Description
Bug description
When using VectorStoreChatMemoryAdvisor
to implement chat memory with Redis vector store, if spring.ai.vectorstore.redis.initialize-schema
is set to true
, the program will automatically create a Redis search schema, which causes RedisVectorStore
to be unable to retrieve related records.
The reason is that VectorStoreChatMemoryAdvisor
writes "conversationId"
as metadata into the document and uses conversationId
as the query condition. However, RedisVectorStoreProperties
does not support setting metadataFields
when automatically configuring RedisVectorStore
, leading to retrieval failure.
It is necessary to manually configure RedisVectorStore
to retrieve records correctly, like this (see code below), which is not elegant because it defeats the purpose of auto-configuration.
@Bean
public RedisVectorStore vectorStore(EmbeddingModel embeddingModel, RedisVectorStoreProperties properties,
JedisConnectionFactory jedisConnectionFactory, ObjectProvider<ObservationRegistry> observationRegistry,
ObjectProvider<VectorStoreObservationConvention> customObservationConvention,
BatchingStrategy batchingStrategy) {
JedisPooled jedisPooled = this.jedisPooled(jedisConnectionFactory);
return RedisVectorStore.builder(jedisPooled, embeddingModel)
.initializeSchema(properties.isInitializeSchema())
.observationRegistry(observationRegistry.getIfUnique(() -> ObservationRegistry.NOOP))
.customObservationConvention(customObservationConvention.getIfAvailable(() -> null))
.batchingStrategy(batchingStrategy)
.indexName(properties.getIndexName())
.prefix(properties.getPrefix())
// Set metadata fields to include conversationId for retrieval
.metadataFields(RedisVectorStore.MetadataField.tag("conversationId"))
.build();
}
Environment
- Spring Boot: 3.4.6
- Spring AI: 1.0.0
- Java: 21
- Vector store: redis-stack v7.2.0
Steps to reproduce
- Use
VectorStoreChatMemoryAdvisor
with Redis vector store.
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-advisors-vector-store</artifactId>
<version>1.0.0</version>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-vector-store-redis</artifactId>
<version>1.0.0</version>
</dependency>
// configuration
@Bean
public ChatClient chatClient(ChatClient.Builder clientBuilder, VectorStore vectorStore) {
return clientBuilder
.defaultSystem("You are a helpful assistant.")
.defaultAdvisors(VectorStoreChatMemoryAdvisor.builder(vectorStore).build())
.build();
}
- Set
spring.ai.vectorstore.redis.initialize-schema=true
.
spring:
data:
redis:
client-type: jedis
ai:
ollama:
chat:
options:
model: deepseek-r1
embedding:
options:
model: bge-m3
vectorstore:
redis:
initialize-schema: true
- Attempt to retrieve chat memory by
conversationId
in a conversation.
// controller
@GetMapping(value = "/stream/chat", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
public Flux<String> streamChat(@RequestParam @NotBlank String prompt, @RequestParam @NotBlank String conversationId) {
return chatClient
.prompt(Prompt.builder().content(prompt).build())
.advisors(advisorSpec -> advisorSpec.param(ChatMemory.CONVERSATION_ID, conversationId))
.stream().content();
}
Expected behavior
Chat memory relevant to the current conversationId
should be retrievable automatically without manual configuration of RedisVectorStore
.
Possible solutions
- Set
spring.ai.vectorstore.redis.initialize-schema=false
and manually create the schema in Redis. - Add a
List<MetadataField> metadataFields
property toRedisVectorStoreProperties
. - Use
RedisVectorStore.Builder
as a dependency to buildRedisVectorStore
, whereRedisVectorStore.Builder
depends onRedisVectorStoreProperties
and provides aRedisVectorStoreBuilderCustomizer
for builder enhancement, like this:
// VectorStoreBuilderCustomizer.java
public interface VectorStoreBuilderCustomizer<T extends VectorStore.Builder<T>> {
void customize(T builder);
}
// RedisVectorStoreBuilderCustomizer.java
public interface RedisVectorStoreBuilderCustomizer extends VectorStoreBuilderCustomizer<RedisVectorStore.Builder> {
}
// RedisVectorStoreAutoConfiguration.java
@Bean
@ConditionalOnMissingBean
public RedisVectorStore.Builder vectorStoreBuilder(EmbeddingModel embeddingModel, RedisVectorStoreProperties properties,
JedisConnectionFactory jedisConnectionFactory, ObjectProvider<ObservationRegistry> observationRegistry,
ObjectProvider<VectorStoreObservationConvention> customObservationConvention,
BatchingStrategy batchingStrategy, ObjectProvider<RedisVectorStoreBuilderCustomizer> vectorStoreBuilderCustomizers) {
JedisPooled jedisPooled = this.jedisPooled(jedisConnectionFactory);
RedisVectorStore.Builder builder = RedisVectorStore.builder(jedisPooled, embeddingModel)
.initializeSchema(properties.isInitializeSchema())
.observationRegistry(observationRegistry.getIfUnique(() -> ObservationRegistry.NOOP))
.customObservationConvention(customObservationConvention.getIfAvailable(() -> null))
.batchingStrategy(batchingStrategy)
.indexName(properties.getIndexName())
.prefix(properties.getPrefix());
vectorStoreBuilderCustomizers.orderedStream().forEach(customizer -> customizer.customize(builder));
return builder;
}
@Bean
@ConditionalOnMissingBean
public RedisVectorStore vectorStore(RedisVectorStore.Builder vectorStoreBuilder) {
return vectorStoreBuilder.build();
}
I am not sure why RedisVectorStoreProperties
does not directly provide a metadataFields
property. If there is a reason, please consider solution 3. In fact, solution 3 does not explicitly depend on RedisVectorStoreProperties
, but instead uses RedisVectorStore.Builder
to determine how to build the RedisVectorStore
.
If you are open to my suggestion, I can propose a PR.