-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMetropolis MCMC.R
189 lines (158 loc) · 3.76 KB
/
Metropolis MCMC.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Problem 2
## 2a: Example of POOR Scale Size
f <- function(x) {
return(1/(3*sqrt(2*pi)) * exp(-0.5*((x - 3 )/ 0.001)^2))
}
nit <- 10000
path <- rep(0, nit)
state <- 3 # Initial state
path[1] <- state
scale <- 1
for (i in 2:nit) {
candidate <- runif(n = 1, min = state - scale, max = state + scale)
ratio <- f(candidate) / f(state)
u <- runif(n = 1, min = 0, max = 1)
if (u < ratio) {
state <- candidate
}
path[i] <- state
}
plot(path[-(1:200)])
library(MASS)
truehist(path[-(1:200)])
con <- integrate(f, 2.9, 3.1)$value
fnormalized <- function(x){f(x)/con}
curve(fnormalized(x), add=TRUE, col="red", lwd=2)
## 2b: Example of GOOD Scale size
path <- rep(0, nit)
state <- 3 # Initial state
path[1] <- state
scale <- 0.001
for (i in 2:nit) {
candidate <- runif(n = 1, min = state - scale, max = state + scale)
ratio <- f(candidate) / f(state)
u <- runif(n = 1, min = 0, max = 1)
if (u < ratio) {
state <- candidate
}
path[i] <- state
}
plot(path[-(1:200)])
library(MASS)
truehist(path[-(1:200)])
curve(fnormalized(x), add=TRUE, col="red", lwd=2)
## 2c: Another example of POOR scale size
f <- function(x) {
return(1/sqrt(2*pi) * exp(-(x^2)/2))
}
path <- rep(0, nit)
state <- 3 # Initial state
path[1] <- state
scale <- 0.001
for (i in 2:nit) {
candidate <- runif(n = 1, min = state - scale, max = state + scale)
ratio <- f(candidate) / f(state)
u <- runif(n = 1, min = 0, max = 1)
if (u < ratio) {
state <- candidate
}
path[i] <- state
}
plot(path[-(1:200)])
con <- integrate(f, -5, 5)$value
fnormalized <- function(x){f(x)/con}
library(MASS)
truehist(path[-(1:200)])
curve(fnormalized(x), add=TRUE, col="red", lwd=2)
# Problem 4
## 4b: Independence sampler MCMC
f <- function(x) {
return((1 + (x^2)/3)^(-0.5*4))
}
nit <- 100000
path <- rep(NA, nit)
state <- 0 # Initial state
path[1] <- state
for (i in 2:nit) {
angle <- runif(n = 1, min = -pi/2, max = pi/2)
candidate <- tan(angle)
ratio <- (f(candidate) * dcauchy(state)) / (f(state) * dcauchy(candidate))
u <- runif(n = 1, min = 0, max = 1)
if (u < ratio) {
state <- candidate # Accept the candidate
}
path[i] <- state
}
plot(path[-(1:200)])
## 4c: Quantiles
quantile(abs(path), probs = c(0.9, 0.95, 0.99))
# Factoring in the absolute values, for comparison:
qt(p = c(0.95, 0.975, 0.995), df = 3)
# Problem 5
## 5b: Hardcore Lattice model
nit <- 100000
path <- array(0, dim=c(8, 8, nit))
meets_constraint <- function(lattice) {
# Check for vertical pairs
for (i in 1:8) {
for (j in 1:7) {
if (lattice[i, j] + lattice[i, j + 1] == 2) {
return(FALSE)
}
}
}
# Check for horizontal pairs
for (j in 1:8) {
for (i in 1:7) {
if (lattice[i, j] + lattice[i + 1, j] == 2) {
return(FALSE)
}
}
}
return(TRUE);
}
for (k in 2:nit) {
x <- sample(1:8, size=1)
y <- sample(1:8, size=1)
this_lattice <- path[,,k - 1]
this_lattice[x, y] <- 1 - this_lattice[x, y]
if (meets_constraint(this_lattice)) {
path[,,k] <- this_lattice
}
else {
path[,,k] <- path[,,k - 1]
}
}
occupancies <- rep(0, nit)
for (i in 1:nit) {
occupancies[i] <- sum(path[,,i])
}
plot(table(occupancies))
## 5c: Quantiles
quantile(occupancies, c(0.1, 0.5, 0.9))
## 5d: Graphs
library(grid)
plot.hc <- function(mat){
m <- dim(mat)[1]
n <- dim(mat)[2]
grid.newpage()
rad = .02
xx = function(j) {j/(n+1)}
yy = function(i) {(m+1-i)/(m+1)}
for(i in 1:m){
grid.lines(c(xx(1),xx(n)),c(yy(i),yy(i)))
}
for(j in 1:n){
grid.lines(c(xx(j),xx(j)),c(yy(1),yy(m)))
}
for(j in 1:n){
for(i in 1:m){
mycolor <- c('black','green')[1+mat[i,j]]
grid.circle(xx(j), yy(i), rad, gp=gpar(fill=mycolor))
}
}
}
plot.hc(path[,,2500])
plot.hc(path[,,5000])
plot.hc(path[,,7500])
plot.hc(path[,,10000])