-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest2.py
33 lines (25 loc) · 926 Bytes
/
test2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import warnings
warnings.filterwarnings("ignore")
from keras.applications.vgg16 import preprocess_input
from keras.models import load_model
from keras.preprocessing import image
import numpy as np
import os
# Load our trained model
use_case = 'vaguelettes'
model = load_model('./models/trained_model')
# Apply it to all pictures present in the piture test folder
img_folder = './pictures/test/'
res_file = 'prediction.txt'
img_list = os.listdir(img_folder)
with open(res_file, 'a') as f:
f.write('\t'.join(['image_name'] + os.listdir('./pictures/' + use_case + '/train/') + ['\n']))
for img_name in img_list:
print(img_name)
img = image.load_img(img_folder + img_name, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
pred = model.predict(x)
print(pred)
f.write('\t'.join([img_name, str(pred), '\n']))