forked from olofmogren/c-rnn-gan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn_gan.py
864 lines (755 loc) · 43.5 KB
/
rnn_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
The hyperparameters used in the model:
- learning_rate - the initial value of the learning rate
- max_grad_norm - the maximum permissible norm of the gradient
- num_layers - the number of LSTM layers
- songlength - the number of unrolled steps of LSTM
- hidden_size - the number of LSTM units
- epochs_before_decay - the number of epochs trained with the initial learning rate
- max_epoch - the total number of epochs for training
- keep_prob - the probability of keeping weights in the dropout layer
- lr_decay - the decay of the learning rate for each epoch after "epochs_before_decay"
- batch_size - the batch size
The hyperparameters that could be used in the model:
- init_scale - the initial scale of the weights
To run:
$ python rnn_gan.py --model small|medium|large --datadir simple-examples/data/ --traindir dir-for-checkpoints-and-plots --select_validation_percentage 0-40 --select_test_percentage 0-40
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time, datetime, os, sys
import cPickle as pkl
from subprocess import call, Popen
import numpy as np
import tensorflow as tf
from tensorflow.python.client import timeline
import music_data_utils
from midi_statistics import get_all_stats
flags = tf.flags
logging = tf.logging
flags.DEFINE_string("datadir", None, "Directory to save and load midi music files.")
flags.DEFINE_string("traindir", None, "Directory to save checkpoints and gnuplot files.")
flags.DEFINE_integer("epochs_per_checkpoint", 2,
"How many training epochs to do per checkpoint.")
flags.DEFINE_boolean("log_device_placement", False, #
"Outputs info on device placement.")
flags.DEFINE_string("call_after", None, "Call this command after exit.")
flags.DEFINE_integer("exit_after", 1440,
"exit after this many minutes")
flags.DEFINE_integer("select_validation_percentage", None,
"Select random percentage of data as validation set.")
flags.DEFINE_integer("select_test_percentage", None,
"Select random percentage of data as test set.")
flags.DEFINE_boolean("sample", False,
"Sample output from the model. Assume training was already done. Save sample output to file.")
flags.DEFINE_integer("works_per_composer", None,
"Limit number of works per composer that is loaded.")
flags.DEFINE_boolean("disable_feed_previous", False,
"Feed output from previous cell to the input of the next. In the generator.")
flags.DEFINE_float("init_scale", 0.05, # .1, .04
"the initial scale of the weights")
flags.DEFINE_float("learning_rate", 0.1, # .05,.1,.9
"Learning rate")
flags.DEFINE_float("d_lr_factor", 0.5, # .5
"Learning rate decay")
flags.DEFINE_float("max_grad_norm", 5.0, # 5.0, 10.0
"the maximum permissible norm of the gradient")
flags.DEFINE_float("keep_prob", 0.5, # 1.0, .35
"Keep probability. 1.0 disables dropout.")
flags.DEFINE_float("lr_decay", 1.0, # 1.0
"Learning rate decay after each epoch after epochs_before_decay")
flags.DEFINE_integer("num_layers_g", 2, # 2
"Number of stacked recurrent cells in G.")
flags.DEFINE_integer("num_layers_d", 2, # 2
"Number of stacked recurrent cells in D.")
flags.DEFINE_integer("songlength", 100, # 200, 500
"Limit song inputs to this number of events.")
flags.DEFINE_integer("meta_layer_size", 200, # 300, 600
"Size of hidden layer for meta information module.")
flags.DEFINE_integer("hidden_size_g", 350, # 200, 1500
"Hidden size for recurrent part of G.")
flags.DEFINE_integer("hidden_size_d", 350, # 200, 1500
"Hidden size for recurrent part of D. Default: same as for G.")
flags.DEFINE_integer("epochs_before_decay", 60, # 40, 140
"Number of epochs before starting to decay.")
flags.DEFINE_integer("max_epoch", 500, # 500, 500
"Number of epochs before stopping training.")
flags.DEFINE_integer("batch_size", 20, # 10, 20
"Batch size.")
flags.DEFINE_integer("biscale_slow_layer_ticks", 8, # 8
"Biscale slow layer ticks. Not implemented yet.")
flags.DEFINE_boolean("multiscale", False, #
"Multiscale RNN. Not implemented.")
flags.DEFINE_integer("pretraining_epochs", 6, # 20, 40
"Number of epochs to run lang-model style pretraining.")
flags.DEFINE_boolean("pretraining_d", False, #
"Train D during pretraining.")
flags.DEFINE_boolean("initialize_d", False, #
"Initialize variables for D, no matter if there are trained versions in checkpoint.")
flags.DEFINE_boolean("ignore_saved_args", False, #
"Tells the program to ignore saved arguments, and instead use the ones provided as CLI arguments.")
flags.DEFINE_boolean("pace_events", False, #
"When parsing input data, insert one dummy event at each quarter note if there is no tone.")
flags.DEFINE_boolean("minibatch_d", False, #
"Adding kernel features for minibatch diversity.")
flags.DEFINE_boolean("unidirectional_d", False, #
"Unidirectional RNN instead of bidirectional RNN for D.")
flags.DEFINE_boolean("profiling", False, #
"Profiling. Writing a timeline.json file in plots dir.")
flags.DEFINE_boolean("float16", False, #
"Use floa16 data type. Otherwise, use float32.")
flags.DEFINE_boolean("adam", False, #
"Use Adam optimizer.")
flags.DEFINE_boolean("feature_matching", False, #
"Feature matching objective for G.")
flags.DEFINE_boolean("disable_l2_regularizer", False, #
"L2 regularization on weights.")
flags.DEFINE_float("reg_scale", 1.0, #
"L2 regularization scale.")
flags.DEFINE_boolean("synthetic_chords", False, #
"Train on synthetically generated chords (three tones per event).")
flags.DEFINE_integer("tones_per_cell", 1, # 2,3
"Maximum number of tones to output per RNN cell.")
flags.DEFINE_string("composer", None, "Specify exactly one composer, and train model only on this.")
flags.DEFINE_boolean("generate_meta", False, "Generate the composer and genre as part of output.")
flags.DEFINE_float("random_input_scale", 1.0, #
"Scale of random inputs (1.0=same size as generated features).")
flags.DEFINE_boolean("end_classification", False, "Classify only in ends of D. Otherwise, does classification at every timestep and mean reduce.")
FLAGS = flags.FLAGS
model_layout_flags = ['num_layers_g', 'num_layers_d', 'meta_layer_size', 'hidden_size_g', 'hidden_size_d', 'biscale_slow_layer_ticks', 'multiscale', 'multiscale', 'disable_feed_previous', 'pace_events', 'minibatch_d', 'unidirectional_d', 'feature_matching', 'composer']
def restore_flags(save_if_none_found=True):
if FLAGS.traindir:
saved_args_dir = os.path.join(FLAGS.traindir, 'saved_args')
if save_if_none_found:
try: os.makedirs(saved_args_dir)
except: pass
for arg in FLAGS.__flags:
if arg not in model_layout_flags:
continue
if FLAGS.ignore_saved_args and os.path.exists(os.path.join(saved_args_dir, arg+'.pkl')):
print('{:%Y-%m-%d %H:%M:%S}: saved_args: Found {} setting from saved state, but using CLI args ({}) and saving (--ignore_saved_args).'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))
elif os.path.exists(os.path.join(saved_args_dir, arg+'.pkl')):
with open(os.path.join(saved_args_dir, arg+'.pkl'), 'r') as f:
setattr(FLAGS, arg, pkl.load(f))
print('{:%Y-%m-%d %H:%M:%S}: saved_args: {} from saved state ({}), ignoring CLI args.'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))
elif save_if_none_found:
print('{:%Y-%m-%d %H:%M:%S}: saved_args: Found no {} setting from saved state, using CLI args ({}) and saving.'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))
with open(os.path.join(saved_args_dir, arg+'.pkl'), 'w') as f:
pkl.dump(getattr(FLAGS, arg), f)
else:
print('{:%Y-%m-%d %H:%M:%S}: saved_args: Found no {} setting from saved state, using CLI args ({}) but not saving.'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))
def data_type():
return tf.float16 if FLAGS.float16 else tf.float32
#return tf.float16
def my_reduce_mean(what_to_take_mean_over):
return tf.reshape(what_to_take_mean_over, shape=[-1])[0]
denom = 1.0
#print(what_to_take_mean_over.get_shape())
for d in what_to_take_mean_over.get_shape():
#print(d)
if type(d) == tf.Dimension:
denom = denom*d.value
else:
denom = denom*d
return tf.reduce_sum(what_to_take_mean_over)/denom
def linear(inp, output_dim, scope=None, stddev=1.0, reuse_scope=False):
norm = tf.random_normal_initializer(stddev=stddev, dtype=data_type())
const = tf.constant_initializer(0.0, dtype=data_type())
with tf.variable_scope(scope or 'linear') as scope:
scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))
if reuse_scope:
scope.reuse_variables()
#print('inp.get_shape(): {}'.format(inp.get_shape()))
w = tf.get_variable('w', [inp.get_shape()[1], output_dim], initializer=norm, dtype=data_type())
b = tf.get_variable('b', [output_dim], initializer=const, dtype=data_type())
return tf.matmul(inp, w) + b
def minibatch(inp, num_kernels=25, kernel_dim=10, scope=None, msg='', reuse_scope=False):
"""
Borrowed from http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/
"""
with tf.variable_scope(scope or 'minibatch_d') as scope:
scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))
if reuse_scope:
scope.reuse_variables()
inp = tf.Print(inp, [inp],
'{} inp = '.format(msg), summarize=20, first_n=20)
x = tf.sigmoid(linear(inp, num_kernels * kernel_dim, scope))
activation = tf.reshape(x, (-1, num_kernels, kernel_dim))
activation = tf.Print(activation, [activation],
'{} activation = '.format(msg), summarize=20, first_n=20)
diffs = tf.expand_dims(activation, 3) - \
tf.expand_dims(tf.transpose(activation, [1, 2, 0]), 0)
diffs = tf.Print(diffs, [diffs],
'{} diffs = '.format(msg), summarize=20, first_n=20)
abs_diffs = tf.reduce_sum(tf.abs(diffs), 2)
abs_diffs = tf.Print(abs_diffs, [abs_diffs],
'{} abs_diffs = '.format(msg), summarize=20, first_n=20)
minibatch_features = tf.reduce_sum(tf.exp(-abs_diffs), 2)
minibatch_features = tf.Print(minibatch_features, [tf.reduce_min(minibatch_features), tf.reduce_max(minibatch_features)],
'{} minibatch_features (min,max) = '.format(msg), summarize=20, first_n=20)
return tf.concat(1, [inp, minibatch_features])
class RNNGAN(object):
"""The RNNGAN model."""
def __init__(self, is_training, num_song_features=None, num_meta_features=None):
self.batch_size = batch_size = FLAGS.batch_size
self.songlength = songlength = FLAGS.songlength
#self.global_step = tf.Variable(0, trainable=False)
print('songlength: {}'.format(self.songlength))
self._input_songdata = tf.placeholder(shape=[batch_size, songlength, num_song_features], dtype=data_type())
self._input_metadata = tf.placeholder(shape=[batch_size, num_meta_features], dtype=data_type())
songdata_inputs = [tf.squeeze(input_, [1])
for input_ in tf.split(1, songlength, self._input_songdata)]
with tf.variable_scope('G') as scope:
scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(FLAGS.hidden_size_g, forget_bias=1.0, state_is_tuple=True)
if is_training and FLAGS.keep_prob < 1:
lstm_cell = tf.nn.rnn_cell.DropoutWrapper(
lstm_cell, output_keep_prob=FLAGS.keep_prob)
cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * FLAGS.num_layers_g, state_is_tuple=True)
self._initial_state = cell.zero_state(batch_size, data_type())
# TODO: (possibly temporarily) disabling meta info
if FLAGS.generate_meta:
metainputs = tf.random_uniform(shape=[batch_size, int(FLAGS.random_input_scale*num_meta_features)], minval=0.0, maxval=1.0)
meta_g = tf.nn.relu(linear(metainputs, FLAGS.meta_layer_size, scope='meta_layer', reuse_scope=False))
meta_softmax_w = tf.get_variable("meta_softmax_w", [FLAGS.meta_layer_size, num_meta_features])
meta_softmax_b = tf.get_variable("meta_softmax_b", [num_meta_features])
meta_logits = tf.nn.xw_plus_b(meta_g, meta_softmax_w, meta_softmax_b)
meta_probs = tf.nn.softmax(meta_logits)
random_rnninputs = tf.random_uniform(shape=[batch_size, songlength, int(FLAGS.random_input_scale*num_song_features)], minval=0.0, maxval=1.0, dtype=data_type())
# Make list of tensors. One per step in recurrence.
# Each tensor is batchsize*numfeatures.
random_rnninputs = [tf.squeeze(input_, [1]) for input_ in tf.split(1, songlength, random_rnninputs)]
# REAL GENERATOR:
state = self._initial_state
# as we feed the output as the input to the next, we 'invent' the initial 'output'.
generated_point = tf.random_uniform(shape=[batch_size, num_song_features], minval=0.0, maxval=1.0, dtype=data_type())
outputs = []
self._generated_features = []
for i,input_ in enumerate(random_rnninputs):
if i > 0: scope.reuse_variables()
concat_values = [input_]
if not FLAGS.disable_feed_previous:
concat_values.append(generated_point)
if FLAGS.generate_meta:
concat_values.append(meta_probs)
if len(concat_values):
input_ = tf.concat(concat_dim=1, values=concat_values)
input_ = tf.nn.relu(linear(input_, FLAGS.hidden_size_g,
scope='input_layer', reuse_scope=(i!=0)))
output, state = cell(input_, state)
outputs.append(output)
#generated_point = tf.nn.relu(linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0)))
generated_point = linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0))
self._generated_features.append(generated_point)
# PRETRAINING GENERATOR, will feed inputs, not generated outputs:
scope.reuse_variables()
# as we feed the output as the input to the next, we 'invent' the initial 'output'.
prev_target = tf.random_uniform(shape=[batch_size, num_song_features], minval=0.0, maxval=1.0, dtype=data_type())
outputs = []
self._generated_features_pretraining = []
for i,input_ in enumerate(random_rnninputs):
concat_values = [input_]
if not FLAGS.disable_feed_previous:
concat_values.append(prev_target)
if FLAGS.generate_meta:
concat_values.append(self._input_metadata)
if len(concat_values):
input_ = tf.concat(concat_dim=1, values=concat_values)
input_ = tf.nn.relu(linear(input_, FLAGS.hidden_size_g, scope='input_layer', reuse_scope=(i!=0)))
output, state = cell(input_, state)
outputs.append(output)
#generated_point = tf.nn.relu(linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0)))
generated_point = linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0))
self._generated_features_pretraining.append(generated_point)
prev_target = songdata_inputs[i]
#outputs, state = tf.nn.rnn(cell, transformed, initial_state=self._initial_state)
#self._generated_features = [tf.nn.relu(linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0))) for i,output in enumerate(outputs)]
self._final_state = state
# These are used both for pretraining and for D/G training further down.
self._lr = tf.Variable(FLAGS.learning_rate, trainable=False, dtype=data_type())
self.g_params = [v for v in tf.trainable_variables() if v.name.startswith('model/G/')]
if FLAGS.adam:
g_optimizer = tf.train.AdamOptimizer(self._lr)
else:
g_optimizer = tf.train.GradientDescentOptimizer(self._lr)
reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_constant = 0.1 # Choose an appropriate one.
reg_loss = reg_constant * sum(reg_losses)
reg_loss = tf.Print(reg_loss, reg_losses,
'reg_losses = ', summarize=20, first_n=20)
#if not FLAGS.disable_l2_regularizer:
# print('L2 regularization. Reg losses: {}'.format([v.name for v in reg_losses]))
# ---BEGIN, PRETRAINING. ---
print(tf.transpose(tf.pack(self._generated_features_pretraining), perm=[1, 0, 2]).get_shape())
print(self._input_songdata.get_shape())
self.rnn_pretraining_loss = tf.reduce_mean(tf.squared_difference(x=tf.transpose(tf.pack(self._generated_features_pretraining), perm=[1, 0, 2]), y=self._input_songdata))
if not FLAGS.disable_l2_regularizer:
self.rnn_pretraining_loss = self.rnn_pretraining_loss+reg_loss
pretraining_grads, _ = tf.clip_by_global_norm(tf.gradients(self.rnn_pretraining_loss, self.g_params), FLAGS.max_grad_norm)
self.opt_pretraining = g_optimizer.apply_gradients(zip(pretraining_grads, self.g_params))
# ---END, PRETRAINING---
# The discriminator tries to tell the difference between samples from the
# true data distribution (self.x) and the generated samples (self.z).
#
# Here we create two copies of the discriminator network (that share parameters),
# as you cannot use the same network with different inputs in TensorFlow.
with tf.variable_scope('D') as scope:
scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))
# Make list of tensors. One per step in recurrence.
# Each tensor is batchsize*numfeatures.
# TODO: (possibly temporarily) disabling meta info
print('self._input_songdata shape {}'.format(self._input_songdata.get_shape()))
print('generated data shape {}'.format(self._generated_features[0].get_shape()))
# TODO: (possibly temporarily) disabling meta info
if FLAGS.generate_meta:
songdata_inputs = [tf.concat(1, [self._input_metadata, songdata_input]) for songdata_input in songdata_inputs]
#print('metadata inputs shape {}'.format(self._input_metadata.get_shape()))
#print('generated metadata shape {}'.format(meta_probs.get_shape()))
self.real_d,self.real_d_features = self.discriminator(songdata_inputs, is_training, msg='real')
scope.reuse_variables()
# TODO: (possibly temporarily) disabling meta info
if FLAGS.generate_meta:
generated_data = [tf.concat(1, [meta_probs, songdata_input]) for songdata_input in self._generated_features]
else:
generated_data = self._generated_features
if songdata_inputs[0].get_shape() != generated_data[0].get_shape():
print('songdata_inputs shape {} != generated data shape {}'.format(songdata_inputs[0].get_shape(), generated_data[0].get_shape()))
self.generated_d,self.generated_d_features = self.discriminator(generated_data, is_training, msg='generated')
# Define the loss for discriminator and generator networks (see the original
# paper for details), and create optimizers for both
self.d_loss = tf.reduce_mean(-tf.log(tf.clip_by_value(self.real_d, 1e-1000000, 1.0)) \
-tf.log(1 - tf.clip_by_value(self.generated_d, 0.0, 1.0-1e-1000000)))
self.g_loss_feature_matching = tf.reduce_sum(tf.squared_difference(self.real_d_features, self.generated_d_features))
self.g_loss = tf.reduce_mean(-tf.log(tf.clip_by_value(self.generated_d, 1e-1000000, 1.0)))
if not FLAGS.disable_l2_regularizer:
self.d_loss = self.d_loss+reg_loss
self.g_loss_feature_matching = self.g_loss_feature_matching+reg_loss
self.g_loss = self.g_loss+reg_loss
self.d_params = [v for v in tf.trainable_variables() if v.name.startswith('model/D/')]
if not is_training:
return
d_optimizer = tf.train.GradientDescentOptimizer(self._lr*FLAGS.d_lr_factor)
d_grads, _ = tf.clip_by_global_norm(tf.gradients(self.d_loss, self.d_params),
FLAGS.max_grad_norm)
self.opt_d = d_optimizer.apply_gradients(zip(d_grads, self.d_params))
if FLAGS.feature_matching:
g_grads, _ = tf.clip_by_global_norm(tf.gradients(self.g_loss_feature_matching,
self.g_params),
FLAGS.max_grad_norm)
else:
g_grads, _ = tf.clip_by_global_norm(tf.gradients(self.g_loss, self.g_params),
FLAGS.max_grad_norm)
self.opt_g = g_optimizer.apply_gradients(zip(g_grads, self.g_params))
self._new_lr = tf.placeholder(shape=[], name="new_learning_rate", dtype=data_type())
self._lr_update = tf.assign(self._lr, self._new_lr)
def discriminator(self, inputs, is_training, msg=''):
# RNN discriminator:
#for i in xrange(len(inputs)):
# print('shape inputs[{}] {}'.format(i, inputs[i].get_shape()))
#inputs[0] = tf.Print(inputs[0], [inputs[0]],
# '{} inputs[0] = '.format(msg), summarize=20, first_n=20)
if is_training and FLAGS.keep_prob < 1:
inputs = [tf.nn.dropout(inp, FLAGS.keep_prob) for inp in inputs]
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(FLAGS.hidden_size_d, forget_bias=1.0, state_is_tuple=True)
if is_training and FLAGS.keep_prob < 1:
lstm_cell = tf.nn.rnn_cell.DropoutWrapper(
lstm_cell, output_keep_prob=FLAGS.keep_prob)
cell_fw = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * FLAGS.num_layers_d, state_is_tuple=True)
self._initial_state_fw = cell_fw.zero_state(self.batch_size, data_type())
if not FLAGS.unidirectional_d:
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(FLAGS.hidden_size_g, forget_bias=1.0, state_is_tuple=True)
if is_training and FLAGS.keep_prob < 1:
lstm_cell = tf.nn.rnn_cell.DropoutWrapper(
lstm_cell, output_keep_prob=FLAGS.keep_prob)
cell_bw = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * FLAGS.num_layers_d, state_is_tuple=True)
self._initial_state_bw = cell_bw.zero_state(self.batch_size, data_type())
outputs, state_fw, state_bw = tf.nn.bidirectional_rnn(cell_fw, cell_bw, inputs, initial_state_fw=self._initial_state_fw, initial_state_bw=self._initial_state_bw)
#outputs[0] = tf.Print(outputs[0], [outputs[0]],
# '{} outputs[0] = '.format(msg), summarize=20, first_n=20)
#state = tf.concat(state_fw, state_bw)
#endoutput = tf.concat(concat_dim=1, values=[outputs[0],outputs[-1]])
else:
outputs, state = tf.nn.rnn(cell_fw, inputs, initial_state=self._initial_state_fw)
#endoutput = outputs[-1]
if FLAGS.minibatch_d:
outputs = [minibatch(tf.reshape(outp, shape=[FLAGS.batch_size, -1]), msg=msg, reuse_scope=(i!=0)) for i,outp in enumerate(outputs)]
# decision = tf.sigmoid(linear(outputs[-1], 1, 'decision'))
if FLAGS.end_classification:
decisions = [tf.sigmoid(linear(output, 1, 'decision', reuse_scope=(i!=0))) for i,output in enumerate([outputs[0], outputs[-1]])]
decisions = tf.pack(decisions)
decisions = tf.transpose(decisions, perm=[1,0,2])
print('shape, decisions: {}'.format(decisions.get_shape()))
else:
decisions = [tf.sigmoid(linear(output, 1, 'decision', reuse_scope=(i!=0))) for i,output in enumerate(outputs)]
decisions = tf.pack(decisions)
decisions = tf.transpose(decisions, perm=[1,0,2])
print('shape, decisions: {}'.format(decisions.get_shape()))
decision = tf.reduce_mean(decisions, reduction_indices=[1,2])
decision = tf.Print(decision, [decision],
'{} decision = '.format(msg), summarize=20, first_n=20)
return (decision,tf.transpose(tf.pack(outputs), perm=[1,0,2]))
def assign_lr(self, session, lr_value):
session.run(self._lr_update, feed_dict={self._new_lr: lr_value})
@property
def generated_features(self):
return self._generated_features
@property
def input_songdata(self):
return self._input_songdata
@property
def input_metadata(self):
return self._input_metadata
@property
def targets(self):
return self._targets
@property
def initial_state(self):
return self._initial_state
@property
def cost(self):
return self._cost
@property
def final_state(self):
return self._final_state
@property
def lr(self):
return self._lr
@property
def train_op(self):
return self._train_op
def run_epoch(session, model, loader, datasetlabel, eval_op_g, eval_op_d, pretraining=False, verbose=False, run_metadata=None, pretraining_d=False):
"""Runs the model on the given data."""
#epoch_size = ((len(data) // model.batch_size) - 1) // model.songlength
epoch_start_time = time.time()
g_loss, d_loss = 10.0, 10.0
g_losses, d_losses = 0.0, 0.0
iters = 0
#state = session.run(model.initial_state)
time_before_graph = None
time_after_graph = None
times_in_graph = []
times_in_python = []
#times_in_batchreading = []
loader.rewind(part=datasetlabel)
[batch_meta, batch_song] = loader.get_batch(model.batch_size, model.songlength, part=datasetlabel)
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
while batch_meta is not None and batch_song is not None:
op_g = eval_op_g
op_d = eval_op_d
if datasetlabel == 'train' and not pretraining: # and not FLAGS.feature_matching:
if d_loss == 0.0 and g_loss == 0.0:
print('Both G and D train loss are zero. Exiting.')
break
#saver.save(session, checkpoint_path, global_step=m.global_step)
#break
elif d_loss == 0.0:
#print('D train loss is zero. Freezing optimization. G loss: {:.3f}'.format(g_loss))
op_g = tf.no_op()
elif g_loss == 0.0:
#print('G train loss is zero. Freezing optimization. D loss: {:.3f}'.format(d_loss))
op_d = tf.no_op()
elif g_loss < 2.0 or d_loss < 2.0:
if g_loss*.7 > d_loss:
#print('G train loss is {:.3f}, D train loss is {:.3f}. Freezing optimization of D'.format(g_loss, d_loss))
op_g = tf.no_op()
#elif d_loss*.7 > g_loss:
#print('G train loss is {:.3f}, D train loss is {:.3f}. Freezing optimization of G'.format(g_loss, d_loss))
op_d = tf.no_op()
#fetches = [model.cost, model.final_state, eval_op]
if pretraining:
if pretraining_d:
fetches = [model.rnn_pretraining_loss, model.d_loss, op_g, op_d]
else:
fetches = [model.rnn_pretraining_loss, tf.no_op(), op_g, op_d]
else:
fetches = [model.g_loss, model.d_loss, op_g, op_d]
feed_dict = {}
feed_dict[model.input_songdata.name] = batch_song
feed_dict[model.input_metadata.name] = batch_meta
#print(batch_song)
#print(batch_song.shape)
#for i, (c, h) in enumerate(model.initial_state):
# feed_dict[c] = state[i].c
# feed_dict[h] = state[i].h
#cost, state, _ = session.run(fetches, feed_dict)
time_before_graph = time.time()
if iters > 0:
times_in_python.append(time_before_graph-time_after_graph)
if run_metadata:
g_loss, d_loss, _, _ = session.run(fetches, feed_dict, options=run_options, run_metadata=run_metadata)
else:
g_loss, d_loss, _, _ = session.run(fetches, feed_dict)
time_after_graph = time.time()
if iters > 0:
times_in_graph.append(time_after_graph-time_before_graph)
g_losses += g_loss
if not pretraining:
d_losses += d_loss
iters += 1
if verbose and iters % 10 == 9:
songs_per_sec = float(iters * model.batch_size)/float(time.time() - epoch_start_time)
avg_time_in_graph = float(sum(times_in_graph))/float(len(times_in_graph))
avg_time_in_python = float(sum(times_in_python))/float(len(times_in_python))
#avg_time_batchreading = float(sum(times_in_batchreading))/float(len(times_in_batchreading))
if pretraining:
print("{}: {} (pretraining) batch loss: G: {:.3f}, avg loss: G: {:.3f}, speed: {:.1f} songs/s, avg in graph: {:.1f}, avg in python: {:.1f}.".format(datasetlabel, iters, g_loss, float(g_losses)/float(iters), songs_per_sec, avg_time_in_graph, avg_time_in_python))
else:
print("{}: {} batch loss: G: {:.3f}, D: {:.3f}, avg loss: G: {:.3f}, D: {:.3f} speed: {:.1f} songs/s, avg in graph: {:.1f}, avg in python: {:.1f}.".format(datasetlabel, iters, g_loss, d_loss, float(g_losses)/float(iters), float(d_losses)/float(iters),songs_per_sec, avg_time_in_graph, avg_time_in_python))
#batchtime = time.time()
[batch_meta, batch_song] = loader.get_batch(model.batch_size, model.songlength, part=datasetlabel)
#times_in_batchreading.append(time.time()-batchtime)
if iters == 0:
return (None,None)
g_mean_loss = g_losses/iters
if pretraining and not pretraining_d:
d_mean_loss = None
else:
d_mean_loss = d_losses/iters
return (g_mean_loss, d_mean_loss)
def sample(session, model, batch=False):
"""Samples from the generative model."""
#state = session.run(model.initial_state)
fetches = [model.generated_features]
feed_dict = {}
generated_features, = session.run(fetches, feed_dict)
#print( generated_features)
print( generated_features[0].shape)
# The following worked when batch_size=1.
# generated_features = [np.squeeze(x, axis=0) for x in generated_features]
# If batch_size != 1, we just pick the first sample. Wastefull, yes.
returnable = []
if batch:
for batchno in xrange(generated_features[0].shape[0]):
returnable.append([x[batchno,:] for x in generated_features])
else:
returnable = [x[0,:] for x in generated_features]
return returnable
def main(_):
if not FLAGS.datadir:
raise ValueError("Must set --datadir to midi music dir.")
if not FLAGS.traindir:
raise ValueError("Must set --traindir to dir where I can save model and plots.")
restore_flags()
summaries_dir = None
plots_dir = None
generated_data_dir = None
summaries_dir = os.path.join(FLAGS.traindir, 'summaries')
plots_dir = os.path.join(FLAGS.traindir, 'plots')
generated_data_dir = os.path.join(FLAGS.traindir, 'generated_data')
try: os.makedirs(FLAGS.traindir)
except: pass
try: os.makedirs(summaries_dir)
except: pass
try: os.makedirs(plots_dir)
except: pass
try: os.makedirs(generated_data_dir)
except: pass
directorynames = FLAGS.traindir.split('/')
experiment_label = ''
while not experiment_label:
experiment_label = directorynames.pop()
global_step = -1
if os.path.exists(os.path.join(FLAGS.traindir, 'global_step.pkl')):
with open(os.path.join(FLAGS.traindir, 'global_step.pkl'), 'r') as f:
global_step = pkl.load(f)
global_step += 1
songfeatures_filename = os.path.join(FLAGS.traindir, 'num_song_features.pkl')
metafeatures_filename = os.path.join(FLAGS.traindir, 'num_meta_features.pkl')
synthetic=None
if FLAGS.synthetic_chords:
synthetic = 'chords'
print('Training on synthetic chords!')
if FLAGS.composer is not None:
print('Single composer: {}'.format(FLAGS.composer))
loader = music_data_utils.MusicDataLoader(FLAGS.datadir, FLAGS.select_validation_percentage, FLAGS.select_test_percentage, FLAGS.works_per_composer, FLAGS.pace_events, synthetic=synthetic, tones_per_cell=FLAGS.tones_per_cell, single_composer=FLAGS.composer)
if FLAGS.synthetic_chords:
# This is just a print out, to check the generated data.
batch = loader.get_batch(batchsize=1, songlength=400)
loader.get_midi_pattern([batch[1][0][i] for i in xrange(batch[1].shape[1])])
num_song_features = loader.get_num_song_features()
print('num_song_features:{}'.format(num_song_features))
num_meta_features = loader.get_num_meta_features()
print('num_meta_features:{}'.format(num_meta_features))
train_start_time = time.time()
checkpoint_path = os.path.join(FLAGS.traindir, "model.ckpt")
songlength_ceiling = FLAGS.songlength
if global_step < FLAGS.pretraining_epochs:
#FLAGS.songlength = int(min(((global_step+10)/10)*10,songlength_ceiling))
FLAGS.songlength = int(min((global_step+1)*4,songlength_ceiling))
with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)) as session:
with tf.variable_scope("model", reuse=None) as scope:
scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))
m = RNNGAN(is_training=True, num_song_features=num_song_features, num_meta_features=num_meta_features)
if FLAGS.initialize_d:
vars_to_restore = {}
for v in tf.trainable_variables():
if v.name.startswith('model/G/'):
print(v.name[:-2])
vars_to_restore[v.name[:-2]] = v
saver = tf.train.Saver(vars_to_restore)
ckpt = tf.train.get_checkpoint_state(FLAGS.traindir)
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
saver.restore(session, ckpt.model_checkpoint_path)
session.run(tf.initialize_variables([v for v in tf.trainable_variables() if v.name.startswith('model/D/')]))
else:
print("Created model with fresh parameters.")
session.run(tf.initialize_all_variables())
saver = tf.train.Saver(tf.all_variables())
else:
saver = tf.train.Saver(tf.all_variables())
ckpt = tf.train.get_checkpoint_state(FLAGS.traindir)
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
session.run(tf.initialize_all_variables())
run_metadata = None
if FLAGS.profiling:
run_metadata = tf.RunMetadata()
if not FLAGS.sample:
train_g_loss,train_d_loss = 1.0,1.0
for i in range(global_step, FLAGS.max_epoch):
lr_decay = FLAGS.lr_decay ** max(i - FLAGS.epochs_before_decay, 0.0)
if global_step < FLAGS.pretraining_epochs:
#new_songlength = int(min(((i+10)/10)*10,songlength_ceiling))
new_songlength = int(min((i+1)*4,songlength_ceiling))
else:
new_songlength = songlength_ceiling
if new_songlength != FLAGS.songlength:
print('Changing songlength, now training on {} events from songs.'.format(new_songlength))
FLAGS.songlength = new_songlength
with tf.variable_scope("model", reuse=True) as scope:
scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))
m = RNNGAN(is_training=True, num_song_features=num_song_features, num_meta_features=num_meta_features)
if not FLAGS.adam:
m.assign_lr(session, FLAGS.learning_rate * lr_decay)
save = False
do_exit = False
print("Epoch: {} Learning rate: {:.3f}, pretraining: {}".format(i, session.run(m.lr), (i<FLAGS.pretraining_epochs)))
if i<FLAGS.pretraining_epochs:
opt_d = tf.no_op()
if FLAGS.pretraining_d:
opt_d = m.opt_d
train_g_loss,train_d_loss = run_epoch(session, m, loader, 'train', m.opt_pretraining, opt_d, pretraining = True, verbose=True, run_metadata=run_metadata, pretraining_d=FLAGS.pretraining_d)
if FLAGS.pretraining_d:
try:
print("Epoch: {} Pretraining loss: G: {:.3f}, D: {:.3f}".format(i, train_g_loss, train_d_loss))
except:
print(train_g_loss)
print(train_d_loss)
else:
print("Epoch: {} Pretraining loss: G: {:.3f}".format(i, train_g_loss))
else:
train_g_loss,train_d_loss = run_epoch(session, m, loader, 'train', m.opt_d, m.opt_g, verbose=True, run_metadata=run_metadata)
try:
print("Epoch: {} Train loss: G: {:.3f}, D: {:.3f}".format(i, train_g_loss, train_d_loss))
except:
print("Epoch: {} Train loss: G: {}, D: {}".format(i, train_g_loss, train_d_loss))
valid_g_loss,valid_d_loss = run_epoch(session, m, loader, 'validation', tf.no_op(), tf.no_op())
try:
print("Epoch: {} Valid loss: G: {:.3f}, D: {:.3f}".format(i, valid_g_loss, valid_d_loss))
except:
print("Epoch: {} Valid loss: G: {}, D: {}".format(i, valid_g_loss, valid_d_loss))
if train_d_loss == 0.0 and train_g_loss == 0.0:
print('Both G and D train loss are zero. Exiting.')
save = True
do_exit = True
if i % FLAGS.epochs_per_checkpoint == 0:
save = True
if FLAGS.exit_after > 0 and time.time() - train_start_time > FLAGS.exit_after*60:
print("%s: Has been running for %d seconds. Will exit (exiting after %d minutes)."%(datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S'), (int)(time.time() - train_start_time), FLAGS.exit_after))
save = True
do_exit = True
if save:
saver.save(session, checkpoint_path, global_step=i)
with open(os.path.join(FLAGS.traindir, 'global_step.pkl'), 'w') as f:
pkl.dump(i, f)
if FLAGS.profiling:
# Create the Timeline object, and write it to a json
tl = timeline.Timeline(run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format()
with open(os.path.join(plots_dir, 'timeline.json'), 'w') as f:
f.write(ctf)
print('{}: Saving done!'.format(i))
step_time, loss = 0.0, 0.0
if train_d_loss is None: #pretraining
train_d_loss = 0.0
valid_d_loss = 0.0
valid_g_loss = 0.0
if not os.path.exists(os.path.join(plots_dir, 'gnuplot-input.txt')):
with open(os.path.join(plots_dir, 'gnuplot-input.txt'), 'w') as f:
f.write('# global-step learning-rate train-g-loss train-d-loss valid-g-loss valid-d-loss\n')
with open(os.path.join(plots_dir, 'gnuplot-input.txt'), 'a') as f:
try:
f.write('{} {:.4f} {:.2f} {:.2f} {:.3} {:.3f}\n'.format(i, m.lr.eval(), train_g_loss, train_d_loss, valid_g_loss, valid_d_loss))
except:
f.write('{} {} {} {} {} {}\n'.format(i, m.lr.eval(), train_g_loss, train_d_loss, valid_g_loss, valid_d_loss))
if not os.path.exists(os.path.join(plots_dir, 'gnuplot-commands-loss.txt')):
with open(os.path.join(plots_dir, 'gnuplot-commands-loss.txt'), 'a') as f:
f.write('set terminal postscript eps color butt "Times" 14\nset yrange [0:400]\nset output "loss.eps"\nplot \'gnuplot-input.txt\' using ($1):($3) title \'train G\' with linespoints, \'gnuplot-input.txt\' using ($1):($4) title \'train D\' with linespoints, \'gnuplot-input.txt\' using ($1):($5) title \'valid G\' with linespoints, \'gnuplot-input.txt\' using ($1):($6) title \'valid D\' with linespoints, \n')
if not os.path.exists(os.path.join(plots_dir, 'gnuplot-commands-midistats.txt')):
with open(os.path.join(plots_dir, 'gnuplot-commands-midistats.txt'), 'a') as f:
f.write('set terminal postscript eps color butt "Times" 14\nset yrange [0:127]\nset xrange [0:70]\nset output "midistats.eps"\nplot \'midi_stats.gnuplot\' using ($1):(100*$3) title \'Scale consistency, %\' with linespoints, \'midi_stats.gnuplot\' using ($1):($6) title \'Tone span, halftones\' with linespoints, \'midi_stats.gnuplot\' using ($1):($10) title \'Unique tones\' with linespoints, \'midi_stats.gnuplot\' using ($1):($23) title \'Intensity span, units\' with linespoints, \'midi_stats.gnuplot\' using ($1):(100*$24) title \'Polyphony, %\' with linespoints, \'midi_stats.gnuplot\' using ($1):($12) title \'3-tone repetitions\' with linespoints\n')
try:
Popen(['gnuplot','gnuplot-commands-loss.txt'], cwd=plots_dir)
Popen(['gnuplot','gnuplot-commands-midistats.txt'], cwd=plots_dir)
except:
print('failed to run gnuplot. Please do so yourself: gnuplot gnuplot-commands.txt cwd={}'.format(plots_dir))
song_data = sample(session, m, batch=True)
midi_patterns = []
print('formatting midi...')
midi_time = time.time()
for d in song_data:
midi_patterns.append(loader.get_midi_pattern(d))
print('done. time: {}'.format(time.time()-midi_time))
filename = os.path.join(generated_data_dir, 'out-{}-{}-{}.mid'.format(experiment_label, i, datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S')))
loader.save_midi_pattern(filename, midi_patterns[0])
stats = []
print('getting stats...')
stats_time = time.time()
for p in midi_patterns:
stats.append(get_all_stats(p))
print('done. time: {}'.format(time.time()-stats_time))
#print(stats)
stats = [stat for stat in stats if stat is not None]
if len(stats):
stats_keys_string = ['scale']
stats_keys = ['scale_score', 'tone_min', 'tone_max', 'tone_span', 'freq_min', 'freq_max', 'freq_span', 'tones_unique', 'repetitions_2', 'repetitions_3', 'repetitions_4', 'repetitions_5', 'repetitions_6', 'repetitions_7', 'repetitions_8', 'repetitions_9', 'estimated_beat', 'estimated_beat_avg_ticks_off', 'intensity_min', 'intensity_max', 'intensity_span', 'polyphony_score', 'top_2_interval_difference', 'top_3_interval_difference', 'num_tones']
statsfilename = os.path.join(plots_dir, 'midi_stats.gnuplot')
if not os.path.exists(statsfilename):
with open(statsfilename, 'a') as f:
f.write('# Average numers over one minibatch of size {}.\n'.format(FLAGS.batch_size))
f.write('# global-step {} {}\n'.format(' '.join([s.replace(' ', '_') for s in stats_keys_string]), ' '.join(stats_keys)))
with open(statsfilename, 'a') as f:
f.write('{} {} {}\n'.format(i, ' '.join(['{}'.format(stats[0][key].replace(' ', '_')) for key in stats_keys_string]), ' '.join(['{:.3f}'.format(sum([s[key] for s in stats])/float(len(stats))) for key in stats_keys])))
print('Saved {}.'.format(filename))
if do_exit:
if FLAGS.call_after is not None:
print("%s: Will call \"%s\" before exiting."%(datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S'), FLAGS.call_after))
res = call(FLAGS.call_after.split(" "))
print ('{}: call returned {}.'.format(datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S'), res))
exit()
sys.stdout.flush()
test_g_loss,test_d_loss = run_epoch(session, m, loader, 'test', tf.no_op(), tf.no_op())
print("Test loss G: %.3f, D: %.3f" %(test_g_loss, test_d_loss))
song_data = sample(session, m)
filename = os.path.join(generated_data_dir, 'out-{}-{}-{}.mid'.format(experiment_label, i, datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S')))
loader.save_data(filename, song_data)
print('Saved {}.'.format(filename))
if __name__ == "__main__":
tf.app.run()