-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutilities.scm
282 lines (251 loc) · 7.48 KB
/
utilities.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
;;; utilities
(define (list-set! l i x)
(cond ((null? l) (error "list-set!: out of bounds"))
((= i 0) (set-car! l x))
(else (list-set! (cdr l) (- i 1) x))))
(define (interval n m) ; returns the list (n n+1 n+2 ... m)
(if (<= n m) (cons n (interval (+ n 1) m)) '()))
(define (iota n) (interval 0 (- n 1)))
(define (filter f lst)
(cond ((null? lst) '())
((f (car lst)) (cons (car lst) (filter f (cdr lst))))
(else (filter f (cdr lst)))))
(define (identity x) x)
;; sets using hash tables
(define (new-empty-set) (make-table hash: eq?-hash test: eq?))
(define (new-set x)
(let ((s (new-empty-set)))
(table-set! s x #t)
s))
(define (set-member? s x) (table-ref s x #f))
(define (set-length s) (table-length s))
(define (set-equal? s1 s2) (equal? s1 s2))
(define (set-diff s1 s2)
(let ((s (table-copy s1)))
(table-for-each (lambda (key val) (table-set! s key))
s2)
s))
(define (set-intersection s1 s2)
(define (inters s1 s2)
(let ((t (table-copy s1)))
(table-for-each (lambda (k v) (if (not (table-ref s2 k #f))
(table-set! t k)))
s1)
t))
(if (< (table-length s1) (table-length s2))
(inters s1 s2)
(inters s2 s1)))
(define (set-union s1 s2)
(if (> (table-length s1) (table-length s2))
(table-merge s1 s2)
(table-merge s2 s1)))
(define (set-union! s1 s2) (table-merge! s1 s2)) ; side-effects s1
(define (set-union-multi sets)
(if (null? sets)
(new-empty-set)
(let loop ((l (cdr sets))
(s (set-copy (car sets))))
(if (null? l)
s
(let ((s2 (car l)))
(if (> (set-length s) (set-length s2))
(begin (set-union! s s2)
(loop (cdr l) s))
(let ((s2 (set-copy s2)))
(set-union! s2 s)
(loop (cdr l) s2))))))))
(define (set-add s1 x)
(let ((s2 (table-copy s1)))
(table-set! s2 x #t)
s2))
(define (set-add! s x) (table-set! s x #t)) ; faster, but side-effecting
(define (set-remove! s x) (table-set! s x))
(define (set-empty? s) (= (table-length s) 0))
(define (list->set l) (list->table (map (lambda (x) (cons x #t)) l)))
(define (set->list s) (map car (table->list s)))
(define (set-filter p s1)
(let ((s2 (new-empty-set)))
(table-for-each (lambda (key value)
(if value
(table-set! s2 key #t)))
s1)
s2))
(define (set-for-each f s) (table-for-each (lambda (x dummy) (f x)) s))
(define (set-subset? s1 s2) ; is s2 a subset of s1 ?
(if (> (set-length s2) (set-length s1))
#f
(let loop ((l (set->list s2)))
(cond ((null? l)
#t)
((set-member? s1 (car l))
(loop (cdr l)))
(else
#f)))))
(define set-copy table-copy)
(define (foldl f base lst)
(if (null? lst)
base
(foldl f (f base (car lst)) (cdr lst))))
(define (pos-in-list x lst)
(let loop ((lst lst) (i 0))
(cond ((not (pair? lst)) #f)
((eq? (car lst) x) i)
(else (loop (cdr lst) (+ i 1))))))
(define (remove x lst)
(cond ((null? lst) '())
((eq? x (car lst)) (cdr lst))
(else (cons (car lst)
(remove x (cdr lst))))))
(define (replace x y lst)
(cond ((null? lst) '())
((eq? x (car lst)) (cons y (cdr lst)))
(else (cons (car lst)
(replace x y (cdr lst))))))
(define (last lst)
(cond ((null? lst) #f)
((null? (cdr lst)) (car lst))
(else (last (cdr lst)))))
(define (all-but-last lst)
(let loop ((lst lst)
(new '()))
(cond ((null? lst) #f)
((null? (cdr lst)) (reverse new))
(else (loop (cdr lst)
(cons (car lst) new))))))
(define (memp p l)
(cond ((null? l) #f)
((p (car l)) l)
(else (memp p (cdr l)))))
(define (intersperse x l)
(cond ((or (null? l) (null? (cdr l))) l)
(else (cons (car l) (cons x (intersperse x (cdr l)))))))
(define (unique l)
(if (null? l)
l
(let ((head (car l))
(rest (unique (cdr l))))
(if (member head rest)
rest
(cons head rest)))))
(define (string-append-with-separator sep . strings)
(apply string-append (intersperse sep (unique strings))))
(define (split-string s delimiter) ; delimiter is a char
(let loop ((s (string->list s))
(acc '())
(res '()))
(cond ((null? s)
(reverse (map (lambda (x) (list->string (reverse x)))
(if (null? acc) res (cons acc res)))))
((eq? (car s) delimiter)
(loop (cdr s)
'()
(cons acc res)))
(else
(loop (cdr s)
(cons (car s) acc)
res)))))
(declare
(standard-bindings)
(block)
(fixnum)
;; (not safe)
)
(define (make-bitset n)
(let ((len (fxarithmetic-shift-right (+ n 7) 3)))
(make-u8vector len)))
(define (bitset-add! bs i)
(let* ((j (fxarithmetic-shift-right i 3))
(k (fxand i 7)))
(u8vector-set! bs
j
(fxior (u8vector-ref bs j)
(fxarithmetic-shift-left 1 k)))))
(define (bitset-remove! bs i)
(let* ((j (fxarithmetic-shift-right i 3))
(k (fxand i 7)))
(u8vector-set! bs
j
(fxand (u8vector-ref bs j)
(fxnot (fxarithmetic-shift-left 1 k))))))
(define (bitset-member? bs i)
(let* ((j (fxarithmetic-shift-right i 3))
(k (fxand i 7)))
(not (fx= 0 (fxand (u8vector-ref bs j)
(fxarithmetic-shift-left 1 k))))))
(define (bitset-intersection b1 b2)
(let* ((l (u8vector-length b1)) ; both should have the same length
(b3 (make-u8vector l 0))) ;; TODO abstract with diff and union!
(let loop ((l (- l 1)))
(if (>= l 0)
(begin (u8vector-set! b3 l (fxand (u8vector-ref b1 l)
(u8vector-ref b2 l)))
(loop (- l 1)))
b3))))
(define (bitset-diff b1 b2)
(let* ((l (u8vector-length b1)) ; both should have the same length
(b3 (make-u8vector l 0)))
(let loop ((l (- l 1)))
(if (>= l 0)
(begin (u8vector-set! b3 l (fxand (u8vector-ref b1 l)
(fxnot (u8vector-ref b2 l))))
(loop (- l 1)))
b3))))
(define (bitset-union! b1 b2)
(let* ((l (u8vector-length b1))) ; both should have the same length
(let loop ((l (- l 1)))
(if (>= l 0)
(begin (u8vector-set! b1 l (fxior (u8vector-ref b1 l)
(u8vector-ref b2 l)))
(loop (- l 1)))
b1))))
(define (bitset-empty? bs)
(let loop ((l (- (u8vector-length bs) 1)))
(cond ((< l 0)
#t)
((= (u8vector-ref bs l) 0)
(loop (- l 1)))
(else #f))))
(define (bitset-length bs)
(let loop ((l (- (u8vector-length bs) 1))
(n 0))
(if (< l 0)
n
(loop
(- l 1)
(+ n
(let ((b (u8vector-ref bs l)))
(let loop2 ((i 0) (n 0)) ;; TODO is there a better way ?
(if (> i 7)
n
(loop2 (+ i 1)
(+ n
(if (= (fxand (fxarithmetic-shift-left 1 i) b) 0)
0
1)))))))))))
(define (list->bitset n lst)
(let ((bs (make-bitset n)))
(let loop ((lst lst))
(if (pair? lst)
(let ((i (car lst)))
(bitset-add! bs i)
(loop (cdr lst)))
bs))))
(define (bitset->list bs)
(let ((n (fxarithmetic-shift-left (u8vector-length bs) 3)))
(let loop ((i (- n 1)) (lst '()))
(if (>= i 0)
(loop (- i 1)
(if (bitset-member? bs i)
(cons i lst)
lst))
lst))))
(define bitset-copy u8vector-copy)
(define (bitset-union-multi n bitsets) ; n is necessary is bitsets is null
(let ((bs (make-bitset n)))
(let loop ((l bitsets))
(if (null? l)
bs
(begin (bitset-union! bs (car l))
(loop (cdr l)))))))
(define (bitset-subset? b1 b2) ; is b2 a subset of b1 ?
(equal? (bitset-intersection b1 b2) b2))