@@ -253,21 +253,27 @@ visualizations.
253
253
254
254
#### mcmc_parcoord
255
255
256
- The parallel coordinates plot ( ` mcmc_parcoord ` ) is probably the first plot to
257
- have look at if you have no idea, where the divergences in your model might be
258
- coming from. This function works in general without including information about
259
- the divergences, but if the optional ` np ` argument is used to pass NUTS
260
- parameter information, then divergences will be colored in the plot (by default
261
- in red).
256
+ The ` mcmc_parcoord ` plot shows one line per iteration, connecting the parameter
257
+ values at this iteration. This lets you see global patterns in the divergences.
258
+
259
+ This function works in general without including information about the
260
+ divergences, but if the optional ` np ` argument is used to pass NUTS parameter
261
+ information, then divergences will be colored in the plot (by default in red).
262
262
263
263
``` {r, mcmc_parcoord-1}
264
264
color_scheme_set("darkgray")
265
265
mcmc_parcoord(posterior_cp, np = np_cp)
266
266
```
267
267
268
- The ` mcmc_parcoord ` plot shows one line per iteration, connecting the parameter
269
- values at this iteration. This lets you see any global patterns in the
270
- divergences. Here, you may notice that divergences in the centered
268
+
269
+ <!-- ```{r, mcmc_parcoord-1, eval=FALSE} -->
270
+ <!-- # not evaluated to reduce vignette size for CRAN -->
271
+ <!-- # full version available at mc-stan.org/bayesplot/articles -->
272
+ <!-- color_scheme_set("darkgray") -->
273
+ <!-- mcmc_parcoord(posterior_cp, np = np_cp) -->
274
+ <!-- ``` -->
275
+
276
+ Here, you may notice that divergences in the centered
271
277
parameterization happen exclusively when ` tau ` , the hierarchical standard
272
278
deviation, goes near zero and the values of the ` theta ` s are essentially fixed.
273
279
This makes ` tau ` immediately suspect.
@@ -289,10 +295,17 @@ Let's look at how `tau` interacts with other variables, using only one of the
289
295
` theta ` s to keep the plot readable:
290
296
291
297
``` {r, mcmc_pairs}
292
- mcmc_pairs(posterior_cp, np = np_cp, pars = c("mu","tau","theta[1]"),
298
+ mcmc_pairs(posterior_cp, np = np_cp, pars = c("mu","tau","theta[1]"),
293
299
off_diag_args = list(size = 0.75))
294
300
```
295
301
302
+ <!-- ```{r, mcmc_pairs, eval=FALSE} -->
303
+ <!-- # not evaluated to reduce vignette size for CRAN -->
304
+ <!-- # full version available at mc-stan.org/bayesplot/articles -->
305
+ <!-- mcmc_pairs(posterior_cp, np = np_cp, pars = c("mu","tau","theta[1]"), -->
306
+ <!-- off_diag_args = list(size = 0.75)) -->
307
+ <!-- ``` -->
308
+
296
309
Note that each bivariate plot is present twice -- by default each of those
297
310
contain half of the chains, so you also get to see if the chains produced
298
311
similar results (see the documentation for the ` condition ` argument for
0 commit comments