.001,
Nz=10, Nm=2, mod_width=1, learn_baseline=False, learn_ro=False, **kwargs):
super(SpatialNet, self).__init__(input_dim, hidden_dim, Nm, input_to_net=input_to_net, w0_var=w0_var,
mix_noise=mix_noise, tau=tau)
self.w_dim = (Nz,) # it's not really w_dim but the dimension of modulation
self.Nz = Nz # number of units in middle layer
self.Nm = Nm # number of modulation units (= output_dim)
# baseline and readout weights (x->z and z->y)
# - if FF weights are optimised, they're created as a torch parameter, this adds them to the optimisation
self.learn_baseline = learn_baseline
w0 = torch.normal(0, 0.5, size=(Nz, self.x_dim)) # baseline FF weights
if learn_baseline:
self.w0 = torch.nn.Parameter(w0)
else:
self.w0 = w0
self.learn_ro = learn_ro
Wro = torch.normal(0, 0.5, size=(self.y_dim, Nz)) # readout weights
if learn_ro:
self.Wro = torch.nn.Parameter(Wro)
else:
self.Wro = Wro
# set up modulation kernel Wm
if mod_width == 0: # box-like kernel
self.Wm = torch.zeros((Nz, Nm))
for i_m in range(Nm):
nmod = Nz//Nm
self.Wm[nmod*i_m:nmod*(i_m+1), i_m] = 1
elif mod_width >= 10: # flat kernel
self.Wm = torch.ones((Nz, Nm))
else: # van Mises kernel with spatial extent "mod_width"
self.Wm = torch.zeros((Nz, Nm))
zloc = torch.from_numpy(np.linspace(0, 2*np.pi, Nz, endpoint=False))
for i_m in range(Nm):
wm = torch.exp(1/mod_width*torch.cos((zloc-2*np.pi*i_m/Nm)))
self.Wm[:, i_m] = wm/wm.max()
def forward(self, x, m_old, hidden):
"""
Runs the forward pass of the SpatialNet model.
Note: m_old, m_out and hidden are lists
Input: signal mixtures x, modulation to z and hidden states from previous time step
Output: output signals y, new readout weights and hidden states
"""
z = m_old[0] * torch.einsum("ij, bsj -> bsi", self.w0, x)
y = torch.einsum("ij, bsj -> bsi", self.Wro, z)
# determine model input (x, y or both)
if 'xy' in self.input_to_net:
network_input = torch.cat((x, y), 2)
elif self.input_to_net == 'x':
network_input = x
else: # network input is only the input signal
network_input = y
# run model
lstm_out, hidden_out = self.rec_net(network_input, hidden)
network_output = self.hidden2out(lstm_out)
M_new = self.get_new_m(m_old[0], torch.einsum("ij, bsj -> bsi", self.Wm, network_output))
return (M_new, z), y, hidden_out, network_output
def get_new_m(self, M_old, net_out):
""" tau dM = Wm(*)LSTM(input) - M , where (*) is a convolution with the modulation kernel"""
return M_old + (net_out - M_old) / self.tau
class DaleRateNet(SpatialNet):
""" Biologically motivated version of the model.
Mixed and output signals are represented by populations of rate-based units ('neurons'..) and connected
with Dalean weights. Model consists of 3 layers: x (sensory stim), z_L (lower-level, not modulated) and z_H
(higher-level, modulated).
"""
def __init__(self, signal_dim, hidden_dim, output_dim, input_to_net='xy', tau=1, inh_frac=1, Nz=40, Nm=4, NzL=40,
learn_baseline=False, learn_wx=False, learn_ro=False, mod_width=1, mod_target=0, **kwargs):
super(DaleRateNet, self).__init__(signal_dim, hidden_dim, Nm, input_to_net=input_to_net, tau=tau, Nz=Nz, Nm=Nm,
mod_width=mod_width, learn_ro=learn_ro)
# neuron numbers and dimensions
self.NzL = NzL
self.w_dim = (Nz,) # dimension of modulation to middle layer
# compute weight scaling depending on modulation target (mean modulation is 1/2)
self.mod_target = mod_target
scale = 20
if self.mod_target == 0: # modulation targets exc and inh
scale_exc = scale
scale_inh = scale
elif self.mod_target == 1: # modulation targets only exc
scale_exc = scale
scale_inh = scale/2
elif self.mod_target == 2: # modulation targets only inh
scale_exc = scale/2
scale_inh = scale
# which FF weights to optimise during training
self.learn_baseline = learn_baseline
self.learn_ro = learn_ro # (used in parent class SpatialNet)
self.learn_wx = learn_wx
# weights from sensory stimuli to lower level population (x -> z_L)
wx = torch.normal(0, 0.5, size=(NzL, signal_dim))
if learn_wx:
self.wx = torch.nn.Parameter(wx)
else:
self.wx = wx
# baseline weight (z_L -> z_H, positive only, absolute taken in forward pass)
w0 = torch.abs(torch.normal(1, 0.5, size=(Nz, NzL))/Nz*scale_exc)
if learn_baseline:
self.w0 = torch.nn.Parameter(w0) # add to optimisation if learned
else:
self.w0 = w0
# feedforward inhibition (z_L -> i -> z_H)
N_inh = int(round(inh_frac*NzL))
w_ix = torch.abs(torch.normal(1, 0.5, size=(N_inh, NzL))/N_inh)
w_zi = torch.abs(torch.normal(1, 1, size=(Nz, N_inh))/Nz*scale_inh)
self.w_inh = w_zi @ w_ix # effective inhibition is precomputed
# non-linearities
self.rectify = torch.nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x, mod_old, hidden):
"""
Runs the forward pass for this model variant.
"""
z_L = self.rectify(torch.einsum("ij, bsj -> bsi", self.wx, x))
inh = torch.einsum("ij, bsj -> bsi", self.w_inh, z_L)
# modulation can target exc inputs, inh inputs, or both (=gain modulation)
if self.mod_target == 0: # target exc & inh
z_H = mod_old[1] * self.rectify(torch.einsum("ij, bsj -> bsi", torch.abs(self.w0), z_L)-inh)
elif self.mod_target == 1: # target only exc
z_H = self.rectify(mod_old[1]*torch.einsum("ij, bsj -> bsi", torch.abs(self.w0), z_L)-inh)
elif self.mod_target == 2: # target only inh
z_H = self.rectify(torch.einsum("ij, bsj -> bsi", torch.abs(self.w0), z_L)-mod_old[1]*inh)
y = torch.einsum("ij, bsj -> bsi", self.Wro, z_H)
# determine model input (x, y or both)
if 'xy' in self.input_to_net:
network_input = torch.cat((x, y), 2)
elif self.input_to_net == 'x':
network_input = x
else: # network input is only the input signal
network_input = y
# run model
lstm_out, hidden_out = self.rec_net(network_input, hidden)
net_out = self.hidden2out(lstm_out)
m = self.get_new_m(mod_old[0], net_out)
p = 1-self.sigmoid(torch.einsum("ij, bsj -> bsi", self.Wm, m))
return (m, p, z_L, z_H), y, hidden_out, net_out
# def get_new_m(self, m_old, net_out): (same as SpatialNet) # TODO: could be removed, I think?
# """ tau dm = u(t) - m """
#
# return m_old + (net_out - m_old) / self.tau
class DirectDemixNet(UnmixingModel):
"""Network directly unmixes signals: Inputs -> RNN -> Output (not part of the manuscript Naumann et al., 2021)"""
def __init__(self, signal_dim, hidden_dim, output_dim, input_to_net='xy', mix_noise=0.001, **kwargs):
super(DirectDemixNet, self).__init__(signal_dim, hidden_dim, output_dim, input_to_net=input_to_net,
mix_noise=mix_noise)
self.input_dim = signal_dim
self.rec_net = nn.LSTM(self.input_dim, self.hidden_dim, batch_first=True)
self.hidden2out = nn.Linear(self.hidden_dim, self.input_dim)
def forward(self, x, w_old, hidden):
# run model
lstm_out, hidden_out = self.rec_net(x, hidden)
y = self.hidden2out(lstm_out)
return (self.w0,), y, hidden_out, y
class Runner:
def __init__(self, model, loss_function, optimizer, writer, batch_size=1):
self.model = model
self.loss_function = loss_function
self.optimizer = optimizer
self.writer = writer
self.batch_size = batch_size
def numpify(self, var, bs=2):
"""Helper. Converts torch variables to numpy by detaching and – if necessary – slicing."""
if type(var) is np.ndarray:
return var
else:
var_np = var.detach().numpy()
if bs > 1:
var_np = var_np[0]
if hasattr(var_np, "__len__"):
var_np = var_np.flatten()
return var_np
def update_store(self, store, s, y, w, wt):
"""Update store dictionary with current state of variables."""
store['s'].append(self.numpify(s))
store['y'].append(self.numpify(y))
store['wt'].append(self.numpify(wt))
store['w'].append(self.numpify(w[0]))
return store
def reset_store(self, store):
"""Reset all arrays in a store dictionary."""
for k in store.keys():
store[k] = []
return store
def plot_intermediate_to_writer(self, store, name, k):
"""Plot snapshot of current network behaviour to tensorboard."""
fig, ax = plt.subplots(2, 1, dpi=200, sharex=True)
ax[0].plot(store['wt'], 'k--')
ax[0].plot(store['w'])
ax[1].plot(store['s'])
ax[1].plot(store['y'], '--')
ax[0].set(ylabel='weights', ylim=[-4, 4])
ax[1].set(xlabel='#samples x #mixings', ylabel='signals', ylim=[-1.2, 1.2])
self.writer.add_figure(name, fig, k)
def log_gradients_to_writer(self, weights, rid, k):
"""Log gradients of model to tensorboard writer."""
self.writer.add_scalar('grad_hh_weights'+rid, torch.sum(torch.abs(weights[0][1].grad)), k)
self.writer.add_scalar('grad_hh_bias'+rid, torch.sum(torch.abs(weights[0][3].grad)), k)
self.writer.add_scalar('grad_ih_weights'+rid, torch.sum(torch.abs(weights[0][0].grad)), k)
self.writer.add_scalar('grad_ih_bias'+rid, torch.sum(torch.abs(weights[0][2].grad)), k)
# how to access specific weight matrices, if needed:
# self.writer.add_histogram('lstm_weights_hi'+wid, self.model.lstm.all_weights[0][1][:nhid, :], k)
# self.writer.add_histogram('lstm_weights_hf'+wid, self.model.lstm.all_weights[0][1][nhid:2*nhid, :], k)
# self.writer.add_histogram('lstm_weights_hg'+wid, self.model.lstm.all_weights[0][1][2*nhid:3*nhid, :], k)
# self.writer.add_histogram('lstm_weights_ho'+wid, self.model.lstm.all_weights[0][1][3*nhid:, :], k)
def train(self, signals, train_data, nt=1000, max_grad_value=1, plot_every=100, log_every=50, run_id='',
save_weight_loss=0, lambda_reg=0):
"""Train model with a given set of signals and mixing matrices using TBPTT.
Return dict of batch-loss (output-signal diff) and mean deviation from target weight in every sample."""
# get info from inputs
n_batch = len(train_data) # number of batches
lent = signals.shape[0] # number of samples in each context
nsig = signals.shape[1] # number of source signals
# booleans for comparing effective weights to target (only for UnmixingModel and ModulationNet)
if save_weight_loss == 0: # if weight loss should not be saved over learning, only save it in last batch
save_weight_loss = n_batch-1
compute_w_loss = len(self.model.w_dim) > 1 # w quadratic, only then can W be true inverse of A
# initialise hidden states and weights
hidden_init = (torch.zeros(1, self.batch_size, self.model.hidden_dim),
torch.zeros(1, self.batch_size, self.model.hidden_dim))
hidden_states = [hidden_init]
if isinstance(self.model, DaleRateNet): # in this model variant p also needs to be initialised
m_init = torch.zeros((self.batch_size, 1, self.model.Nm))
p_init = torch.normal(0.5, 0.01, size=(self.batch_size, 1)+self.model.w_dim)
w_states = [(m_init, p_init)]
else:
w_init = torch.zeros((self.batch_size, 1)+self.model.w_dim)
w_states = [(w_init,)]
# dictionaries for storing stuff
store = {'loss': [], 'loss_w': []}
store_intermediate = {'s': [], 'y': [], 'w': [], 'wt': [], 'p': [], 'm': [], 'xb': [], 'z': []}
# loop over mixing matrices, i.e. contexts (model trained in chunks)
print('Training model...')
for k, (A, A_inv) in enumerate(train_data):
w_target = A_inv.reshape((self.batch_size, 1, self.model.y_dim, -1)) # target weights (mixing inverse)
# start timer, reset loss and gradients
print(f"batch {k + 1}/{n_batch}")
start = time.time()
loss_all = torch.zeros(1)
net_out_sum = torch.zeros(1)
loss_w_single = torch.zeros(nt)
self.optimizer.zero_grad()
# if there are more signals available than needed, choose randomly (for frequency generalisation)
# - note that signals need to be sorted to avoid ambiguities between order and mixture
if signals.shape[1] > self.model.signal_dim:
sig_idx = np.sort(np.random.choice(np.arange(nsig), self.model.signal_dim, replace=False))
else:
sig_idx = np.arange(self.model.signal_dim)
# randomly phase-shift signals or use random part of signals
if lent > nt: # if source signals are longer than sequence length --> select random part
tstart = np.random.randint(0, lent-nt, size=self.model.signal_dim)
s_use = np.array([signals[tstart[ii]:tstart[ii] + nt, idx] for ii, idx in enumerate(sig_idx)]).T
else: # if source signals are not longer than sequence length --> roll
tshift = np.random.randint(0, lent, size=self.model.signal_dim)
s_use = np.array([np.roll(signals[:, idx], tshift[ii]) for ii, idx in enumerate(sig_idx)]).T
# loop over data points in sequence (fixed mixing/context)
for j, s_ in enumerate(s_use):
# run forward model pass
s = torch.reshape(torch.from_numpy(s_), (1, 1, self.model.signal_dim)).repeat(self.batch_size, 1, 1)
x = torch.einsum("bij, bsj -> bsi", A, s) \
+ torch.normal(0, self.model.mix_noise, size=(self.batch_size, 1, self.model.x_dim))
w, y, hidden, net_out = self.model(x, w_states[-1], hidden_states[-1])
# compute loss
loss = self.loss_function(s, y)
loss_all += loss
net_out_sum += net_out.abs().sum()
if compute_w_loss:
loss_w_single[j] = torch.mean((w[0]-w_target)**2)
# append states
w_states.append(w)
hidden_states.append(hidden)
# store intermediate results (for 3 different mixings/contexts)
if k % plot_every in [0, 1, 2]:
self.update_store(store_intermediate, s, y, w, w_target)
# do backprop, update parameters and detach
loss_tot = loss_all + lambda_reg*net_out_sum
loss_tot.backward()
torch.nn.utils.clip_grad_value_(self.model.parameters(), max_grad_value)
self.optimizer.step()
hidden_states = [(hidden_states[-1][0].detach(), hidden_states[-1][1].detach())]
w_states = [tuple([w_i.detach() for w_i in w_states[-1]])]
# print info about loss and regulariser
print(f"\t loss: {loss_all.item():3.3f}, took {time.time() - start:1.1f}s")
print(f"\t regularisation term: {lambda_reg*net_out_sum.item():3.3f}")
# store loss
store['loss'].append(self.numpify(loss_all))
if k % save_weight_loss == 0:
store['loss_w'].append(self.numpify(loss_w_single, bs=1))
# log loss to tensorboard
if self.writer is not None and k % log_every == 0:
self.writer.add_scalar('loss'+run_id, loss_all, k)
self.log_gradients_to_writer(self.model.rec_net.all_weights, run_id, k)
# plot intermediate results to tensorboard
if self.writer is not None and k % plot_every == 2:
self.plot_intermediate_to_writer(store_intermediate, 'unmixing'+run_id, k)
store_intermediate = self.reset_store(store_intermediate)
# make sure contents of store are np arrays (for snep, software used to run simulations on the lab cluster)
for key in store:
store[key] = np.array(store[key])
return store
def test(self, signals, test_data, nt=1000, store_hidden=False, freeze_fb_after=None):
"""Test model performance on the signals and save signals, mixings, outputs, readout weights and targets."""
# get info from inputs
n_test = len(test_data) # number of batches
lent = signals.shape[0] # number of samples in each context
nsig = signals.shape[1] # number of source signals
# initialise weights and hidden states
hidden_init = (torch.zeros(1, 1, self.model.hidden_dim),
torch.zeros(1, 1, self.model.hidden_dim))
hidden_states = [hidden_init]
if isinstance(self.model, DaleRateNet):
m_init = torch.zeros((1, 1, self.model.Nm))
p_init = torch.normal(0.5, 0.1, size=(1, 1)+self.model.w_dim)
w_states = [(m_init, p_init)]
else:
w_init = torch.zeros((1, 1)+self.model.w_dim)
w_states = [(w_init,)]
# initialise dictionary for storing variables
store = {'s': [], 'x': [], 'y': [], 'w': [], 'wt': []}
if store_hidden:
store.update({'hidden': []})
if isinstance(self.model, SpatialNet):
store.update({'z': [], 'm': []})
if isinstance(self.model, DaleRateNet):
store.update({'p': [], 'xb': []})
# loop over mixing matrices, i.e. contexts
count = 0
print('Testing model...')
for k, (A, A_inv) in enumerate(test_data):
w_target = A_inv.reshape((1, 1, -1))
# start timer, reset loss and gradients
print(f"test mixing {k + 1}/{n_test}")
start = time.time()
loss_all = torch.zeros(1)
# loop over data points in sequence (fixed mixing/context)
for j in range(nt): # change mixing every nt sampels
s_ = signals[int(count % lent), :self.model.signal_dim] # the signal is continuous across contexts
count += 1
# run forward model pass and compute loss
s = torch.reshape(torch.from_numpy(s_), (1, 1, self.model.signal_dim))
x = torch.einsum("bij, bsj -> bsi", A, s) \
+ torch.normal(0, self.model.mix_noise, size=(1, 1, self.model.x_dim))
w, y, hidden, net_out = self.model(x, w_states[-1], hidden_states[-1])
# optional manipulation: freeze feedback
if freeze_fb_after:
if k >= freeze_fb_after and j < 500:
if isinstance(self.model, SpatialNet) and not isinstance(self.model, DaleRateNet):
w = (w_states[-1][0], w[1]) # freeze modulation (i.e. block FB)
elif isinstance(self.model, DaleRateNet):
w = (w[0], w_states[-1][1], w[2], w[3])
# compute loss
loss = self.loss_function(s, y)
loss_all += loss
w_states.append(w)
hidden_states.append(hidden)
# store results
store = self.update_store(store, s, y, w, w_target)
store['x'].append(self.numpify(x))
if isinstance(self.model, SpatialNet) and not isinstance(self.model, DaleRateNet):
store['m'].append(self.numpify(w[0]))
store['z'].append(self.numpify(w[1]))
if isinstance(self.model, DaleRateNet): # isinstance(self.model, PreInhNet) or
store['m'].append(self.numpify(w[0]))
store['p'].append(self.numpify(w[1]))
store['xb'].append(self.numpify(w[2]))
store['z'].append(self.numpify(w[3]))
if store_hidden:
store['hidden'].append(self.numpify(hidden[0]))
# forget old hidden states and weights (i.e. free memory)
hidden_states = [(hidden_states[-1][0], hidden_states[-1][1])]
w_states = [tuple([w_i for w_i in w_states[-1]])]
print(f"\t loss: {loss_all.item():3.3f}, took {time.time() - start:1.1f}s")
# make sure contents of store are np arrays (for snep, software used to run simulations on the lab cluster)
for key in store:
store[key] = np.array(store[key])
return store
def revive_model(params, trained_weights, state=None):
""" Function to 'revive' a pre-trained model from saved parameters. This function relies on certain contents of
the parameter dictionaries 'params' and 'state'.
params: dictionary containing model parameters, such as 'model_class', 's_dim', 'n_hid', 'Nz'
and the boolean variables 'learn_baseline' and 'learn_ro' (see
trained_weights: ordered dictionary of the named model parameters (from model.named_parameters())
state: dictionary containing information of the state of the network at the end of last training,
depending on the model type and which weights are learned, it contains 'w0' (baseline weights),
'Wro' (readout weights) and 'w_inh' (effective FF inhibitory weights). See model classes for details.
"""
# first compute number of outputs necessary from LSTM (depends on model variant)
n_out = params['Nz'] if params['model_class'] in ['DaleRateNet', 'SpatialNet'] else params['s_dim']**2
# create model from parameters
model = eval(params['model_class'])(params['s_dim'], params['n_hid'], n_out, **params)
# fill model with trained parameters
for p in trained_weights.keys():
trained_weights[p] = torch.from_numpy(trained_weights[p])
model.load_state_dict(trained_weights)
# if readout weights are provided by a the state dictionary, write stored weights into model, if necessary
if state is not None:
if not params['learn_baseline']:
model.w0 = torch.from_numpy(state['w0'])
if not params['learn_ro']:
model.Wro = torch.from_numpy(state['Wro'])
if isinstance(model, DaleRateNet):
model.w_inh = torch.from_numpy(state['w_inh'])
return model
if __name__ in "__main__":
# Here you can run the models defined above.
# plt.style.use('pretty') # Note: this is a custom stylesheet, will fail if stylesheet with this name doesn't exist
#####################
# Define parameters #
#####################
# training parameters
BATCH_SIZE = 32 # number of trials (=different contexts) per batch
N_MIX = 20*BATCH_SIZE # total number of mixings (=contexts). Note: training the model(s) takes minimum 3000 batches
N_HID = 100 # number of hidden units in LSTM
N_TEST = 4 # number of contexts for testing
LR = 0.001 # learning rate for optimisation
lambda_reg = 0 # regularisation strength, use for DaleRateNet with value: 10e-6
mix_type = 'random_norm' # type of generated mixing matrices
n_sample = 1000 # number of samples in one context
writer_on = False # whether to write updates to tensorboard
# model paremeters
MODEL_CLASS = UnmixingModel # model type; options: UnmixingModel, ModulationNet, SpatialNet, DaleRateNet
net_input = 'xy' # input to the LSTM; options: 'x' (only stimuli), 'y' (only network output), 'xy' (both)
add = 0 # whether to use additive modulation, default is multiplicative (note: not possible for all variants)
tau = 100 # timescale of modulation
learn_baseline = False # whether to optimise baseline weights (W0)
learn_wx = False # whether to optimise x -> z_L weights
learn_ro = False # whether to optimise readout weights
mod_target = 0 # target of modulation; options: 1 (exc FF weights), 2 (inh FF weights), 0 (both) (DaleRateNet only)
# dimensions of populations
signal_dim = 2 # number of sources, per default same as number of sensory stimuli and outputs
# populations sizes (only relevant for SpatialNet and/or DaleRateNet)
Nz = 100 # number of neurons in middle layer
NzL = 40 # number of neurons in lower level population
Nm = 4 # number of modulation units
#################
# Generate data #
#################
# generate sources
import data_maker as dm
inputs = dm.gen_chords(2, base_freq=100) # alternative signals commented out below
# inputs = dm.gen_sines(dur=2, freqs_rel=[1, 1.4])
# inputs = dm.gen_ica_style(dur=2, freqs_rel=[1.4, 0.8, 1.2])
# generate contexts (mixings)
data_train, data_test = dm.gen_train_test_data(N_MIX, N_TEST, mix_type=mix_type, batch_size=BATCH_SIZE,
mat_size=(signal_dim, signal_dim))
######################
# Create & run model #
######################
# Define model, loss, optimizer, runner, tensorboard writer
model = MODEL_CLASS(signal_dim, N_HID, signal_dim**2, tau=tau, input_to_net=net_input, add=add,
w0_var=0.001, mix_noise=0.001, learn_baseline=learn_baseline, Nz=Nz, Nm=Nm, NzL=40,
mod_width=0.2,
learn_ro=learn_ro, learn_wx=learn_wx, inh_frac=0.5, mod_target=mod_target)
loss_function = nn.SmoothL1Loss()
optimizer = torch.optim.Adam(model.parameters(), lr=LR)
writer = tb.SummaryWriter('../logs/unmix_integral') if writer_on else None # may require creating this directory)
runner = Runner(model, loss_function, optimizer, writer, batch_size=BATCH_SIZE)
# train
results_train = runner.train(inputs, data_train, nt=n_sample, plot_every=500, log_every=50, lambda_reg=lambda_reg)
# test
results_test = runner.test(inputs, data_test, store_hidden=True)
# if writer is used, close after training & testing model
if writer_on:
writer.close()
############
# Plotting #
############
# plot loss
fig1, ax1 = plt.subplots(1, 1, figsize=(3, 2), dpi=150)
ax1.semilogy(results_train['loss'])
ax1.set(xlabel='batches', ylabel='loss')
plt.tight_layout()
fig, ax2 = plt.subplots(4, 1, figsize=(5, 4), dpi=150)
ax2[0].plot(results_test['wt'], 'k--')
ax2[0].plot(results_test['w'])
ax2[1].plot(results_test['x'], 'gray', lw=1)
ax2[2].plot(results_test['y'][:, 0], 'C0--')
ax2[2].plot(results_test['s'][:, 0], 'C0', alpha=0.5)
ax2[3].plot(results_test['y'][:, 1], 'C2--')
ax2[3].plot(results_test['s'][:, 1], 'C2', alpha=0.5)
ax2[0].set(ylabel='weights')
ax2[1].set(ylabel='stim x')
ax2[2].set(ylabel=r'$y_1$/$s_1$')
ax2[3].set(xlabel='time (samples x mixings)', ylabel=r'$y_2$/$s_2$')
plt.tight_layout()
# if SpatialNet: plot modulation units and middle layer z activity
if isinstance(model, SpatialNet) and not isinstance(model, DaleRateNet):
fig, ax = plt.subplots(2, 1, figsize=(5, 3), dpi=150)
ax[0].plot(results_test['m']) # modulation unit activity
for ii in range(Nz):
ax[1].plot(results_test['z'][:, ii], lw=1) # middle layer z activity
ax[0].set(ylabel='mod units')
ax[1].set(xlabel='samples x mixings', ylabel='z unit activity')
plt.tight_layout()
# if DaleRateNet: plot modulation units, gain modulation, lower and higher level population activity
if isinstance(model, DaleRateNet):
fig, ax = plt.subplots(4, 1, figsize=(4, 5), dpi=150, sharex=True)
ax[0].plot(results_test['m']) # modulation unit activity
ax[1].pcolor(results_test['p'].T, lw=1, alpha=0.6, cmap='Greens_r', vmin=0, vmax=1) # modulation (rel. prob.)
ax[2].plot(results_test['xb']) # note: xb is z_L, the lower-level population
ax[3].plot(results_test['z']) # and z is z_H, the higher-level population
ax[0].set(ylabel='mod. units m')
ax[1].set(ylabel='gain mod. p')
ax[2].set(ylabel=r'$z_L$')
ax[3].set(xlabel='time (samples x mixings)', ylabel=r'$z_H$')
plt.tight_layout()
plt.show()