-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathminhashcuda.cc
651 lines (619 loc) · 22.7 KB
/
minhashcuda.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
#include <cassert>
#include <cinttypes>
#include <algorithm>
#include <condition_variable>
#include <map>
#include <thread>
#include "private.h"
#include <curand.h>
extern "C" {
struct MinhashCudaGenerator_ {
MinhashCudaGenerator_(uint32_t dim_, uint16_t samples_,
const std::vector<int> &devs_, int verbosity_)
: dim(dim_), samples(samples_), weights(devs_.size()),
cols(devs_.size()), rows(devs_.size()), plans(devs_.size()),
hashes(devs_.size()), sizes(devs_.size(), 0),
lengths(devs_.size(), 0), plan_sizes(devs_.size(), 0),
devs(devs_), verbosity(verbosity_) {}
udevptrs<float> rs;
udevptrs<float> ln_cs;
udevptrs<float> betas;
uint32_t dim;
uint16_t samples;
mutable udevptrs<float> weights;
mutable udevptrs<uint32_t> cols;
mutable udevptrs<uint32_t> rows;
mutable udevptrs<int32_t> plans;
mutable udevptrs<uint32_t> hashes;
mutable std::vector<uint32_t> sizes;
mutable std::vector<uint32_t> lengths;
mutable std::vector<uint32_t> plan_sizes;
std::vector<uint32_t> shmem_sizes;
std::vector<int> devs;
int verbosity;
};
} // extern "C"
static std::vector<int> setup_devices(uint32_t devices, int verbosity) {
std::vector<int> devs;
if (devices == 0) {
cudaGetDeviceCount(reinterpret_cast<int *>(&devices));
if (devices == 0) {
return devs;
}
devices = (1u << devices) - 1;
}
for (int dev = 0; devices; dev++) {
if (devices & 1) {
devs.push_back(dev);
if (cudaSetDevice(dev) != cudaSuccess) {
INFO("failed to validate device %d\n", dev);
devs.pop_back();
} else {
cudaDeviceProp props;
auto err = cudaGetDeviceProperties(&props, dev);
if (err != cudaSuccess) {
INFO("failed to cudaGetDeviceProperties(%d): %s\n",
dev, cudaGetErrorString(err));
devs.pop_back();
} else {
if (props.major != (CUDA_ARCH / 10)
|| props.minor != (CUDA_ARCH % 10)) {
INFO("compute capability mismatch for device %d: wanted %d.%d, have "
"%d.%d\n>>>> you may want to build kmcuda with -DCUDA_ARCH=%d "
"(refer to \"Building\" in README.md)\n",
dev, CUDA_ARCH / 10, CUDA_ARCH % 10, props.major, props.minor,
props.major * 10 + props.minor);
devs.pop_back();
}
}
}
}
devices >>= 1;
}
if (devs.size() > 1) {
for (int dev1 : devs) {
for (int dev2 : devs) {
if (dev1 <= dev2) {
continue;
}
int access = 0;
cudaDeviceCanAccessPeer(&access, dev1, dev2);
if (!access) {
INFO("warning: p2p %d <-> %d is impossible\n", dev1, dev2);
}
}
}
for (int dev : devs) {
cudaSetDevice(dev);
for (int odev : devs) {
if (dev == odev) {
continue;
}
auto err = cudaDeviceEnablePeerAccess(odev, 0);
if (err == cudaErrorPeerAccessAlreadyEnabled) {
INFO("p2p is already enabled on gpu #%d\n", dev);
} else if (err != cudaSuccess) {
INFO("warning: failed to enable p2p on gpu #%d: %s\n", dev,
cudaGetErrorString(err));
}
}
}
}
return devs;
}
static MHCUDAResult print_memory_stats(const std::vector<int> &devs) {
int verbosity = 0;
FOR_EACH_DEV(
size_t free_bytes, total_bytes;
if (cudaMemGetInfo(&free_bytes, &total_bytes) != cudaSuccess) {
return mhcudaRuntimeError;
}
printf("GPU #%d memory: used %zu bytes (%.1f%%), free %zu bytes, "
"total %zu bytes\n",
dev, total_bytes - free_bytes,
(total_bytes - free_bytes) * 100.0 / total_bytes,
free_bytes, total_bytes);
);
return mhcudaSuccess;
}
static const std::map<curandStatus, const char*> CURAND_ERRORS {
{CURAND_STATUS_SUCCESS, "CURAND_STATUS_SUCCESS"},
{CURAND_STATUS_VERSION_MISMATCH, "CURAND_STATUS_VERSION_MISMATCH"},
{CURAND_STATUS_NOT_INITIALIZED, "CURAND_STATUS_NOT_INITIALIZED"},
{CURAND_STATUS_ALLOCATION_FAILED, "CURAND_STATUS_ALLOCATION_FAILED"},
{CURAND_STATUS_TYPE_ERROR, "CURAND_STATUS_TYPE_ERROR"},
{CURAND_STATUS_OUT_OF_RANGE, "CURAND_STATUS_OUT_OF_RANGE"},
{CURAND_STATUS_LENGTH_NOT_MULTIPLE, "CURAND_STATUS_LENGTH_NOT_MULTIPLE"},
{CURAND_STATUS_DOUBLE_PRECISION_REQUIRED, "CURAND_STATUS_DOUBLE_PRECISION_REQUIRED"},
{CURAND_STATUS_LAUNCH_FAILURE, "CURAND_STATUS_LAUNCH_FAILURE"},
{CURAND_STATUS_PREEXISTING_FAILURE, "CURAND_STATUS_PREEXISTING_FAILURE"},
{CURAND_STATUS_INITIALIZATION_FAILED, "CURAND_STATUS_INITIALIZATION_FAILED"},
{CURAND_STATUS_ARCH_MISMATCH, "CURAND_STATUS_ARCH_MISMATCH"},
{CURAND_STATUS_INTERNAL_ERROR, "CURAND_STATUS_INTERNAL_ERROR"}
};
#define CURANDCH(cuda_call, ret, ...) \
do { \
auto __res = cuda_call; \
if (__res != CURAND_STATUS_SUCCESS) { \
DEBUG("%s\n", #cuda_call); \
INFO("%s:%d -> %s\n", __FILE__, __LINE__, CURAND_ERRORS.find(__res)->second); \
__VA_ARGS__; \
return ret; \
} \
} while (false)
class CurandGenerator : public unique_devptr_parent<curandGenerator_st> {
public:
explicit CurandGenerator(curandGenerator_t ptr) : unique_devptr_parent<curandGenerator_st>(
ptr, [](curandGenerator_t p){ curandDestroyGenerator(p); }) {}
};
static MHCUDAResult mhcuda_init_internal(
MinhashCudaGenerator *gen, uint32_t seed, bool deferred,
const std::vector<int>& devs) {
int verbosity = gen->verbosity;
size_t const_size = gen->dim * gen->samples;
CUMALLOC(gen->rs, const_size);
CUMALLOC(gen->ln_cs, const_size);
CUMALLOC(gen->betas, const_size);
FOR_EACH_DEV(
cudaDeviceProp props;
CUCH(cudaGetDeviceProperties(&props, dev), mhcudaRuntimeError);
gen->shmem_sizes.push_back(props.sharedMemPerBlock);
DEBUG("GPU #%" PRIu32 " has %d bytes of shared memory per block\n",
dev, gen->shmem_sizes.back());
);
if (deferred) {
return mhcudaSuccess;
}
CUCH(cudaSetDevice(devs.back()), mhcudaNoSuchDevice);
curandGenerator_t rndgen_;
CURANDCH(curandCreateGenerator(&rndgen_, CURAND_RNG_PSEUDO_DEFAULT),
mhcudaRuntimeError);
CurandGenerator rndgen(rndgen_);
CURANDCH(curandSetPseudoRandomGeneratorSeed(rndgen.get(), seed),
mhcudaRuntimeError);
CURANDCH(curandGenerateUniform(rndgen.get(), gen->rs.back().get(), const_size),
mhcudaRuntimeError);
CURANDCH(curandGenerateUniform(rndgen.get(), gen->ln_cs.back().get(), const_size),
mhcudaRuntimeError);
CURANDCH(curandGenerateUniform(rndgen.get(), gen->betas.back().get(), const_size),
mhcudaRuntimeError);
CUCH(gamma_(const_size, gen->ln_cs.back().get(), gen->rs.back().get()),
mhcudaRuntimeError);
CURANDCH(curandGenerateUniform(rndgen.get(), gen->ln_cs.back().get(), const_size),
mhcudaRuntimeError);
CUCH(gamma_(const_size, gen->betas.back().get(), gen->ln_cs.back().get()),
mhcudaRuntimeError);
CURANDCH(curandGenerateUniform(rndgen.get(), gen->betas.back().get(), const_size),
mhcudaRuntimeError);
CUCH(log_(const_size, gen->ln_cs.back().get()), mhcudaRuntimeError);
auto devi = devs.size() - 1;
FOR_OTHER_DEVS(
CUP2P(&gen->rs, 0, const_size);
CUP2P(&gen->ln_cs, 0, const_size);
CUP2P(&gen->betas, 0, const_size);
);
return mhcudaSuccess;
}
extern "C" {
MinhashCudaGenerator *mhcuda_init(
uint32_t dim, uint16_t samples, uint32_t seed, int deferred,
uint32_t devices, int verbosity, MHCUDAResult *status) {
DEBUG("mhcuda_init: %" PRIu32 " %" PRIu16 " %" PRIu32 " %d %" PRIu32
" %d %p\n", dim, samples, seed, deferred, devices, verbosity, status);
if (dim == 0 || samples == 0) {
if (status) *status = mhcudaInvalidArguments;
return nullptr;
}
auto devs = setup_devices(devices, verbosity);
if (devs.empty()) {
if (status) *status = mhcudaNoSuchDevice;
return nullptr;
}
auto gen = std::unique_ptr<MinhashCudaGenerator>(
new MinhashCudaGenerator(dim, samples, devs, verbosity));
#define CHECK_SUCCESS(x) do { \
auto res = x; \
if (res != mhcudaSuccess) { \
if (status) *status = res; \
return nullptr; \
} \
} while(false)
CHECK_SUCCESS(mhcuda_init_internal(gen.get(), seed, deferred, devs));
if (verbosity > 1) {
CHECK_SUCCESS(print_memory_stats(devs));
}
CHECK_SUCCESS(setup_weighted_minhash(dim, devs, verbosity));
return gen.release();
#undef CHECK_SUCCESS
}
MinhashCudaGeneratorParameters mhcuda_get_parameters(
const MinhashCudaGenerator *gen) {
if (gen == nullptr) {
return {};
}
return MinhashCudaGeneratorParameters {
.dim=gen->dim, .samples=gen->samples, .verbosity=gen->verbosity
};
}
MHCUDAResult mhcuda_retrieve_random_vars(
const MinhashCudaGenerator *gen, float *rs, float *ln_cs, float *betas) {
if (!gen || !rs || !ln_cs || !betas) {
return mhcudaInvalidArguments;
}
int verbosity = gen->verbosity;
auto &devs = gen->devs;
size_t const_size = gen->dim * gen->samples * sizeof(float);
CUCH(cudaSetDevice(devs[0]), mhcudaNoSuchDevice);
CUCH(cudaMemcpyAsync(rs, gen->rs[0].get(), const_size, cudaMemcpyDeviceToHost),
mhcudaMemoryCopyError);
CUCH(cudaMemcpyAsync(ln_cs, gen->ln_cs[0].get(), const_size, cudaMemcpyDeviceToHost),
mhcudaMemoryCopyError);
CUCH(cudaMemcpy(betas, gen->betas[0].get(), const_size, cudaMemcpyDeviceToHost),
mhcudaMemoryCopyError);
return mhcudaSuccess;
}
MHCUDAResult mhcuda_assign_random_vars(
const MinhashCudaGenerator *gen, const float *rs,
const float *ln_cs, const float *betas) {
if (!gen || !rs || !ln_cs || !betas) {
return mhcudaInvalidArguments;
}
int verbosity = gen->verbosity;
auto &devs = gen->devs;
size_t const_size = gen->dim * gen->samples;
CUMEMCPY_H2D_ASYNC(gen->rs, 0, rs, const_size);
CUMEMCPY_H2D_ASYNC(gen->ln_cs, 0, ln_cs, const_size);
CUMEMCPY_H2D_ASYNC(gen->betas, 0, betas, const_size);
return mhcudaSuccess;
}
} // extern "C"
static std::vector<uint32_t> calc_best_split(
const uint32_t *rows, uint32_t length, const std::vector<int> &devs,
const std::vector<uint32_t> &sizes) {
// We need to distribute `length` rows into `devs.size()` devices.
// The number of items is different in every row.
// So we record each 2 possibilities <> the optimal boundary.
// 2 devices -> 2 variants
// 4 -> 8
// 8 -> 128
// 10 -> 512
// 16 -> 32768
// Then the things get tough. The complexity is O(2^(2(n - 1)))
// Hopefully, we will not see more GPUs in a single node soon.
// We evaluate each variant by the cumulative cost function.
// Every call to mhcuda_calc() can grow the buffers a little; the cost function
// optimizes for the number of reallocations first and the imbalance second.
if (devs.size() == 1) {
return {length};
}
uint32_t devs_size = std::min(length, static_cast<uint32_t>(devs.size()));
uint32_t ideal_split = rows[length] / devs_size;
uint32_t previous_row = 0;
std::vector<std::vector<uint32_t>> variants;
for (size_t devi = 0; devi < devs_size - 1; devi++) {
// we only iterate until devs_size - 1 because the last index is always length
uint32_t row = std::upper_bound(
rows, rows + length + 1, ideal_split * (devi + 1)) - rows;
row = std::min(row, static_cast<uint32_t>(length - (devs_size - 1) + devi));
if (previous_row == row) {
row ++;
}
if (devi > 0) {
std::vector<std::vector<uint32_t>> fork;
fork.assign(variants.begin(), variants.end());
for (auto &v : variants) {
if (v.back() < row - 1) {
v.push_back(row - 1);
} else {
v.push_back(row);
}
}
for (auto &v : fork) {
if (v.back() < row - 1) {
v.push_back(row);
variants.push_back(v);
}
}
} else {
if (1 < row) {
variants.push_back({row - 1});
variants.push_back({row});
} else {
variants.push_back({row});
}
}
previous_row = row;
}
for (auto &v : variants) {
v.push_back(length);
}
assert(!variants.empty());
std::vector<uint32_t> *best = nullptr;
struct Cost : public std::tuple<uint32_t, uint32_t> {
Cost() = default;
Cost(const std::tuple<uint32_t, uint32_t>& other)
: std::tuple<uint32_t, uint32_t>(other) {}
Cost& operator+=(const std::tuple<uint32_t, uint32_t>& other) {
std::get<0>(*this) += std::get<0>(other);
std::get<1>(*this) += std::get<1>(other);
return *this;
}
};
Cost min_cost = std::make_tuple(0xFFFFFFFFu, 0xFFFFFFFFu);
for (auto &v : variants) {
Cost cost;
for (size_t i = 0; i < devs_size; i++) {
uint32_t row = v[i], prev_row = (i > 0)? v[i - 1] : 0;
uint32_t rdelta = rows[row] - rows[prev_row];
uint32_t diff1 = (rdelta > sizes[i])? (rdelta - sizes[i]) : 0;
diff1 *= diff1;
uint32_t diff2 = (rdelta > ideal_split)? (rdelta - ideal_split)
: (ideal_split - rdelta);
diff2 *= diff2;
auto diff = std::make_tuple(diff1, diff2);
cost += diff;
}
if (cost < min_cost) {
best = &v;
min_cost = cost;
}
}
return *best;
}
static MHCUDAResult fill_buffers(
const MinhashCudaGenerator *gen, const float *weights,
const uint32_t *cols, const uint32_t *rows, const std::vector<uint32_t> &split,
std::vector<uint32_t> *rsizes, std::vector<uint32_t> *tsizes) {
int verbosity = gen->verbosity;
auto &devs = gen->devs;
uint32_t devs_size = std::min(static_cast<size_t>(devs.size()), split.size());
for (size_t devi = 0; devi < devs_size; devi++) {
CUCH(cudaSetDevice(devs[devi]), mhcudaNoSuchDevice);
uint32_t row = split[devi], prev_row = (devi > 0) ? split[devi - 1] : 0;
rsizes->push_back(row - prev_row);
if (rsizes->back() > gen->lengths[devi]) {
DEBUG("resizing rows and hashes: %" PRIu32 " -> %" PRIu32 "\n",
gen->lengths[devi], rsizes->back());
gen->rows[devi].reset();
gen->hashes[devi].reset();
{
gen->rows[devi].reset();
uint32_t *ptr;
CUCH(cudaMalloc(&ptr, (rsizes->back() + 1) * sizeof(uint32_t)),
mhcudaMemoryAllocationFailure);
gen->rows[devi].reset(ptr);
}
{
gen->hashes[devi].reset();
uint32_t *ptr;
CUCH(cudaMalloc(&ptr, rsizes->back() * gen->samples * sizeof(uint64_t)),
mhcudaMemoryAllocationFailure);
gen->hashes[devi].reset(ptr);
}
gen->lengths[devi] = rsizes->back();
}
CUCH(cudaMemcpyAsync(gen->rows[devi].get(), rows + prev_row,
(rsizes->back() + 1) * sizeof(uint32_t),
cudaMemcpyHostToDevice), mhcudaMemoryCopyError);
#ifndef NDEBUG
CUCH(cudaMemsetAsync(gen->hashes[devi].get(), 0xff,
rsizes->back() * gen->samples * 2 * sizeof(uint32_t)),
mhcudaRuntimeError);
#endif
tsizes->push_back(rows[row] - rows[prev_row]);
if (tsizes->back() > gen->sizes[devi]) {
DEBUG("resizing weights and cols: %" PRIu32 " -> %" PRIu32 "\n",
gen->sizes[devi], tsizes->back());
gen->weights[devi].reset();
gen->cols[devi].reset();
{
gen->weights[devi].reset();
float *ptr;
CUCH(cudaMalloc(&ptr, tsizes->back() * sizeof(float)),
mhcudaMemoryAllocationFailure);
gen->weights[devi].reset(ptr);
}
{
gen->cols[devi].reset();
uint32_t *ptr;
CUCH(cudaMalloc(&ptr, tsizes->back() * sizeof(uint32_t)),
mhcudaMemoryAllocationFailure);
gen->cols[devi].reset(ptr);
}
gen->sizes[devi] = tsizes->back();
}
CUCH(cudaMemcpyAsync(gen->weights[devi].get(), weights + rows[prev_row],
tsizes->back() * sizeof(float),
cudaMemcpyHostToDevice), mhcudaMemoryCopyError);
CUCH(cudaMemcpyAsync(gen->cols[devi].get(), cols + rows[prev_row],
tsizes->back() * sizeof(uint32_t),
cudaMemcpyHostToDevice), mhcudaMemoryCopyError);
}
return mhcudaSuccess;
}
static void binpack(
const MinhashCudaGenerator *gen, const uint32_t *rows,
const std::vector<uint32_t> &split, const std::vector<int> &sample_deltas,
std::vector<std::vector<int32_t>> *plans, std::vector<uint32_t> *grid_sizes) {
// https://blog.sourced.tech/post/minhashcuda/
const int32_t ideal_binavgcount = 20;
auto &devs = gen->devs;
int verbosity = gen->verbosity;
uint32_t devs_size = std::min(static_cast<size_t>(devs.size()), split.size());
plans->resize(devs_size);
grid_sizes->resize(devs_size);
#pragma omp parallel for
for (size_t devi = 0; devi < devs_size; devi++) {
uint32_t last_row = split[devi], first_row = (devi > 0) ? split[devi - 1] : 0;
std::vector<std::tuple<int32_t, uint32_t>> blocks;
blocks.reserve(last_row - first_row);
for (uint32_t i = first_row; i < last_row; i++) {
blocks.emplace_back(rows[i + 1] - rows[i], i);
}
std::sort(blocks.rbegin(), blocks.rend()); // reverse order
int32_t max = std::get<0>(blocks.front());
uint32_t size = rows[last_row] - rows[first_row];
int32_t avg = size / blocks.size();
int32_t blockDim = (MINHASH_BLOCK_SIZE * sample_deltas[devi]) / gen->samples;
assert(blockDim > 0);
int32_t bintotal = ceilf(static_cast<float>(size) / blockDim);
int32_t max_binavgcount = ceilf(static_cast<float>(bintotal) / avg);
int32_t binavgcount = max_binavgcount;
for (int i = 2; binavgcount > ideal_binavgcount &&
i <= max_binavgcount / ideal_binavgcount; i++) {
binavgcount = max_binavgcount / i;
}
int32_t binsize = std::max(binavgcount * avg, max);
// this is an initial approximation - the real life is of course tougher
// we are going to get some imbalance though we greedily try to reduce it
std::vector<std::pair<int32_t, std::vector<uint32_t>>> bins(
ceilf(static_cast<float>(size) / (binsize * blockDim)) * blockDim);
assert(bins.size() > 0 && bins.size() % blockDim == 0);
DEBUG("dev #%d: binsize %d, bins %zu\n", devs[devi], binsize, bins.size());
grid_sizes->at(devi) = bins.size() / blockDim;
for (auto &block : blocks) {
std::pop_heap(bins.begin(), bins.end());
auto &bin = bins.back();
bin.first -= std::get<0>(block); // max heap
bin.second.push_back(std::get<1>(block));
std::push_heap(bins.begin(), bins.end());
}
std::sort_heap(bins.begin(), bins.end());
#ifndef NDEBUG
if (verbosity > 1) {
printf("dev #%d imbalance: ", devs[devi]);
for (uint32_t i = 0; i < bins.size(); i++) {
if (i % blockDim == 0 && i > 0) {
int32_t delta = bins[i].first - bins[i - blockDim].first;
printf("(%d %d%%) ", delta, -(delta * 100) / bins[i - blockDim].first);
}
}
printf("\n");
}
#endif
auto &plan = plans->at(devi);
plan.resize(bins.size() + 1 + blocks.size());
uint32_t offset = bins.size() + 1;
for (uint32_t i = 0; i < bins.size(); i++) {
plan[i] = offset;
for (auto row : bins[i].second) {
plan[offset++] = row;
}
}
plan[bins.size()] = offset; // end offset equals to the previous
}
}
static MHCUDAResult fill_plans(
const MinhashCudaGenerator *gen, const std::vector<std::vector<int32_t>> &plans) {
int verbosity = gen->verbosity;
auto &devs = gen->devs;
assert(plans.size() == devs.size());
for (size_t devi = 0; devi < devs.size(); devi++) {
CUCH(cudaSetDevice(devs[devi]), mhcudaNoSuchDevice);
auto plan_size = plans[devi].size();
if (gen->plan_sizes[devi] < plan_size) {
gen->plans[devi].reset();
int32_t *ptr;
CUCH(cudaMalloc(&ptr, plan_size * sizeof(int32_t)), mhcudaMemoryAllocationFailure);
gen->plans[devi].reset(ptr);
gen->plan_sizes[devi] = plan_size;
}
CUCH(cudaMemcpyAsync(gen->plans[devi].get(), plans[devi].data(),
plan_size * sizeof(int32_t),
cudaMemcpyHostToDevice), mhcudaMemoryCopyError);
}
return mhcudaSuccess;
}
static void dump_vector(const std::vector<uint32_t> &vec, const char *name) {
printf("%s: ", name);
for (size_t i = 0; i < vec.size() - 1; i++) {
printf("%" PRIu32 ", ", vec[i]);
}
printf("%" PRIu32 "\n", vec.back());
}
static void dump_vectors(const std::vector<std::vector<int32_t>> &vec,
const char *name) {
printf("%s:\n", name);
for (size_t vi = 0; vi < vec.size(); vi++) {
printf("[%zu] ", vi);
auto &subvec = vec[vi];
auto last = std::min(subvec.size() - 1, static_cast<size_t>(9));
for (size_t i = 0; i < last; i++) {
printf("%" PRIi32 ", ", subvec[i]);
}
printf("%" PRIi32, subvec[last]);
if (last < subvec.size() - 1) {
printf("...\n");
} else {
printf("\n");
}
}
}
extern "C" {
MHCUDAResult mhcuda_calc(
const MinhashCudaGenerator *gen, const float *weights,
const uint32_t *cols, const uint32_t *rows, uint32_t length,
uint32_t *output) {
if (!gen || !weights || !cols || !rows || !output || length == 0) {
return mhcudaInvalidArguments;
}
int verbosity = gen->verbosity;
DEBUG("mhcuda_calc: %p %p %p %p %" PRIu32 " %p\n", gen, weights, cols,
rows, length, output);
auto &devs = gen->devs;
INFO("Preparing...\n");
auto split = calc_best_split(rows, length, gen->devs, gen->sizes);
if (verbosity > 1) {
dump_vector(split, "split");
}
std::vector<uint32_t> rsizes, tsizes, grid_sizes;
std::vector<std::vector<int32_t>> plans;
RETERR(fill_buffers(gen, weights, cols, rows, split, &rsizes, &tsizes));
std::vector<int> sample_deltas;
int samples = gen->samples;
for (auto shmem_size : gen->shmem_sizes) {
int sdmax = shmem_size / (3 * 4 * MINHASH_BLOCK_SIZE);
assert(sdmax > 0);
int sd = sdmax + 1;
for (int i = 1; i <= samples && sd > sdmax; i++) {
if (samples % i == 0) {
int try_sd = samples / i;
if (try_sd % 2 == 0) {
sd = try_sd;
}
}
}
if (sd > sdmax) {
return mhcudaInvalidArguments;
}
sample_deltas.push_back(sd);
}
binpack(gen, rows, split, sample_deltas, &plans, &grid_sizes);
if (verbosity > 1) {
dump_vectors(plans, "plans");
dump_vector(grid_sizes, "grid_sizes");
}
RETERR(fill_plans(gen, plans));
INFO("Executing the CUDA kernel...\n");
RETERR(weighted_minhash(
gen->rs, gen->ln_cs, gen->betas, gen->weights, gen->cols, gen->rows,
samples, sample_deltas, gen->plans, split, rows, grid_sizes, devs,
verbosity, &gen->hashes));
FOR_EACH_DEVI(
auto size = rsizes[devi] * gen->samples * 2;
CUCH(cudaMemcpyAsync(output, gen->hashes[devi].get(),
size * sizeof(uint32_t), cudaMemcpyDeviceToHost),
mhcudaMemoryCopyError);
output += size;
);
SYNC_ALL_DEVS;
INFO("mhcuda - success\n");
return mhcudaSuccess;
}
MHCUDAResult mhcuda_fini(MinhashCudaGenerator *gen) {
if (gen) {
delete gen;
}
return mhcudaSuccess;
}
} // extern "C"