-
Notifications
You must be signed in to change notification settings - Fork 0
/
Image.cc
1029 lines (906 loc) · 31.8 KB
/
Image.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "Image.hh"
#define __STDC_FORMAT_MACROS
#include <float.h>
#include <inttypes.h>
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <map>
#include <stdexcept>
#include "Filesystem.hh"
#include "Strings.hh"
#ifndef WINDOWS
#include "ImageTextFont.hh"
#endif
using namespace std;
Image::unknown_format::unknown_format(const std::string& what) : runtime_error(what) { }
struct WindowsBitmapFileHeader {
uint16_t magic;
uint32_t file_size;
uint16_t reserved[2];
uint32_t data_offset;
} __attribute__((packed));
struct WindowsBitmapInfoHeader {
uint32_t header_size;
int32_t width;
int32_t height;
uint16_t num_planes;
uint16_t bit_depth;
uint32_t compression; // only BI_RGB (0) and BI_BITFIELDS (3) are supported
uint32_t image_size;
int32_t x_pixels_per_meter;
int32_t y_pixels_per_meter;
uint32_t num_used_colors;
uint32_t num_important_colors;
// the following are only present for 32-bit bitmaps apparently
uint32_t bitmask_r;
uint32_t bitmask_g;
uint32_t bitmask_b;
uint32_t bitmask_a;
static const size_t SIZE24 = 0x28;
} __attribute__((packed));
struct WindowsBitmapHeader {
WindowsBitmapFileHeader file_header;
WindowsBitmapInfoHeader info_header;
} __attribute__((packed));
void Image::load(FILE* f) {
char sig[2];
// read signature. this will tell us what kind of file it is
freadx(f, sig, 2);
// find out what kind of image it is
ImageFormat format;
if (sig[0] == 'P' && sig[1] == '5') {
format = GrayscalePPM;
} else if (sig[0] == 'P' && sig[1] == '6') {
format = ColorPPM;
} else if (sig[0] == 'B' && sig[1] == 'M') {
format = WindowsBitmap;
} else {
throw unknown_format(string_printf(
"can\'t load image; type signature is %02X%02X", sig[0], sig[1]));
}
if (format == GrayscalePPM || format == ColorPPM) {
size_t new_width, new_height;
uint64_t new_max_value;
if (fscanf(f, "%zu", &new_width) != 1) {
throw runtime_error("cannot read width field in PPM header");
}
if (fscanf(f, "%zu", &new_height) != 1) {
throw runtime_error("cannot read height field in PPM header");
}
if (fscanf(f, "%" PRIu64, &new_max_value) != 1) {
throw runtime_error("cannot read max value field in PPM header");
}
// according to the docs, this can be any whitespace character but is
// "usually" a newline. guess we shouldn't make assumptions here
char header_end_char = fgetc(f);
if ((header_end_char != ' ') && ((header_end_char != '\t') &&
(header_end_char != '\n'))) {
throw runtime_error("whitespace character not present after PPM header");
}
// the format docs say this is limited to 0xFFFF, but we'll support up to
// 64-bit channels anyway
uint8_t new_channel_width;
if (new_max_value > 0xFFFFFFFF) {
new_channel_width = 64;
} else if (new_max_value > 0xFFFF) {
new_channel_width = 32;
} else if (new_max_value > 0xFF) {
new_channel_width = 16;
} else {
new_channel_width = 8;
}
void* new_data = malloc(new_width * new_height * 3 * (new_channel_width / 8));
if (!new_data) {
throw bad_alloc();
}
freadx(f, new_data, new_width * new_height * (format == ColorPPM ? 3 : 1) * (new_channel_width / 8));
// if the read succeeded, we can commit the changes - nothing after here can
// throw an exception
this->width = new_width;
this->height = new_height;
this->has_alpha = false;
this->channel_width = new_channel_width;
this->max_value = new_max_value;
this->data = new_data;
// expand grayscale data into color data if necessary
if (format == GrayscalePPM) {
if (this->channel_width == 8) {
for (ssize_t y = this->height - 1; y >= 0; y--) {
for (ssize_t x = this->width - 1; x >= 0; x--) {
this->data8[(y * this->width + x) * 3 + 0] = this->data8[y * this->width + x];
this->data8[(y * this->width + x) * 3 + 1] = this->data8[y * this->width + x];
this->data8[(y * this->width + x) * 3 + 2] = this->data8[y * this->width + x];
}
}
} else if (this->channel_width == 16) {
for (ssize_t y = this->height - 1; y >= 0; y--) {
for (ssize_t x = this->width - 1; x >= 0; x--) {
this->data16[(y * this->width + x) * 3 + 0] = this->data16[y * this->width + x];
this->data16[(y * this->width + x) * 3 + 1] = this->data16[y * this->width + x];
this->data16[(y * this->width + x) * 3 + 2] = this->data16[y * this->width + x];
}
}
} else if (this->channel_width == 32) {
for (ssize_t y = this->height - 1; y >= 0; y--) {
for (ssize_t x = this->width - 1; x >= 0; x--) {
this->data32[(y * this->width + x) * 3 + 0] = this->data32[y * this->width + x];
this->data32[(y * this->width + x) * 3 + 1] = this->data32[y * this->width + x];
this->data32[(y * this->width + x) * 3 + 2] = this->data32[y * this->width + x];
}
}
} else if (this->channel_width == 64) {
for (ssize_t y = this->height - 1; y >= 0; y--) {
for (ssize_t x = this->width - 1; x >= 0; x--) {
this->data64[(y * this->width + x) * 3 + 0] = this->data64[y * this->width + x];
this->data64[(y * this->width + x) * 3 + 1] = this->data64[y * this->width + x];
this->data64[(y * this->width + x) * 3 + 2] = this->data64[y * this->width + x];
}
}
}
}
} else if (format == WindowsBitmap) {
WindowsBitmapHeader header;
memcpy(&header.file_header.magic, sig, 2);
freadx(f, reinterpret_cast<uint8_t*>(&header) + 2, sizeof(header) - 2);
if (header.file_header.magic != 0x4D42) {
throw runtime_error(string_printf("bad signature in bitmap file (%04hX)",
header.file_header.magic));
}
if ((header.info_header.bit_depth != 24) && (header.info_header.bit_depth != 32)) {
throw runtime_error(string_printf(
"can only load 24-bit or 32-bit bitmaps (this is a %hu-bit bitmap)",
header.info_header.bit_depth));
}
if (header.info_header.num_planes != 1) {
throw runtime_error("can only load 1-plane bitmaps");
}
bool reverse_row_order = header.info_header.height < 0;
fseek(f, header.file_header.data_offset, SEEK_SET);
bool has_alpha;
int32_t w = header.info_header.width;
int32_t h = header.info_header.height * (reverse_row_order ? -1 : 1);
unique_ptr<void, void(*)(void*)> new_data_unique(nullptr, free);
if (header.info_header.compression == 0) { // BI_RGB
if ((header.info_header.bit_depth != 24) && (header.info_header.bit_depth != 32)) {
throw runtime_error("bitmap uses BI_RGB but bit depth is not 24 or 32");
}
has_alpha = false;
size_t pixel_bytes = header.info_header.bit_depth / 8;
size_t row_padding_bytes = (4 - ((w * pixel_bytes) % 4)) % 4;
new_data_unique = malloc_unique(w * h * 3);
uint8_t* new_data = reinterpret_cast<uint8_t*>(new_data_unique.get());
auto row_data_unique = malloc_unique(w * pixel_bytes);
uint8_t* row_data = reinterpret_cast<uint8_t*>(row_data_unique.get());
for (int32_t y = h - 1; y >= 0; y--) {
freadx(f, row_data, w * pixel_bytes);
ssize_t target_y = reverse_row_order ? (h - y - 1) : y;
ssize_t target_y_offset = target_y * w * 3;
for (int32_t x = 0; x < w; x++) {
size_t x_offset = x * 3;
size_t src_x_offset = x * pixel_bytes;
new_data[target_y_offset + x_offset + 2] = row_data[src_x_offset + 0];
new_data[target_y_offset + x_offset + 1] = row_data[src_x_offset + 1];
new_data[target_y_offset + x_offset + 0] = row_data[src_x_offset + 2];
}
if (row_padding_bytes) {
fseek(f, row_padding_bytes, SEEK_CUR);
}
}
} else if (header.info_header.compression == 3) { // BI_BITFIELDS
if (header.info_header.bit_depth != 32) {
throw runtime_error("bitmap uses BI_BITFIELDS but bit depth is not 32");
}
has_alpha = true;
// we only support bitmaps where channels are entire bytes
// note the offsets are reversed because little-endian
size_t r_offset, g_offset, b_offset, a_offset;
unordered_map<uint32_t, size_t> offset_for_bitmask({
{0xFF000000, 3}, {0x00FF0000, 2}, {0x0000FF00, 1}, {0x000000FF, 0}});
try {
r_offset = offset_for_bitmask.at(header.info_header.bitmask_r);
g_offset = offset_for_bitmask.at(header.info_header.bitmask_g);
b_offset = offset_for_bitmask.at(header.info_header.bitmask_b);
a_offset = offset_for_bitmask.at(header.info_header.bitmask_a);
} catch (const out_of_range&) {
throw runtime_error("channel bit field is not 1-byte mask");
}
new_data_unique = malloc_unique(w * h * 4);
uint8_t* new_data = reinterpret_cast<uint8_t*>(new_data_unique.get());
auto row_data_unique = malloc_unique(w * 4);
uint8_t* row_data = reinterpret_cast<uint8_t*>(row_data_unique.get());
for (int32_t y = h - 1; y >= 0; y--) {
freadx(f, row_data, w * 4);
ssize_t target_y = reverse_row_order ? (h - y - 1) : y;
ssize_t target_y_offset = target_y * w * 4;
for (int32_t x = 0; x < w; x++) {
size_t x_offset = x * 4;
new_data[target_y_offset + x_offset + 0] = row_data[x_offset + r_offset];
new_data[target_y_offset + x_offset + 1] = row_data[x_offset + g_offset];
new_data[target_y_offset + x_offset + 2] = row_data[x_offset + b_offset];
new_data[target_y_offset + x_offset + 3] = row_data[x_offset + a_offset];
}
}
} else {
throw runtime_error("can only load uncompressed or bitfield bitmaps");
}
// load was successful; commit the changes
this->width = w;
this->height = h;
this->has_alpha = has_alpha;
this->channel_width = 8;
this->max_value = 0xFF;
this->data = new_data_unique.release();
}
}
static const unordered_map<uint8_t, uint64_t> max_value_for_channel_width({
{8, 0xFF},
{16, 0xFFFF},
{32, 0xFFFFFFFF},
{64, 0xFFFFFFFFFFFFFFFF},
});
Image::Image(size_t x, size_t y, bool has_alpha, uint8_t channel_width) :
width(x), height(y), has_alpha(has_alpha), channel_width(channel_width),
max_value(max_value_for_channel_width.at(this->channel_width)) {
size_t num_bytes = this->get_data_size();
this->data = malloc(num_bytes);
memset(this->data, 0, num_bytes * sizeof(uint8_t));
}
Image::Image(const Image& im) : width(im.width), height(im.height),
has_alpha(im.has_alpha), channel_width(im.channel_width),
max_value(im.max_value) {
size_t num_bytes = this->get_data_size();
this->data = malloc(num_bytes);
memcpy(this->data, im.data, num_bytes * sizeof(uint8_t));
}
const Image& Image::operator=(const Image& im) {
this->width = im.width;
this->height = im.height;
this->has_alpha = im.has_alpha;
this->channel_width = im.channel_width;
this->max_value = im.max_value;
size_t num_bytes = this->get_data_size();
if (this->data) {
free(this->data);
}
this->data = malloc(num_bytes);
memcpy(this->data, im.data, num_bytes * sizeof(uint8_t));
return *this;
}
Image::Image(Image&& im) {
this->width = im.width;
this->height = im.height;
this->has_alpha = im.has_alpha;
this->channel_width = im.channel_width;
this->max_value = im.max_value;
this->data = im.data;
im.width = 0;
im.height = 0;
im.has_alpha = false;
im.channel_width = 8;
im.max_value = 0xFF;
im.data = NULL;
}
const Image& Image::operator=(Image&& im) {
this->width = im.width;
this->height = im.height;
this->has_alpha = im.has_alpha;
this->channel_width = im.channel_width;
this->max_value = im.max_value;
if (this->data) {
free(this->data);
}
this->data = im.data;
im.width = 0;
im.height = 0;
im.has_alpha = false;
im.channel_width = 8;
im.max_value = 0xFF;
im.data = NULL;
return *this;
}
Image::Image(FILE* f) {
this->load(f);
}
Image::Image(const char* filename) {
if (filename) {
auto f = fopen_unique(filename, "rb");
this->load(f.get());
} else {
this->load(stdin);
}
}
Image::Image(const string& filename) : Image(filename.c_str()) { }
Image::Image(FILE* f, ssize_t width, ssize_t height, bool has_alpha,
uint8_t channel_width, uint64_t max_value) : width(width), height(height),
has_alpha(has_alpha), channel_width(channel_width),
max_value(max_value ? max_value : max_value_for_channel_width.at(this->channel_width)) {
size_t num_bytes = this->get_data_size();
this->data = malloc(num_bytes);
freadx(f, this->data, num_bytes);
}
Image::Image(const char* filename, ssize_t width, ssize_t height,
bool has_alpha, uint8_t channel_width, uint64_t max_value) : width(width),
height(height), has_alpha(has_alpha), channel_width(channel_width),
max_value(max_value ? max_value : max_value_for_channel_width.at(this->channel_width)) {
auto f = fopen_unique(filename, "rb");
size_t num_bytes = this->get_data_size();
this->data = malloc(num_bytes);
freadx(f.get(), this->data, num_bytes);
}
Image::Image(const std::string& filename, ssize_t width, ssize_t height,
bool has_alpha, uint8_t channel_width, uint64_t max_value) :
Image(filename.c_str(), width, height, has_alpha, channel_width, max_value) { }
Image::~Image() {
if (this->channel_width == 8) {
delete[] this->data8;
} else if (this->channel_width == 16) {
delete[] this->data16;
} else if (this->channel_width == 32) {
delete[] this->data32;
} else if (this->channel_width == 64) {
delete[] this->data64;
}
}
bool Image::operator==(const Image& other) {
if ((this->width != other.width) || (this->height != other.height) ||
(this->has_alpha != other.has_alpha) ||
(this->channel_width != other.channel_width) ||
(this->max_value != other.max_value)) {
return false;
}
return !memcmp(this->data, other.data, this->get_data_size());
}
const char* Image::mime_type_for_format(ImageFormat format) {
switch (format) {
case GrayscalePPM:
case ColorPPM:
return "image/x-portable-pixmap";
case WindowsBitmap:
return "image/bmp";
default:
return "text/plain";
}
}
const char* Image::file_extension_for_format(ImageFormat format) {
switch (format) {
case GrayscalePPM:
case ColorPPM:
return "ppm";
case WindowsBitmap:
return "bmp";
default:
return "raw";
}
}
// save the image to an already-open file
void Image::save(FILE* f, Image::ImageFormat format) const {
switch (format) {
case GrayscalePPM:
throw runtime_error("can\'t save grayscale ppm files");
case ColorPPM:
if (this->has_alpha) {
throw runtime_error("can\'t save color ppm with alpha");
}
fprintf(f, "P6 %zu %zu %" PRIu64 "\n", this->width, this->height,
this->max_value);
fwritex(f, this->data, this->get_data_size());
break;
case WindowsBitmap: {
if (this->channel_width != 8) {
throw runtime_error("can\'t save bmp with more than 8-bit channels");
}
size_t pixel_bytes = 3 + this->has_alpha;
size_t row_padding_bytes = (4 - ((this->width * pixel_bytes) % 4)) % 4;
uint8_t row_padding_data[4] = {0, 0, 0, 0};
size_t header_size = sizeof(WindowsBitmapFileHeader) + (this->has_alpha ? sizeof(WindowsBitmapInfoHeader) : WindowsBitmapInfoHeader::SIZE24);
WindowsBitmapHeader header;
header.file_header.magic = 0x4D42; // 'BM'
header.file_header.file_size = header_size + (this->width * this->height * pixel_bytes) + (row_padding_bytes * this->height);
header.file_header.reserved[0] = 0;
header.file_header.reserved[1] = 0;
header.file_header.data_offset = header_size;
header.info_header.header_size = header_size - sizeof(WindowsBitmapFileHeader);
header.info_header.width = this->width;
header.info_header.height = this->height;
header.info_header.num_planes = 1;
header.info_header.bit_depth = this->has_alpha ? 32 : 24;
header.info_header.compression = this->has_alpha ? 3 : 0; // BI_BITFIELDS or BI_RGB
header.info_header.image_size = this->has_alpha ? (this->width * this->height * 4) : 0; // 0 acceptable for BI_RGB
header.info_header.x_pixels_per_meter = 0x00000B12;
header.info_header.y_pixels_per_meter = 0x00000B12;
header.info_header.num_used_colors = 0;
header.info_header.num_important_colors = 0;
if (this->has_alpha) {
header.info_header.bitmask_r = 0x000000FF;
header.info_header.bitmask_g = 0x0000FF00;
header.info_header.bitmask_b = 0x00FF0000;
header.info_header.bitmask_a = 0xFF000000;
}
fwrite(&header, header_size, 1, f);
if (this->has_alpha) {
// there's no padding and the bitmasks already specify how to read each
// pixel; just write each row
for (ssize_t y = this->height - 1; y >= 0; y--) {
fwrite(&this->data8[y * this->width * 4], this->width * 4, 1, f);
}
} else {
auto row_data_unique = malloc_unique(this->width * 3);
uint8_t* row_data = reinterpret_cast<uint8_t*>(row_data_unique.get());
for (ssize_t y = this->height - 1; y >= 0; y--) {
for (ssize_t x = 0; x < this->width * 3; x += 3) {
row_data[x] = this->data8[y * this->width * 3 + x + 2];
row_data[x + 1] = this->data8[y * this->width * 3 + x + 1];
row_data[x + 2] = this->data8[y * this->width * 3 + x];
}
fwrite(row_data, this->width * 3, 1, f);
if (row_padding_bytes) {
fwrite(row_padding_data, row_padding_bytes, 1, f);
}
}
}
break;
}
default:
throw runtime_error("unknown file format in Image::save()");
}
}
// save the image to a string in memory
string Image::save(Image::ImageFormat format) const {
// TODO: deduplicate this implementation with Image::save(FILE*)
switch (format) {
case GrayscalePPM:
throw runtime_error("can\'t save grayscale ppm files");
case ColorPPM: {
if (this->has_alpha) {
throw runtime_error("can\'t save color ppm with alpha");
}
string s = string_printf("P6 %d %d %" PRIu64 "\n", this->width,
this->height, this->max_value);
s.append((const char*)this->data, this->get_data_size());
return s;
}
case WindowsBitmap: {
if (this->channel_width != 8) {
throw runtime_error("can\'t save bmp with more than 8-bit channels");
}
size_t pixel_bytes = 3 + this->has_alpha;
size_t row_padding_bytes = (4 - ((this->width * pixel_bytes) % 4)) % 4;
char row_padding_data[4] = {0, 0, 0, 0};
size_t header_size = sizeof(WindowsBitmapFileHeader) + (this->has_alpha ? sizeof(WindowsBitmapInfoHeader) : WindowsBitmapInfoHeader::SIZE24);
WindowsBitmapHeader header;
header.file_header.magic = 0x4D42; // 'BM'
header.file_header.file_size = header_size + (this->width * this->height * pixel_bytes) + (row_padding_bytes * this->height);
header.file_header.reserved[0] = 0;
header.file_header.reserved[1] = 0;
header.file_header.data_offset = header_size;
header.info_header.header_size = header_size - sizeof(WindowsBitmapFileHeader);
header.info_header.width = this->width;
header.info_header.height = this->height;
header.info_header.num_planes = 1;
header.info_header.bit_depth = this->has_alpha ? 32 : 24;
header.info_header.compression = this->has_alpha ? 3 : 0; // BI_BITFIELDS or BI_RGB
header.info_header.image_size = this->has_alpha ? (this->width * this->height * 4) : 0; // 0 acceptable for BI_RGB
header.info_header.x_pixels_per_meter = 0x00000B12;
header.info_header.y_pixels_per_meter = 0x00000B12;
header.info_header.num_used_colors = 0;
header.info_header.num_important_colors = 0;
if (this->has_alpha) {
header.info_header.bitmask_r = 0x000000FF;
header.info_header.bitmask_g = 0x0000FF00;
header.info_header.bitmask_b = 0x00FF0000;
header.info_header.bitmask_a = 0xFF000000;
}
string s;
s.append((const char*)&header, header_size);
if (this->has_alpha) {
// there's no padding and the bitmasks already specify how to read each
// pixel; just write each row
for (ssize_t y = this->height - 1; y >= 0; y--) {
s.append((const char*)&this->data8[y * this->width * 4], this->width * 4);
}
} else {
auto row_data_unique = malloc_unique(this->width * 3);
uint8_t* row_data = reinterpret_cast<uint8_t*>(row_data_unique.get());
for (ssize_t y = this->height - 1; y >= 0; y--) {
for (ssize_t x = 0; x < this->width * 3; x += 3) {
row_data[x] = this->data8[y * this->width * 3 + x + 2];
row_data[x + 1] = this->data8[y * this->width * 3 + x + 1];
row_data[x + 2] = this->data8[y * this->width * 3 + x];
}
s.append((const char*)row_data, this->width * 3);
if (row_padding_bytes) {
s.append(row_padding_data, row_padding_bytes);
}
}
}
return s;
}
default:
throw runtime_error("unknown file format in Image::save()");
}
}
// saves the Image. if NULL is given for filename, writes to stdout
void Image::save(const char* filename, Image::ImageFormat format) const {
if (filename) {
auto f = fopen_unique(filename, "wb");
this->save(f.get(), format);
} else {
this->save(stdout, format);
}
}
// saves the Image
void Image::save(const string& filename, Image::ImageFormat format) const {
auto f = fopen_unique(filename, "wb");
this->save(f.get(), format);
}
// fill the entire image with this color
void Image::clear(uint64_t r, uint64_t g, uint64_t b, uint64_t a) {
for (ssize_t y = 0; y < this->height; y++) {
for (ssize_t x = 0; x < this->width; x++) {
this->write_pixel(x, y, r, g, b, a);
}
}
}
// read the specified pixel's rgb values
void Image::read_pixel(ssize_t x, ssize_t y, uint64_t* r, uint64_t* g,
uint64_t* b, uint64_t* a) const {
// check coordinates
if (x < 0 || y < 0 || x >= this->width || y >= this->height) {
throw runtime_error("out of bounds");
}
size_t index = (y * this->width + x) * (this->has_alpha ? 4 : 3);
if (this->channel_width == 8) {
if (r) {
*r = this->data8[index];
}
if (g) {
*g = this->data8[index + 1];
}
if (b) {
*b = this->data8[index + 2];
}
if (a) {
*a = this->has_alpha ? this->data8[index + 3] : this->max_value;
}
} else if (this->channel_width == 16) {
if (r) {
*r = this->data16[index];
}
if (g) {
*g = this->data16[index + 1];
}
if (b) {
*b = this->data16[index + 2];
}
if (a) {
*a = this->has_alpha ? this->data16[index + 3] : this->max_value;
}
} else if (this->channel_width == 32) {
if (r) {
*r = this->data32[index];
}
if (g) {
*g = this->data32[index + 1];
}
if (b) {
*b = this->data32[index + 2];
}
if (a) {
*a = this->has_alpha ? this->data32[index + 3] : this->max_value;
}
} else if (this->channel_width == 64) {
if (r) {
*r = this->data64[index];
}
if (g) {
*g = this->data64[index + 1];
}
if (b) {
*b = this->data64[index + 2];
}
if (a) {
*a = this->has_alpha ? this->data64[index + 3] : this->max_value;
}
} else {
throw logic_error("image channel width is not 8, 16, 32, or 64");
}
}
// write the specified pixel's rgb values
void Image::write_pixel(ssize_t x, ssize_t y, uint64_t r, uint64_t g,
uint64_t b, uint64_t a) {
// check coordinates
if (x < 0 || y < 0 || x >= this->width || y >= this->height) {
throw runtime_error("out of bounds");
}
size_t index = (y * this->width + x) * (this->has_alpha ? 4 : 3);
if (this->channel_width == 8) {
this->data8[index] = r;
this->data8[index + 1] = g;
this->data8[index + 2] = b;
if (this->has_alpha) {
this->data8[index + 3] = a;
}
} else if (this->channel_width == 16) {
this->data16[index] = r;
this->data16[index + 1] = g;
this->data16[index + 2] = b;
if (this->has_alpha) {
this->data16[index + 3] = a;
}
} else if (this->channel_width == 32) {
this->data32[index] = r;
this->data32[index + 1] = g;
this->data32[index + 2] = b;
if (this->has_alpha) {
this->data32[index + 3] = a;
}
} else if (this->channel_width == 64) {
this->data64[index] = r;
this->data64[index + 1] = g;
this->data64[index + 2] = b;
if (this->has_alpha) {
this->data64[index + 3] = a;
}
} else {
throw logic_error("image channel width is not 8, 16, 32, or 64");
}
}
// use the Bresenham algorithm to draw a line between the specified points
void Image::draw_line(ssize_t x0, ssize_t y0, ssize_t x1, ssize_t y1,
uint64_t r, uint64_t g, uint64_t b, uint64_t a) {
// if both endpoints are outside the image, don't bother
if ((x0 < 0 || x0 >= width || y0 < 0 || y0 >= height) &&
(x1 < 0 || x1 >= width || y1 < 0 || y1 >= height)) {
return;
}
// line is too steep? then we step along y rather than x
bool steep = abs(y1 - y0) > abs(x1 - x0);
if (steep) {
ssize_t t = x0;
x0 = y0;
y0 = t;
t = x1;
x1 = y1;
y1 = t;
}
// line is backward? then switch the points
if (x0 > x1) {
ssize_t t = x1;
x1 = x0;
x0 = t;
t = y1;
y1 = y0;
y0 = t;
}
// initialize variables for stepping along the line
ssize_t dx = x1 - x0;
ssize_t dy = abs(y1 - y0);
double error = 0;
double derror = (double)dy / (double)dx;
ssize_t ystep = (y0 < y1) ? 1 : -1;
ssize_t y = y0;
// now walk along the line
for (ssize_t x = x0; x <= x1; x++) {
if (steep) {
try {
this->write_pixel(y, x, r, g, b, a);
} catch (const runtime_error& e) {
return;
}
} else {
try {
this->write_pixel(x, y, r, g, b, a);
} catch (const runtime_error& e) {
return;
}
}
error += derror;
// have we passed the center of this row? then move to the next row
if (error >= 0.5) {
y += ystep;
error -= 1.0;
}
}
}
void Image::draw_horizontal_line(ssize_t x1, ssize_t x2, ssize_t y,
ssize_t dash_length, uint64_t r, uint64_t g, uint64_t b, uint64_t a) {
for (ssize_t x = x1; x <= x2; x++) {
if (dash_length && ((x / dash_length) & 1)) {
continue;
}
try {
this->write_pixel(x, y, r, g, b, a);
} catch (const runtime_error& e) {
break;
}
}
}
void Image::draw_vertical_line(ssize_t x, ssize_t y1, ssize_t y2,
ssize_t dash_length, uint64_t r, uint64_t g, uint64_t b, uint64_t a) {
for (ssize_t y = y1; y <= y2; y++) {
if (dash_length && ((y / dash_length) & 1)) {
continue;
}
try {
this->write_pixel(x, y, r, g, b, a);
} catch (const runtime_error& e) {
break;
}
}
}
#ifndef WINDOWS
void Image::draw_text(ssize_t x, ssize_t y, ssize_t* width, ssize_t* height,
uint64_t r, uint64_t g, uint64_t b, uint64_t a, uint64_t br, uint64_t bg,
uint64_t bb, uint64_t ba, const char* fmt, ...) {
char* buffer;
va_list va;
va_start(va, fmt);
vasprintf(&buffer, fmt, va);
va_end(va);
if (!buffer) {
throw bad_alloc();
}
ssize_t max_x_pos = 0;
ssize_t x_pos = x, y_pos = y;
for (ssize_t z = 0; buffer[z]; z++) {
uint8_t ch = buffer[z];
if (ch == '\r') {
continue;
}
if (ch == '\n') {
if (ba) {
this->fill_rect(x_pos - 1, y_pos - 1, 1, 9, br, bg, bb, ba);
}
y_pos += 8;
x_pos = x;
if (x_pos > max_x_pos) {
max_x_pos = x_pos;
}
continue;
}
if (ch < 0x20 || ch > 0x7F) {
ch = 0x7F;
}
ch -= 0x20;
if (ba) {
this->fill_rect(x_pos - 1, y_pos - 1, 6, 9, br, bg, bb, ba);
}
for (ssize_t yy = 0; yy < 7; yy++) {
for (ssize_t xx = 0; xx < 5; xx++) {
if (!font[ch][yy * 5 + xx]) {
continue;
}
try {
this->write_pixel(x_pos + xx, y_pos + yy, r, g, b, a);
} catch (const runtime_error& e) { }
}
}
x_pos += 6;
}
this->fill_rect(x_pos - 1, y_pos - 1, 1, 9, br, bg, bb, ba);
if (width) {
*width = (x_pos > max_x_pos ? x_pos : max_x_pos) - x;
}
if (height) {
*height = y_pos + 7 - y;
}
free(buffer);
}
#endif
void Image::blit(const Image& source, ssize_t x, ssize_t y, ssize_t w,
ssize_t h, ssize_t sx, ssize_t sy) {
if (w < 0) {
w = source.get_width();
}
if (h < 0) {
h = source.get_height();
}
for (ssize_t yy = 0; yy < h; yy++) {
for (ssize_t xx = 0; xx < w; xx++) {
try {
uint64_t r, g, b, a;
source.read_pixel(sx + xx, sy + yy, &r, &g, &b, &a);
if (a == 0) {
continue;
}
if (a != 0xFF) {
uint64_t sr, sg, sb, sa;
this->read_pixel(x + xx, y + yy, &sr, &sg, &sb, &sa);
r = (a * (uint32_t)r + (0xFF - a) * (uint32_t)sr) / 0xFF;
g = (a * (uint32_t)g + (0xFF - a) * (uint32_t)sg) / 0xFF;
b = (a * (uint32_t)b + (0xFF - a) * (uint32_t)sb) / 0xFF;
a = (a * (uint32_t)a + (0xFF - a) * (uint32_t)sa) / 0xFF;
}
this->write_pixel(x + xx, y + yy, r, g, b, a);
} catch (const runtime_error& e) { }
}
}
}
void Image::mask_blit(const Image& source, ssize_t x, ssize_t y, ssize_t w,
ssize_t h, ssize_t sx, ssize_t sy, uint64_t r, uint64_t g, uint64_t b) {
if (w < 0) {
w = source.get_width();
}
if (h < 0) {
h = source.get_height();
}
for (int yy = 0; yy < h; yy++) {
for (int xx = 0; xx < w; xx++) {
try {
uint64_t _r, _g, _b, _a;
source.read_pixel(sx + xx, sy + yy, &_r, &_g, &_b, &_a);
if (r != _r || g != _g || b != _b) {
this->write_pixel(x + xx, y + yy, _r, _g, _b, _a);
}
} catch (const runtime_error& e) { }
}
}
}
void Image::mask_blit(const Image& source, ssize_t x, ssize_t y, ssize_t w,
ssize_t h, ssize_t sx, ssize_t sy, const Image& mask) {
if ((source.get_width() != mask.get_width()) || (source.get_height() != mask.get_height())) {
throw runtime_error("mask dimensions don\'t match image dimensions");
}
if (w < 0) {
w = source.get_width();
}
if (h < 0) {
h = source.get_height();
}
for (ssize_t yy = 0; yy < h; yy++) {
for (ssize_t xx = 0; xx < w; xx++) {
try {
uint64_t r, g, b, a;
mask.read_pixel(sx + xx, sy + yy, &r, &g, &b);
if (r == 0xFF && g == 0xFF && b == 0xFF) {
continue;
}
source.read_pixel(sx + xx, sy + yy, &r, &g, &b, &a);
this->write_pixel(x + xx, y + yy, r, g, b, a);
} catch (const runtime_error& e) { }
}
}
}
void Image::fill_rect(ssize_t x, ssize_t y, ssize_t w, ssize_t h, uint64_t r,
uint64_t g, uint64_t b, uint64_t a) {
if (x < 0) {
w += x;
x = 0;
}
if (y < 0) {
h += y;
y = 0;
}
if (x + w > static_cast<ssize_t>(this->get_width())) {
w = this->get_width() - x;